Handout 9: Some additional notes.

1. The chain rule.

The proof in the book for the chain rule is probably better than the one I gave in class. Recall that a composition of continuous functions G(f(x)) is continuous since $x_n \to c \Rightarrow f(x_n) \to f(c) \Rightarrow G(f(x_n)) \to f(c) \Rightarrow f(c)$ G(f(c)).

Theorem (Chain rule) Suppose that f(x) is differentiable at x = c and g(y) is differentiable at y = f(c). Then $(g \circ f)(x) = g(f(x))$ is differntiable at x = c, and $(g \circ f)'(c) = g'(f(c))f'(c)$.

Proof: We wish to use the formula

$$\frac{g(f(x)) - g(f(c))}{x - c} = \frac{g(f(x)) - g(f(c))}{f(x) - f(c)} \frac{f(x) - f(c)}{x - c}$$

but this makes sense only if we know $f(x) - f(c) \neq 0$. That need not be the case even if x is very close to c. We handle this as follows.

The function

$$G_0(y) = \frac{g(y) - g(f(c))}{y - f(c)}$$

is not defined for y = f(c), but it converges as $y \to f(c)$ since

$$\lim_{y \to f(c)} G_0(y) = g'(f(c))$$

We extend $G_0(y)$ to a function G defined at f(c) by letting G(f(c)) = g'(f(c)). It is evident that G is continuous at f(c). We have that

$$g(y) - g(f(c)) = G_0(y)(y - f(c))$$

for $y \neq c$, hence

$$g(y) - g(f(c)) = G(y)(y - f(c))$$

even when y = c (since both sides are zero when y = f(c)). We conclude that

$$\frac{g(f(x)) - g(f(c))}{x - c} = G(f(x))\frac{f(x) - f(c)}{x - c}.$$

Since f is differentiable at c, it is continuous at c, hence G(f(x)) is continuous at c. We conclude that

$$\lim_{x \to c} \frac{g(f(x)) - g(f(c))}{x - c} = G(f(c))f'(c) = g'(f(c)).$$

2. The Schwarz inequality and the fact that $\|\|_2$ is a norm on \mathbb{R}^d . Recall that if $v = (x_1, \ldots, x_d)$ and $w = (y_1, \ldots, y_d) \in \mathbb{R}^d$, then the dot product $v \cdot w$ is defined by

$$v \cdot w = \sum_{j=1}^d v_j w_j,$$

and the corresponding norm $\| \, \|_2$ on \mathbb{R}^d is defined by $\| \, v \|_2 = (v \cdot v)^{1/2}$ Lemma:For all $v, w \in \mathbb{R}^d$,

$$v \cdot w \le \frac{\|v\|_2^2 + \|w\|_2^2}{2}.$$

Proof: For any vector $u \in \mathbb{R}^d$, $u \cdot u = \sum u_j^2 \ge 0$, and thus if u = v - w,

$$0 \le (v-w) \cdot (v-w) = v \cdot v + w \cdot w - 2(v \cdot w).$$

Theorem For all $v, w \in \mathbb{R}^d, |v \cdot w| \le ||v||_2 ||w||_2$. Proof: In general for any $c, d \in \mathbb{R}$, $(cv) \cdot (dw) = (cd)(v \cdot w)$. Thus for any t > 0

$$v \cdot w = (t^{1/2}v) \cdot (t^{-1/2}w) \le \frac{t \|v\|_2^2 + t^{-1} \|w\|_2^2}{2}$$

Let us assume that $||v||_2$ and $||w||_2 \neq 0$. The result follows by letting $t = ||w||_2 / ||v||_2$. If either v or w is zero, both sides of the Schwarz inequality are zero, so it is still true. QED Finally the only hard part of showing $|| ||_2$ is indeed a norm is the triangle inequality:

$$\|v+w\|_{2}^{2} = (v+w) \cdot (v+w) = \|v\|_{2}^{2} + \|w\|_{2}^{2} + 2v \cdot w \le \|v\|_{2}^{2} + \|w\|_{2}^{2} + 2\|v_{2}\|_{2}\|w\|_{2} = (\|v\|_{2} + \|w\|_{2})^{2},$$

and the desired result follows when one takes the square root of both sides.