Discussion #7

1. Least Squares Regression
2. Linear Programs (LPs)

\[
\min_{x} \frac{1}{2} \|Ax - b\|^2 \\
f(t) = a_1 + a_2 t + a_3 t^2
\]

<table>
<thead>
<tr>
<th>t</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Want to find \(a_1, a_2, a_3 \) such that

\[
\begin{align*}
f(0) & \approx 0 \\
f(1) & \approx 2 \\
f(\frac{1}{3}) & \approx 1
\end{align*}
\]
\[f(4) \approx 3 \]
\[a_1 + a_2(0) + a_3(0)^2 \approx 0 \]
\[a_1 + a_2(1) + a_3(1)^2 \approx 2 \]
\[a_1 + a_2(3) + a_3(3)^2 \approx 1 \]
\[a_1 + a_2(4) + a_3(4)^2 \approx 3 \]

\[
\begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 3 & 9 \\
1 & 4 & 16 \\
\end{pmatrix}
\begin{pmatrix}
a_1 \\
a_2 \\
a_3 \\
\end{pmatrix}
=
\begin{pmatrix}
0 \\
2 \\
1 \\
3 \\
\end{pmatrix}
\]

\[
\begin{align*}
A & = \begin{pmatrix}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 4 \\
0 & 1 & 9 & 16 \\
\end{pmatrix} \\
A^T & = \begin{pmatrix}
1 & 0 & 0 \\
1 & 1 & 1 \\
3 & 3 & 9 \\
14 & 16 & 16 \\
\end{pmatrix}
\end{align*}
\]

\[
\min \frac{1}{2} \| A \mathbf{x} - b \|_2^2
\]

\[
\mathbf{x} = (A^T A)^{-1} A^T b
\]
Linear programming (LPs)

\[
\begin{align*}
\text{min} & \quad c^T x \\
\text{s.t.} & \quad A x = b \\
& \quad x \geq 0
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad 2x_1 + x_2 \\
\text{s.t.} & \quad x_1 \geq 0 \\
& \quad x_2 \geq 0 \\
& \quad x_1 \leq 2 \\
& \quad x_2 \leq 2 \\
& \quad x_1 + x_2 \leq 3.
\end{align*}
\]

Where is the optimum occur?

1) Why can't this happen on interior?

FONC: \(\nabla f(x) = (1, 2) \neq 0 \)

2) Where does the optimum occur?
Fact: Optima of LPs always occur at vertices of feasible polyhedron.

Possible Algorithm:
Enumerate all vertices of feasible polyhedron, check which vertex achieves optimal value.

Problem: There are potentially exponentially many vertices

For above problem, to find vertices of polyhedron, since we're in \mathbb{R}^2, we pick 2 inqualities to satisfy at equality, solve linear system.

Optimal: Choose $X_1 = 2$

\[X_1 + X_2 = 3 \]

\[\Rightarrow x = \left(\frac{1}{2}, 1 \right) \]
The number of possible vertices is \((\binom{n}{2})\).

In general, if we have \(m\) inequalities in \(\mathbb{R}^n\), we have \((\binom{m}{n})\) vertices.

Note: not all choices lead to vertices.

E.g., choose \(x_1 \geq 0, x_1 \leq 2\)

\(\Rightarrow\) \(x_1 = 0, x_1 = 2\), inconsistent

E.g., \(x_1 + x_2 \leq 3, x_i \geq 0\)

\(\Rightarrow\) \(x_1 = 0, x_2 = 3\), which is not feasible.

minimization standard form LPs

\[
\min \quad c^T x
\]

s.t. \(A x = b\) \(\Leftarrow\) equality constraints

\(x \geq 0\) \(\Leftarrow\) nonnegativity constraints

How to convert to standard form?

1. Change \(\max\) to \(\min\)
1. Change objective by negating objective.

2. Change inequality constraints to equality constraints with slack/surplus variables, e.g.,
\[
\begin{align*}
X_1 \leq 2 & \Rightarrow X_1 + S_1 = 2, S_1 \geq 0 \\
X_1 \geq 2 & \Rightarrow X_1 - S_1 = 2, S_1 \geq 0
\end{align*}
\]

3. If \(x \) does not have a nonnegativity constraint (\(x \) is free), write \(x = x^+ - x^- \), \(x^+, x^- \geq 0 \)

\[
\begin{align*}
&\min x_1 + x_2 \\
&\min x^+_1 - x^-_1 + x_2 \\
&\text{s.t. } x_1 + x_2 = 1 \Rightarrow \text{s.t. } x^+_1 - x^-_1 + x_2 = 1 \\
&x_2 \geq 0 \\
&x_1 \in \mathbb{R}
\end{align*}
\]

\[x^+_1, x^-_1, x_2 \geq 0\]

Other constraints?

If \(\ldots \) convert \(|x| < 1 \)
How would you convert $X \leq 1$ and $X \geq -1$ to standard form?

Converting to equality constraints with slack/surplus variables:

$$X + s_1 = 1, \quad X - s_2 = -1$$

$$s_1, s_2 \geq 0$$

Maximize $2x_1 + x_2$

Subject to:

- $x_1 \geq 0$
- $x_2 \geq 0$
- $x_1 \leq 2$
- $x_2 \leq 2$
- $x_1 + x_2 \leq 3$

In standard form:

Minimize $-2x_1 - x_2$

Subject to:

- $x_1 + s_1 = 2$
- $x_2 + s_2 = -2$
- $s_1, s_2 \geq 0$
\[
\begin{align*}
 x_2 + x_1 &= 2 \\
 x_1 + x_2 + s_3 &= 3 \\
 x_1, x_2, s_1, s_2, s_3 &\geq 0
\end{align*}
\]

Solutions are \((x, s) \in \mathbb{R}^5\).

What are vertices of this polyhedron?

Since we are in \(\mathbb{R}^5\), vertices correspond to intersection of 5 hyperplanes.

Already have 3 equations, need 2 more, can get them by choosing 2 of \(x_1, x_2, s_1, s_2, s_3\) = 0. (5) different candidates.

Choose \(s_1, s_3 = 0\)

\[
\begin{align*}
 x_1 &= 2 \\
 x_2 + s &\geq 2
\end{align*}
\]
These solutions found by choosing certain variables equal to 0 and solving the remaining system. These are called basic solutions.