
Handout #7

• Definition:limx→c f(x) = L if

∀ε > 0,∃δ > 0 : ∀x, 0 < |x− c| < δ ⇒ |f(x)− L| < ε.

• We have that limx→c f(x) = L if and only if for all sequences xn with
xn → c and xn 6= c, f(xn)→ L.

Proof: Say that limx→c f(x) = L. Then suppose xn → c with xn 6= c.
Given ε > 0 choose δ > 0 as above. Then choose n0 such that n ≥ n0

implies |xn − c| < δ. It follows that |f(xn)− L| < ε. Conversely suppose
that limx→c f(x) 6= L. Then

∃ε > 0 : ∀δ > 0,∃x : 0 < |x− c| < δ and |f(x)− L| ≥ ε.

Using this with δ = 1/n, where n ∈ N choose xn so that 0 < |xn − c| < δ
and |f(x)− L| ≥ ε. Then xn → c, xn 6= c, but f(xn) 9 L.

• Definition: f is continuous at c if limx→c f(x) = f(c). Equivalently,

∀ε > 0,∃δ > 0 : ∀x, 0 < |x− c| < δ ⇒ |f(x)− f(c)| < ε

or since f(c) = L,

∀ε > 0,∃δ > 0 : ∀x, |x− c| < δ ⇒ |f(x)− f(c)| < ε.

Another equivalent statement:

If xn → c, then f(xn)→ f(c).

• You should be able to prove that if f is a continuous function on [a, b],
then

a) f is bounded on [a, b], i.e., there exists an M such that |f(x)| ≤ M
for all x ∈ [a, b].
Proof: Suppose that f is not bounded on [a, b]. Choose xn such that
|f(xn)| ≥ n. From the Balzano Weierestrass theorem there exists
a convergent susequence xnk → c. It follows that f(xnk) → f(c),
and thus the sequence f(xnk) is bounded, contradicting the fact that
|f(xnk)| ≥ nk.

b) f assumes its maximum and minimum values on [a, b]. Let M =
sup {f(x) : x ∈ [a, b]} . Then we may choose a sequence xn such that
f(xn) → M (why?). Let xnk → c (how do you know you can do
this?). We have that f(xnk) → f(c) and thus f(c) = M. Same
argument for m.
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c) If f(a) < p < f(b), then there is a c ∈ [a, b] such that f(c) = p.

Proof: Let S = {x : f(x) < p} and let c = supS (how do you know
this exists?). Then there is a sequence xn ∈ S such that xn → c. It
follows that f(xn)→ f(c). Since f(xn) < p, we have f(c) ≤ p (why?)
We claim that f(c) ≥ p. If not, f(c) < p. We get a contradiction as
follows. Let ε = p− f(c). Choose δ > 0 such that |x− c| < δ implies
that |f(x)− f(c)| < ε. Then |x− c| < δ implies that

f(x) < f(c) + ε = p

and thus x ∈ S. In particular letting x = c+δ/2, we see that c+δ/2 ∈
S and thus c+ δ/2 ≤ c, a contradiction.

Here is a result we’ve used before:
Theorem: Suppose that xn is an arbitrary sequence of real numbers. Then

it has a monotone subsequence.
Proof: Let S be the “locations n with a view”, i.e.,

S = {n ∈ N : m > n implies xm < xn} .

Case 1: Suppose that S is infinite. We may let S = {n(1), n(2), . . .} where
n(1) < n(2) < . . . (this follows from a simple induction). We have that xn(1) >
xn(2) > xn(3) > . . . .

Case 2: Suppose that S is finite. Then let N = maxS and let n(1) = N + 1.
Since n(1) /∈ S, the set {m > n(1) : xm ≥ xn(1)} is non-empty. Let n(2) be the
first integer in that sense. Again since n(2) > n(1) > maxS, n(2) /∈ S and thus
the set {m > n(2) : xm ≥ xn(2)} is non-empty. Continuing in this fashion, we
get a subsequence xn(1) ≤ xn(2) ≤ . . . QED
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