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Sparse reconstruction
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Sparse reconstruction

min F'(x) subject to  ||z[|, < k.
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« Compressed sensing: Y
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Sparse reconstruction

min F(x) subject to  ||z|, < k.
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« Matrix recovery:
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Sparse reconstruction

» Generalized sparse recovery:
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min — Z fi(z) subject to ||z[|yp <k,




Methods

= Compressed sensing / matrix recovery
= L1-minimization & nuclear norm minimization
= [terative methods (IHT, CoSaMP, OMP, ...)
= Optimization
= (Stochastic) gradient descent
= (Stochastic) coordinate descent



Definition 1 (D-restricted strong convexity (D-RSC)). The function F(x) satisfies the D-RSC' if
there exists a positive constant p, such that

Assumptions

F(z') — F(z) — (VF(z),z' —z) > % ||:B"—9:HZ, (16)

for all vectors x and x’ of size n such that | suppp(z) Usuppp(z’)| < k.

Definition 2 (D-restricted strong smoothness (D-RSS)). The function fi(x) satisfies the D-RSS
if there exists a positive constant p:(z) such that

IV fia') = Vfi(@)lly < pi @) [|2” = =]}, (17)

for all vectors x and x’ of size n such that | suppp(z) Usuppp(z’)| < k.

We may wish to consider blocks of the matrix A and break F(x) into
functionals corresponding to each block i. Call the number of blocks b.



Restricted Isometry Property

(1=9)||z||3 < ||Az||3 < (1 +6)||z||3 for all k-sparse vectors z,

In particular, we require that the design matrix A satisfies

— IIAfBIIz (1 = 3) llll;

Here, (1 + k) and (1 — d;) with &, € (0,1] play the role of p; (i) and p
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Stochastic greedy methods

Define approx;(z,n) as the operator that constructs a set I' of cardinality k such that

IPre —zlly < nljz -kl

Algorithm 1 StoIHT algorithm
input: k, v, n, p(i), and stopping criterion
initialize: 2" and t =0

repeat
randomize: select an index i; from [M] with probability p(i;)
proxy: b = ot — mj(i—t)v fi.(z%)
identify: I'* = approx, (bt,n)
estimate: Fe = Pro )

=1
until halting criterion true
output: & =
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Stochastic greedy methods

Define approx;(z,n) as the operator that constructs a set I' of cardinality k such that

|Prz — x|, < 0|z — x|,

Algorithm 2 StoGradMP algorithm
input: k, m1, 72, p(i), and stopping criterion
initialize: 2°, A=0, and t = 0

repeat
randomize: select an index i; from [M] with probability p(i;)
proxy: rt = Vf;, (z?)
identify: [ = approxy,(rf,n)
merge: F=TUA
estimate: b* = argmin,, F(x) w € span(Dg)
prune: A = approx,(bt, 12)
update: ot = Py (bY)

t =t+1
until halting criterion true
output: 7 = z!




Theorem 1. Let x* be a feasible solution of () and x° be the initial solution. At the (t + 1)-th
iteration of Algorithm ', the expectation of the recovery error is bounded by

E [l ~ 2|}, < 6 [la® ~ 2|, + 7=

(1-r)

Theoretical guarantees : StolHT

(21)

Sparse signal recovery:

2ko 1
E[Ja1 — 2%, < 3/4) ", + cyf TA0ET.

Low-rank matrix recovery:

o2kn (92 — 1)o2n?
Enxm—x*nFs<3/4)t+1ux*np+c(\/ kn || Jo= et




Empirical results
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Figure 1: Sparse Vector Recovery: Percent recovery as a function of the number of measurements
for IHT (left) and StoIHT (right) for various sparsity levels k.




Empirical results
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Figure 2: Sparse Vector Recovery: Percent recovery as a function of the number of measurements
for GradMP (left) and StoGradMP (right) for various sparsity levels k.




Empirical results
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Figure 3: Sparse Vector Recovery: Recovery error as a function of epochs and various block sizes

b for IHT methods (left) and GradMP methods (right).
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Empirical results
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Figure 4: Sparse Vector Recovery: Number of measurements required for signal recovery as a func-
tion of block size (blue marker) for StolHT (left) and StoGradMP (right). Number of measurements
required for deterministic method shown as red solid line.



Empirical results
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Figure 5: Sparse Vector Recovery: A comparison of IHT and StolHT in the presence of noise.
Recovery error versus epoch (left) and measurements required versus block size (right).



Empirical results

~ o
o O

—+b=1
--b=2
—+—bh=4
—b=8
b=16
b=24
b=232
. b =40
- - -GradMP

—GradMP |
—-©-StoGradMP |

g Oy o =

w

e,
@
=
=

-
o
o O
Llj o
(2]
cC -
o
5 s
E 5
x >
o o
a ©
a )
< =
= G
o O
= Q
£
35
Z

Pl

30 40 50 60 70
Block Size

Figure 6: Sparse Vector Recovery: A comparison of GradMP and StoGradMP in the presence of
noise. Recovery error versus epoch (left) and measurements required versus block size (right).



Empirical results
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Figure 7: Sparse Vector Recovery: (Left) A comparison of StolHT for various values of the step

size 7 (shown in the colorbar). (Right) A comparison of the mean recovery error as a function of
runtime for IHT, StoIHT, GradMP, and StoGradMP.




Empirical results
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Figure 8: Low-Rank Matrix Recovery: Percent recovery as a function of the number of measure-
ments for IHT (left) and StoIHT (right) for various rank levels k.




Empirical results
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Figure 9: Low-Rank Matrix Recovery: Percent recovery as a function of the number of measure-
ments for GradMP (left) and StoGradMP (right) for various rank levels k.
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Figure 10: Low-Rank Matrix Recovery: Recovery error as a function of the number of epochs for

the IHT methods using m = 90 (left) and m = 140 (right), shown for various block sizes b used in
StolHT.
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Figure 11: Low-Rank Matrix Recovery: Recovery error as a function of the number of epochs for
the GradMP methods using m = 90 (left) and m = 140 (right), shown for various block sizes b
used in StoGradMP.



Empirical results
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Figure 12: Low-Rank Matrix Recovery: Number of measurements required for signal recovery
as a function of block size (blue marker) for Stol[HT (left) and StoGradMP (right). Number of
measurements required for deterministic method shown as red solid line.
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Figure 13: Low-Rank Matrix Recovery with Approximations: Mean recovery error as a function of
epochs (left) and runtime (right) for various over-sampling factors d using the StolHT algorithm.
Performance using full SVD computation shown as dashed line.
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Figure 14: Low-Rank Matrix Recovery with Approximations: Mean recovery error as a function
of epochs (left) and runtime (right) for various over-sampling factors d using the StoGradMP
algorithm. Performance using full SVD computation shown as dashed line.




Thank you!

For more info:

 dneedell@cmc.edu

« www.cmc.edu/pages/faculty/DNeedell

» Linear Convergence of Stochastic Iterative Greedy Algorithms with
Sparse Constraints

by N. Nguyen, D. Needell, and T. Woolf.
Submitted (Arxiv arxiv.org/abs/1407.0088)




