Math 131a Handout #6

Our completeness axiom : If S is a non-empty subset of R, and S is
bounded above (i.e., S < b for some b), then S has a least upper bound
by = supS. (You fomulate the corresponding result for non-empty sets that
are bounded below).

Here are theorems about sequences and their limts that you should
be able to prove (including the relevant definitions):

If x, is a convergent sequence, then it must be bounded.

Proof: Suppose that 2, — L. Choose ng such that n > ng = |z, — L| < 1.
Then |x,| — |L] < |z, — L| < 1 implies that |x,| < |L] + 1. Let M =
max {|z1|,...,|Tne-1],|L| + 1} . We have that for all n |z,| < M.

If x, — L and x,, # 0 and L # 0, then there is a constant ¢ > 0 such that
|xn| > ¢ for all n.

Proof: Suppose first that =, > 0 and L > 0. Choose ng such that n >
no = |z, — L| < L/2. Then L — x, < |z, —L| < L/2 implies that
xp >L—L/2=L/2. Let c=min{x1,xa,...,2Tn,—1,L/2}. It follows that
|xn| > ¢ for all n. For the general case note that |z,| — |L| and use the
positive result.

If z,, — L and for all n, z,, > 0, then L > 0.

Proof: Suppose that L < 0. Then let ¢ = —L. We may choose ngy such
that |z, — L| < e. Then x,, — L < € = z,, < L + ¢ = 0, contradicting
Tpy > 0.

The usual limit theorems (such as x,, — L and y,, — M implies x,, +y, —
L+ M).

If x,, is an increasing sequence, and z, < b, then z,, — by = sup{z,}.
(You should be able to state and prove the corresponding result for de-
creasing sequences).

Proof: Given € > 0, we have that by — & < by implies that by — € is not
an upper bound for {x,}, hence there exists an ng with by — e < xy,,. It
follows that if n > ng, then by —e < x,, < 2, < bg. and thus |z,, — bo| < .

If  #£S C R and by = sup S, then there is a sequence x,, € S such that
Zn — bo. (You should be able to state and prove the corresponding result
for the infimum).

Proof: Given n € N, by — 1/n is not an upper bound for S, hence we may
choose an x,, € S such that by —1/n < x,, < by. It follows that|z,, — bg| <
1/n,.and thus x,, — bo.



If z,, is a convergent sequence, then it must be Cauchy.

Proof: Say that xz, — L. Given £ > 0, choose ng such that n > ng
implies that |z, — L| < ¢/2. Then m,n > ng implies that |z, — x| =
(@ — L) + (L — )| < |@m — L+ |2 — L| <e/2+e/2 =¢.

If z,, is a Cauchy sequence, then it must be bounded.

Proof: Given e > 0, choose ng such that m,n > ng implies that |z, — z,| <
1. Then in particular m > ng = |Zm — Tny| < 1 and thus |z, < 1+|2,,] -
Let M = max {|z1],. .., |Tng—1], [Tne| + 1} . We have that z,, < M for all
n.

If ,, — L, then for any subsequence z,, , x,, — L.
Every sequence has a monotonic subsequence.[See handout 3a]

If z,, is a Cauchy sequence and a subsequence z,, — L, then z,, — L.

Proof Given € > 0 choose ng such that m,n > ng implies that |z,, — z,| <
€/2. Choose kg such that k > kg implies that |x,, — L| < /2. Then since
n, > k, we may also assume that ng, > ng. Then if n > ng, |z, — Ty, | <
£/2. It follows that if n > ng then |z, — L| < |2, — Ty, |+ |20, — L] <e.

If x, is a Cauchy sequence, then it must converge.

Proof: Then let x,, be a monotone subsequence. Since x,, is bounded,
it must converge. Since x,, is Cauchy, it follows that x, converges to the
same limit.

If x,, is a bounded sequence, then it has a convergent subsequence. [This
is called the Balzano-Weierstrass Theorem — see page 57 of the text.]
Modify the previous argument.



