Handout 3a

Some standard uncountable sets.
Given a set S, we let $\mathcal{P}(S)$ denote the set of all subsets A of S. For example

$$
\mathcal{P}(\{1.2\})=\{\emptyset,\{1\},\{2\},\{1,2\}\} .
$$

If S is a finite set with n elements, then $\mathcal{P}(S)$ has 2^{n} elements.
Given two sets S and T, we let $\mathcal{F}(S, T)$ denote the set of all functions $f: S \rightarrow T$. If S has m elements and T has n elements then $\mathcal{F}(S, T)$ has m^{n} elements. Because for each $t \in T$ you have m possible choices for $s \in T$ with $f(s)=t$.

Theorem: $\mathcal{F}(\mathbb{N},\{0,1\})$ is not countable.
Proof: A function $a: \mathbb{N} \rightarrow\{0,1\}$ may be identified with a sequence $\left(a_{1}, a_{2}, \ldots\right)$ where $a_{k}=a(k)$ is 0 or 1 . If $\mathcal{F}(\mathbb{N},\{0,1\})$ is countably infinite, then let $F: \mathbb{N} \approx \mathcal{F}(\mathbb{N},\{0,1\})$. For example suppose that

$$
\begin{aligned}
F(1) & =(\mathbf{1}, 0,1,1, \ldots) \\
F(2) & =(0, \mathbf{1}, 1,0, \ldots) \\
F(3) & =(0,0, \mathbf{0}, 1, \ldots)
\end{aligned}
$$

To get a contradiction we will display a sequence which is not in this list. Simply define $b_{n}=1-F(n)_{n}$. In the above example,

$$
\begin{aligned}
& b_{1}=1-\mathbf{1}=0 \\
& b_{2}=1-\mathbf{1}=0 \\
& b_{3}=1-\mathbf{0}=1
\end{aligned}
$$

(we are simply flipping the diagonal term. Then $b \neq F(1), b \neq F(2), b \neq$ $F(3), \ldots$ because $b_{1}=1-F(1)_{1} \neq F(1)_{1}$, and in general $b \neq F(n)$ since $b_{n}=1-F(n)_{n} \neq F(n)_{n}$. QED.

Corollary: $\mathcal{P}(\mathbb{N})$ is not countable.
Proof: We have a $1-1$ correspondence $F: \mathcal{F}(\mathbb{N},\{0,1\}) \approx \mathcal{P}(\mathbb{N})$ given by $F(f)=f^{-1}(0)(f$ is completely determined by where it is 0$)$.

Corollary: \mathbb{R} is not countable.
Proof: Define a map $\theta: \mathcal{F}(\mathbb{N},\{0,1\}) \rightarrow \mathbb{R}$ by letting

$$
\theta\left(\left(\left(a_{1}, a_{2}, \ldots\right)\right)=\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots\right.
$$

- this is just the decimal expansion.$a_{1} a_{2} a_{3} \ldots \theta$ is one-to-one. To see this suppose that

$$
a=\left(a_{1}, a_{2}, \ldots\right) \neq b=\left(b_{1}, b_{2}, \ldots\right)
$$

We let n be the first integer with $b_{n} \neq a_{n}$. Let us assume that $a_{n}=0$ and $b_{n}=1$ so that

$$
\begin{aligned}
& a=\left(a_{1}, \ldots, a_{n-1}, 0, a_{n+1}, \ldots\right) \\
& b=\left(a_{1}, \ldots, a_{n-1}, 1, b_{n+1}, \ldots\right) \\
& 1
\end{aligned}
$$

We have that

$$
\begin{aligned}
\theta(a) & =\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots+\frac{a_{n-1}}{10^{n-1}}+\frac{a_{n+1}}{10^{n+1}}+\ldots \\
& \leq \frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots+\frac{a_{n-1}}{10^{n-1}}+\frac{1}{10^{n+1}}+\frac{1}{10^{n+2}} \ldots \\
& =\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots+\frac{a_{n-1}}{10^{n-1}}+\frac{1}{10^{n}}\left[\frac{1}{10}+\frac{1}{10^{2}} \ldots\right] \\
& =\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots+\frac{a_{n-1}}{10^{n-1}}+\frac{1}{10^{n}} \cdot \frac{1}{9} \\
& <\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots+\frac{a_{n-1}}{10^{n-1}}+\frac{1}{10^{n}} \\
& \leq \frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\ldots+\frac{a_{n-1}}{10^{n-1}}+\frac{1}{10^{n}}+\frac{b_{n+1}}{10^{n+1}}+\ldots \\
& =\frac{b_{1}}{10}+\frac{b_{2}}{10^{2}}+\ldots+\frac{b_{n-1}}{10^{n-1}}+\frac{b_{n}}{10^{n}}+\frac{b_{n+1}}{10^{n+1}}+\ldots \\
& =\theta(b) .
\end{aligned}
$$

We let S be the image of $\mathcal{F}(\mathbb{N},\{0,1\})$ (this is all the numbers which can be represented by a decimal expansion with only 0 's and 1 's and no integer part). We have

$$
\mathcal{F}(\mathbb{N},\{0,1\}) \approx S \subseteq \mathbb{R}
$$

If \mathbb{R} were countable, it would follow that S and therefore $\mathcal{F}(\mathbb{N},\{0,1\})$ is countable (why?), which is a contradiction of the theorem.

