Handout \#5

Assigment 4:
p. $86: 1,2,3,6,7,9,10$
p. $94: 1,2,3,4,7,8$

Here are some more things that you should know:

- f is continuous at a point c if $x_{n} \rightarrow c$ implies that $f\left(x_{n}\right) \rightarrow f(c)$.
- You should be able to prove that if f and g are continuous at c, then so are $f+g, f g$, and you should be able to state and prove similar results for $f \circ g$ and f / g [the easiest approach is to use the limit laws for sequences].
- How to state and prove the fact that f is continuous at c if and only if $\forall \varepsilon>$ $0, \exists \delta>0$ such that $\forall x \in[a, b],|x-c|<\delta$ implies that $|f(x)-f(c)|<\varepsilon$. You should be able to use this criterion to prove that various functions are continuous.
- The difference between " f is continuous on a set S " and " f is uniformly continuous on a set $S^{\prime \prime}$.
- You should be able to give examples of continuous functions which are not uniformly continuous, and prove your assertion.
- You should be able to prove that if f is a continuous function on $[a, b]$, then
a) f is bounded on $[a, b]$, i.e., there exists an M such that $|f(x)| \leq M$ for all $x \in[a, b]$.
b) f assumes its maximum and minimum values on $[a, b]$.
c) If $f(a)<r<f(b)$, then there is a $c \in[a, b]$ such that $f(c)=r$.
d) f is uniformly continuous on $[a, b]$.

You should be able to explain why we had to assume f was defined on a closed bounded interval in a), b), and d).

Here is a result that we proved in class which is not in the book:
Theorem: Suppose that x_{n} is an arbitrary sequence of real numbers. Then it has a monotone subsequence.

Proof: Let S be the "locations n with a view", i.e.,

$$
S=\left\{n \in \mathbb{N}: m>n \text { implies } x_{m}<x_{n}\right\}
$$

Case 1: Suppose that S is infinite. We may let $S=\{n(1), n(2), \ldots\}$ where $n(1)<n(2)<\ldots$ (this follows from a simple induction). We have that $x_{n(1)}>$ $x_{n(2)}>x_{n(3)}>\ldots$.

Case 2: Suppose that S is finite. Then let $N=\max S$ and let $n(1)=N+1$. Since $n(1) \notin S$, the set $\left\{m>n(1): x_{m} \geq x_{n(1)}\right\}$ is non-empty. Let $n(2)$ be the first integer in that sense. Again since $n(2)>n(1)>\max S, n(2) \notin S$ and thus the set $\left\{m>n(2): x_{m} \geq x_{n(2)}\right\}$ is non-empty. Continuing in this fashion, we get a subsequence $x_{n(1)} \leq x_{n(2)} \leq \ldots$ QED

