Discussion #2

Agenda: More on FONC, SONC, SOSC

Optimality Conditions

HW due today, on Gradescope at 11:59
LA time

OH: M 1-2, Th 4-5

\[f(y) = \frac{1}{2} y^T A y, \quad A > 0 \]

Want to show that

f is strictly convex

f is strictly convex if

\[f(tx + (1-t)y) < t f(x) + (1-t) f(y) \]
\(\forall x, y \in \mathbb{R}, t \in \mathbb{R}_0^+ \)

If \(f \in \mathcal{C}^2 \), \(f \) is strictly convex if \(\nabla^2 f > 0 \).

\[
g(x, y) = \frac{1}{2} x^Ty
\]

\[
y = h(x) = Ax
\]

\[
f(x) = g(x, h(x)) = \frac{1}{2} x^T Ax
\]

\[
\nabla f(x) = \frac{\partial g}{\partial x} + \left(\frac{\partial h}{\partial x} \right)^T \frac{\partial g}{\partial y}
\]

\[
\nabla f(x) = \frac{\partial g}{\partial x} + A^T \left(\frac{1}{2} x \right)
\]
\[\nabla^2 f = A, \quad \text{Since } A > 0 \quad \text{we have } f \text{ strictly convex.} \]

Optimality Conditions

\[f: \Omega \to \mathbb{R}, \quad \Omega \subset \mathbb{R}^n \]

We want to minimize \(f \).

FONC: If \(x^\ast \) is a minimizer, then \(\nabla f(x^\ast) = 0 \)

SONC: If \(x^\ast \) is a minimizer, then \(\nabla^2 f(x^\ast) \geq 0 \)

SOSC: If \(\nabla f(x^\ast) = 0 \) \text{ and } \nabla^2 f(x^\ast) \geq 0, \text{ then } x^\ast \text{ is a strict minimizer.} \]
\(x \) is a minimizer:

\[x^* \in \text{interior of } \Omega \]

\[y = x^2 \]

\[\Omega = \{ x \geq 1 \} \]

\[f'(1) = 2 \]

Given \(\Omega \subseteq \mathbb{R}^n \), \(x \in \Omega \), we say \(d \in \mathbb{R}^n \) is feasible if \(\exists \alpha_0 > 0 \) such that

\[x + \alpha d \in \Omega, \ \forall 0 < \alpha \leq \alpha_0 \]
\[S2 : z(x, y) = x^2 + y^2 = \frac{3}{2} \]

\[f(x, y) = x \]

\[x^* (1, 0) \]

There are no feasible directions at \(x^* \).

\[\text{FONC (boundary):} \]

If \(x^* \) is a minimizer, for all feasible directions \(d \) at \(x^* \),

\[d^T \nabla f(x^*) \geq 0 \]

directional derivative in direction \(d \).
SONC. If \(x^* \) is a minimizer, for all feasible directions \(d \) at \(x^* \):

\[
\nabla^T \nabla^2 f(x^*) d \geq 0
\]

\[
f(x, y) = x + 2y
\]

s.t. \((x) \in \mathbb{R})

\[
\begin{cases}
3 \leq x \leq 7 \\
-2 \leq y \leq 1
\end{cases}
\]

1. Is any point in the interior a minimizer?

\[
\nabla f = \begin{pmatrix} 1 \\ 2 \end{pmatrix}
\]

No, since \(\nabla f \neq 0 \) anywhere.
2) Check the boundary

Check \(x^* = (-1, -1) \)

Observe \(d = (d_1, d_2) \) is feasible if \(d_1, d_2 \geq 0 \)

\[
\nabla f(x^*) = d_1 + 2d_2 \\
\geq 0
\]

Therefore \(x^* \) satisfies FONC

\[
\min 3x \\
\text{s.t. } x + ty^2 \geq 2
\]
Consider $C(x)$ at this point, d is feasible if it points to the right.

\[d = (d_1, d_2), \quad d_1 \geq 0 \]

FONC: \(\forall f = (3) \)

\[d^T \nabla f (2, 0) = 3d_1 \]

\(x^* \) satisfies FONC, \(\geq 0 \)

SONC: \(\nabla^2 f = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \)

\[d^T \nabla^2 f d = 0 \geq 0 \]

so \(x^* \) satisfies SONC

\(x^* \) is not a local minimizer.