
Math 131a Handout #3
We will assume two fundamental properties of N :
(N1) Every non-empty subset S of N has a least element.
(N2) The Fundamental Theorem of Arithmetic: every number n ∈ N has a

unique factorization
n = 2a13a2 . . .

where 0 ≤ ak ∈ N
⋃
{0} .

Theorem 0.1. Suppose that S is an infinite subset of a countable set T. Then S
is countably infinite (i.e., S ≈ N).

Proof. First assume that T = N. We define a function f : N → T by induction.
From (N1) we may let f(1) = minS. Let us suppose that we have defined f(n− 1)
(where n > 1). Since S is assumed infinite, S\ {f(1), . . . , f(n− 1)} is non-empty,
and we may use (N1) to define

f(n) = minS\ {f(1), . . . , f(n− 1)} .

It is evident that
f(1) < f(2) < . . .

and in particular f is 1-1.
To see that f is onto we have to show that if p ∈ S, then there is an n such that

f(n) = p. First observe that for all n ∈ N, n ≤ f(n). To see this note that 1 ≤ f(1)
since 1 is the least element in all of N. Suppose that we know that n ≤ f(n). Then
n ≤ f(n) < f(n + 1) implies that n + 1 ≤ f(n + 1) (note that f(n + 1) is a “whole”
number). Thus induction gives the general result ∀n, n ≤ f(n).

Given p ∈ S, let A = {n ∈ N : p ≤ f(n)} . This is non-empty since p ≤ f(p). Let
n0 = minA. If n0 = 1, then

f(1) = minS ≤ p.

and thus f(1) = p. If n0 > 1, then

f(1) < . . . < f(n0 − 1) < p ≤ f(n0),

and thus p is in S\ {f(1), . . . , f(n0 − 1)} . It follows that

f(n0) = minS\ {f(1), . . . , f(n0 − 1)} ≤ p,

and thus f(n0) = p..
For the general case, by assumption T ≈ N, i.e., there is a bijection g : T → N.

Then g(S) is an infinite subset of N, and by our prevous argument g(S) ≈ N. Since
S ≈ g(S), S ≈ N, i.e., S is countably infinite. �

Theorem 0.2. Suppose that T is a countable set T and f : T → U is onto. Then
U is countable.

Proof. Since f is onto, we have that for each u ∈ U, the set Tu = {t : f(t) = u} is
non-empty. For each u ∈ U, we choose an element tu ∈ Tu. We define g : U → T by
g(u) = tu. From this definition f(g(u)) = u. It follows that g : U → T is one-to-one
since if g(u1) = g(u2), then f(g(u1)) = f(g(u2)) and thus u1 = u2. It is evident
that g is a one-to-one correspondence of U onto the set g(U), i.e., U ≈ g(U) ⊆ T.
Since g(U) is infinite, we conclude from the previous result that g(U) ≈ N, and
thus U ≈ N. �
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Theorem 0.3 (The principle of induction). Suppose that one has a series of state-
ments P (1), P (2), . . .. Then if P (1) is true, and P (n) ⇒ P (n + 1) for all n ∈ N,
then P (n) is true for all n.

Proof. Let us suppose that this is false. Then there exists an n ∈ N such that P (n)
is false**. Thus the set

S = {n ∈ N : P (n) is false}

is non-empty. Using (N1), we may let n0 = minS. Since P (1) is assumed true,
n0 > 1. From the definition of n0, P (n0−1) is true, and P (n0) is false, contradicting
the fact that for all n, P (n) ⇒ P (n + 1)*. �

*This illustrates the law of logic [∼ (Q ⇒ R)] ⇔ [Q and ∼ R].
** This illustrates the law of logic [∼ (∀x ∈ X)P (x)] ⇔ [(∃x ∈ X) ∼ P (x)].
Completeness axiom for R : Any set which is bounded above has a

least upper bound.
Using letters: if you have a subset S ⊆ R such that S ≤ b for some b ∈ R (i.e.,

s ≤ b for all s ∈ S), then S has a least upper bound b0 (i.e., S ≤ b0 and if S ≤ b
then b0 ≤ b).

Theorem 0.4. N does not have an upper bound.

Proof. Suppose that N has an upper bound. Then using the completeness principle,
we may let b0 = sup N be the least upper bound for N. We have that b0 − 1 < b0

implies that b0 − 1 is not an upper bound for N i.e., N � b0 − 1 and there is an
n ∈ N with b0 − 1 < n. But then b0 < n + 1 ∈ N, contradicting the fact that b0 is
an upper bound for S. QED

Corollary 0.5. For any ε > 0, there is an n ∈ N such that 1
n < ε.

Proof. Since N is not bounded above, there is an n ∈ N such that n > 1
ε . It follows

that 1
n < ε. QED

Corollary 0.6. If a > 0 and b > 0, there is an n ∈ N such that na > b.

Proof. You prove this!

Assignment 2
(1) p. 54: 1,2
(2) Given complete proofs that

a) lim
n→∞

n
n+1 = 1

b) lim
n→∞

√
n + 1−

√
n = 0

c) lim
n→∞

sin 1
n

1
n

= 1 (use the sandwich principle and a geometrical picture)

(3) What can be said if an is a convergent sequence in N?
(4) Consider the set
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For which numbers a is there a subsequence converging to a?
(5) a) Show that if 0 < a < 2, then a <

√
2a < 2.
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b) Prove that the sequence
√

2,
√

2
√

2,

√
2
√

2
√

2, . . . converges.
c) Find the limit of the sequence in b).

(6) p. 51: 7, 11
(7) p. 54: 5, 6.


