Handout #7
e Definition:lim, .. f(z) = L if

Ve>0,30>0:Ve,0< |z —¢c|<d=|f(zx)—L| <e.

e We have that lim,_.. f(z) = L if and only if for all sequences x,, with
x, — c and z, # ¢, f(z,) — L.

Proof: Say that lim,_.. f(z) = L. Then suppose z,, — ¢ with x,, # c.
Given € > 0 choose 0 > 0 as above. Then choose ng such that n > ng
implies |z,, — ¢| < 4. It follows that |f(x,) — L| < €. Conversely suppose
that lim, . f(z) # L. Then

Je>0:¥0>0,Fx:0< |z —c| <dand |f(x)—L| >e.

Using this with § = 1/n, where n € N choose z,, so that 0 < |z, — | <
and |f(xz) — L| > e. Then x,, — ¢, x,, # ¢, but f(x,) - L.

e Definition: f is continuous at ¢ if lim,_,. f(z) = f(c). Equivalently,
Ve>0,30>0:Vz,0< |z —c|<d=|f(x)— flo)| <e
or since f(c) = L,
Ve > 0,30 > 0:Vx, |z —c| <d=|f(z) — fc)] <e.
Another equivalent statement:

If ,, — ¢, then f(z,) — f(c).

e You should be able to prove that if f is a continuous function on [a,d],
then

a) f is bounded on [a,b], i.e., there exists an M such that |f(z)] < M
for all = € [a, b].
Proof: Suppose that f is not bounded on [a, b]. Choose x,, such that
|f(x,)] > n. From the Balzano Weierestrass theorem there exists
a convergent susequence Z,, — c. It follows that f(z,,) — f(c),
and thus the sequence f(z,,) is bounded, contradicting the fact that
()| =

b) f assumes its maximum and minimum values on [a,b]. Let M =
sup{f(z) : € [a,b]}. Then we may choose a sequence x,, such that
f(zn) — M (why?). Let x,, — ¢ (how do you know you can do
this?). We have that f(z,,) — f(c¢) and thus f(c) = M. Same
argument for m.



c) If f(a) <p < f(b), then there is a ¢ € [a, ] such that f(c) = p.
Proof: Let S = {z: f(z) < p} and let ¢ = sup S (how do you know
this exists?). Then there is a sequence z,, € S such that z, — c. It
follows that f(x,) — f(c). Since f(z,) < p, we have f(c) < p (why?)
We claim that f(c) > p. If not, f(c) < p. We get a contradiction as
follows. Let ¢ = p — f(c). Choose § > 0 such that |z — ¢| < ¢ implies
that | f(z) — f(c)| <e. Then |z — ¢| < ¢ implies that

fx)<fle)+e=p

and thus z € S. In particular letting z = ¢+4/2, we see that c+9/2 €
S and thus ¢ + /2 < ¢, a contradiction.

Here is a result we’ve used before:

Theorem: Suppose that z,, is an arbitrary sequence of real numbers. Then
it has a monotone subsequence.

Proof: Let S be the “locations n with a view”, i.e.,

S={neN:m>nimplies z,,, < zp,}.

Case 1: Suppose that S is infinite. We may let S = {n(1),n(2),...} where
n(1) <n(2) <... (this follows from a simple induction). We have that z,,1) >
Tn(2) > Tn(3) > ...

Case 2: Suppose that S is finite. Then let N = max S and let n(1) = N + 1.
Since n(1) ¢ S, the set {m > n(1) : x,,, > (1)} is non-empty. Let n(2) be the
first integer in that sense. Again since n(2) > n(1) > max S, n(2) ¢ S and thus
the set {m > n(2) : ,, > x,,(2)} is non-empty. Continuing in this fashion, we
get a subsequence 7,1y < Tp2) < ... QED



