
Math 131a Handout #6
Our completeness axiom : If S is a non-empty subset of R, and S is

bounded above (i.e., S ≤ b for some b), then S has a least upper bound
b0 = supS. (You fomulate the corresponding result for non-empty sets that
are bounded below).

Here are theorems about sequences and their limts that you should
be able to prove (including the relevant definitions):

• If xn is a convergent sequence, then it must be bounded.

Proof: Suppose that xn → L. Choose n0 such that n ≥ n0 ⇒ |xn − L| < 1.
Then |xn| − |L| ≤ |xn − L| < 1 implies that |xn| < |L| + 1. Let M =
max {|x1| , . . . , |xn0−1| , |L|+ 1} . We have that for all n |xn| ≤M.

• If xn → L and xn 6= 0 and L 6= 0, then there is a constant c > 0 such that
|xn| ≥ c for all n.

Proof: Suppose first that xn > 0 and L > 0. Choose n0 such that n ≥
n0 ⇒ |xn − L| < L/2. Then L − xn ≤ |xn − L| < L/2 implies that
xn > L−L/2 = L/2. Let c = min {x1, x2, . . . , xn0−1, L/2} . It follows that
|xn| ≥ c for all n. For the general case note that |xn| → |L| and use the
positive result.

• If xn → L and for all n, xn ≥ 0, then L ≥ 0.

Proof: Suppose that L < 0. Then let ε = −L. We may choose n0 such
that |xn − L| < ε. Then xn0 − L < ε ⇒ xn0 < L + ε = 0, contradicting
xn0 ≥ 0.

• The usual limit theorems (such as xn → L and yn →M implies xn+yn →
L+M).

• If xn is an increasing sequence, and xn ≤ b, then xn → b0 = sup {xn} .
(You should be able to state and prove the corresponding result for de-
creasing sequences).

Proof: Given ε > 0, we have that b0 − ε < b0 implies that b0 − ε is not
an upper bound for {xn} , hence there exists an n0 with b0 − ε < xn0 . It
follows that if n ≥ n0, then b0−ε < xn0 ≤ xn ≤ b0. and thus |xn − b0| < ε.

• If ∅ 6= S ⊆ R and b0 = supS, then there is a sequence xn ∈ S such that
xn → b0. (You should be able to state and prove the corresponding result
for the infimum).

Proof: Given n ∈ N, b0 − 1/n is not an upper bound for S, hence we may
choose an xn ∈ S such that b0− 1/n < xn ≤ b0. It follows that|xn − b0| <
1/n, .and thus xn → b0.
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• If xn is a convergent sequence, then it must be Cauchy.

Proof: Say that xn → L. Given ε > 0, choose n0 such that n ≥ n0

implies that |xn − L| < ε/2. Then m,n ≥ n0 implies that |xn − xm| =
|(xm − L) + (L− xm)| ≤ |xm − L|+ |xn − L| < ε/2 + ε/2 = ε.

• If xn is a Cauchy sequence, then it must be bounded.

Proof: Given ε > 0, choose n0 such thatm,n ≥ n0 implies that |xm − xn| <
1. Then in particular m ≥ n0 ⇒ |xm − xn0 | < 1 and thus |xm| < 1+ |xn0 | .
Let M = max {|x1| , . . . , |xn0−1| , |xn0 |+ 1} . We have that xn ≤M for all
n.

• If xn → L, then for any subsequence xnk , xnk → L.

• Every sequence has a monotonic subsequence.[See handout 3a]

• If xn is a Cauchy sequence and a subsequence xnk → L, then xn → L.

Proof Given ε > 0 choose n0 such that m,n ≥ n0 implies that |xm − xn| <
ε/2. Choose k0 such that k ≥ k0 implies that |xnk − L| < ε/2. Then since
nk ≥ k, we may also assume that nk0 ≥ n0. Then if n ≥ n0,

∣∣xn − xnk0

∣∣ <
ε/2. It follows that if n ≥ n0 then |xn − L| ≤

∣∣xn − xnk0

∣∣+ |xnk − L| < ε.

• If xn is a Cauchy sequence, then it must converge.

Proof: Then let xnk be a monotone subsequence. Since xnk is bounded,
it must converge. Since xn is Cauchy, it follows that xn converges to the
same limit.

• If xn is a bounded sequence, then it has a convergent subsequence. [This
is called the Balzano-Weierstrass Theorem – see page 57 of the text.]
Modify the previous argument.
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