Lagrange Multipliers
General form

$$
\begin{aligned}
& \min f\left(x_{1}, \ldots, x_{n}\right) \\
& \text { s.t. } h_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
& \vdots \\
& h_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

To solve this problem, we consider the lagrangion

$$
\begin{aligned}
& \text { here. The lagrangian is denoted by lowercase } L \\
& =f\left(x_{1}, \ldots, x_{n}\right)+\lambda_{1} h_{1}\left(x_{1}, \ldots, x_{n}\right)+\lambda_{m} h_{m}\left(x_{1}, \ldots, x_{m}\right) \\
& \text { (FONt) }
\end{aligned}
$$

Theorem: If x is alocalmin (or max), and regular, there exist $x_{11}, \ldots \lambda_{m}$. Such that

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}(x, \lambda)=0 \\
& \frac{\partial L}{\partial x_{n}}(x, \lambda)=0
\end{aligned}
$$

This means $\nabla h_{1}(x)$, $\nabla_{m}(x)$ are linearly indeperomt.

This means we have two sets of equations we can use to solve our problem:

$$
\left\{\begin{array} { l }
{ h _ { 1 } (x) = 0 } \\
{ \vdots } \\
{ h _ { m } (x) = 0 }
\end{array} \quad \left\{\begin{array}{l}
\frac{\partial L}{\partial x_{1}}(x, \lambda)=0 \\
\vdots \\
\frac{\partial L}{\partial x_{n}}(x, x)=0
\end{array}\right.\right.
$$

Example 20.15

$$
\min x_{1} x_{2}-2 x_{1} 1
$$

We construct Lagrangian

$$
L(x, \lambda)=x_{1} x_{2}-2 x_{1}+\lambda\left(x_{1}^{2}-x_{2}^{2}\right)=0
$$

The conditions are

$$
\begin{align*}
& \text { conditions are } \tag{1}\\
& \frac{\partial L}{\partial x_{1}}=x_{2}-2 \lambda x_{1}=0 \tag{2}\\
& \frac{\partial L}{\partial x_{2}}=x_{1}-2 \lambda x_{2}=0
\end{align*}
$$

in addition t_{0}

$$
\begin{equation*}
r_{1}^{2}-x_{0}^{2}-x_{2}^{2}=0 \tag{3}
\end{equation*}
$$

We solve this system of equations for

$$
x_{1}, x_{2}, \lambda_{0} .
$$

From (3), when have $\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)=0$ so that $x_{1}=x_{2}$ or $x_{1}=-x_{2}$.
In the first case $\left(x_{1}=x_{2}\right)$, the other 2 conditions are

$$
\begin{aligned}
& x_{1}-2+2 \lambda x_{1}=0 \\
& x_{1}-2 \lambda x_{1}=0
\end{aligned}
$$

andadding equations give

$$
\begin{aligned}
2 x_{1}-2=0 & \Rightarrow x_{1}=1 \\
& \Rightarrow x_{2}=1 \\
& \Rightarrow \lambda=\frac{1}{2}
\end{aligned}
$$

$$
\left(x_{1}=\sim x_{2}\right)
$$

In Second case, the conditions are

$$
\begin{aligned}
& -x_{1}-2+2 \lambda x_{1}=0 \\
& x_{1}+2 \lambda x_{1}=0
\end{aligned}
$$

Subtraction equations gives

$$
\begin{aligned}
-2 x_{1}-2=0 & \Rightarrow x_{1}=-1 \\
& \Rightarrow x_{2}=+1 \\
& \lambda=-\frac{1}{2}
\end{aligned}
$$

Two possible solutions $x=(-1,+1), x=-\frac{1}{2}$

$$
x=(1,1), \lambda=\frac{1}{2}
$$

To check if it is a minimizer, there are second order conditions.
We first define the tangent space:
At a point x, the tangent space $T(x)$, is defined as $\left\{y: \nabla h_{i}(x)^{\top} y=0 \forall i\right\}$
i.e., the set of directions orthogonal to the gradient of each constraint function h_{i}.

We have
Theorem (SONC): If x is regular and a local ming There exists, λ satisfying FONC and for all $y \in T(x)$,

$$
y^{\prime}\left(\nabla_{x}^{\prime} L(x, \lambda)\right) \bar{y} \geq 0
$$

Theorem (SOSC): If x, λ satisfies FONC and $y^{\top}\left(\nabla_{x}^{2} L(x, \lambda)\right) y^{\prime}>0$ for all $y \neq 0, y \in T(x)$, x is a strict local min.

Let's apply this to our problem.
The hessian of Lagrangian is

$$
\nabla_{x}^{2} L(x, \lambda)=\left(\begin{array}{cc}
2 \lambda & 1 \\
1 & -2 \lambda
\end{array}\right)
$$

At each point we com put tangent space.
We have

$$
\begin{aligned}
& \nabla h(x)=\binom{2 x_{1}}{-2 x_{2}} \\
& \nabla h(1,1)=\binom{2}{-2}
\end{aligned}
$$

The set of directions orthogonal is

$$
\begin{aligned}
& T(1,1)=\left\{\binom{1}{1}: a \in \mathbb{R}\right\} \\
& \nabla h(-1, t)=\binom{-2}{-2}
\end{aligned}
$$

The set of or thogonal directions is

$$
T(-1,+1)=\left\{a\binom{1}{-1} ; a \in \mathbb{R}\right\}
$$

Now we check SONC

$$
\text { for } x=(-1,1), \lambda=-\frac{1}{2} \text {, }
$$

$$
\nabla^{2} L\left(-1,1,-\frac{1}{2}\right)=\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)
$$

We consider, $\binom{1}{-1} \in T(-1,1)$

$$
(1-1)\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{1}{-1}=(1-1)\binom{-2}{0}=-2<0
$$

Since this is negative, $\binom{1}{-1}$ (annot be a local min by SONC.

For $x=\binom{1}{1}, \lambda=\frac{1}{2}$

$$
\nabla^{2} L\left(1,1, \frac{1}{2}\right)=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Consider any direction in $T(1,1)$,

$$
\begin{aligned}
& \delta=a\binom{1}{1}, \quad a \neq 0 \\
& d^{\top} \nabla^{2} L\left(1,1, \frac{1}{2}\right) d=a\left(\begin{array}{ll}
1 & 1
\end{array}\right)\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\binom{1}{1} \\
&=a^{2}(11)\binom{2}{0}=2 a^{2}>0
\end{aligned}
$$

Hence $\binom{1}{1}$ satisfies SOSC and is a local min.

