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Imaging via Fourier measurements

Magnetic Resonance Imaging (MRI):
Imaging method for medical diagnostics

o Mathematical model: For an image f € L([0,1]?),
MRI measures 2D-Fourier series coefficients

Ff(wr,wp) = // f(x,y)exp(2mi(wix + way))dxdy.

Discretize to obtain expansion of a discrete image f € CN*N in the
discrete Fourier basis consisting of the vectors

1 .
90w1,w2(t1> t2) = Nel27r(tlm+t2wz)/N7 _N/2 +1 < t1, o < N/2'

Model can also be used for other applications.
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Compressed sensing for discrete images

@ Model assumption: the image x € (CNQ, is approximately s-sparse in a
representation system {b;}, i.e., x &~ > 7_; xk by;.
o Suitable systems: Wavelets, shearlets, ...

@ Intuition: Low dimensionality due to image structure, but nonlinear.

Feb. 2015 5/29

Deanna Needell (CMC) Compressed Sensing with Dictionaries



Compressed sensing for discrete images

. . 2 . . .
e Model assumption: the image x € CN", is approximately s-sparse in a
representation system {b;}, i.e., x &~ > 7_; xk by;.

o Suitable systems: Wavelets, shearlets, ...

@ Intuition: Low dimensionality due to image structure, but nonlinear.

@ Goal: Reconstruction of x from m < N? linear measurements, that is,
from y = Ax, where A € CmxN? |

@ Underdetermined system =- Many solutions.

o Sufficient condition for robust recovery via convex optimization:

e m = slog® N random measurements
o Incoherence between measurements and basis elements.
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Important tool: The Restricted Isometry Property

Definition (Candés-Romberg-Tao (2006))

A matrix A € C™*" has the Restricted Isometry Property of order s and
level 6 € (0,1) (in short, (s, d)-RIP), if one has

(1= 0)|Ix|I3 < |IAxI3 < (1 +8)|Ix||3 for all s-sparse x € C" (1)

The Restricted Isometry Constant d5(A) is the smallest § satisfying (1).

o Idea: Any submatrix of s columns is well-conditioned.
o Typical result: If A€ C™ " has the (2k,§)-RIP with § < % and
the equation y = Ax has a k-sparse solution x7, then one has
x# = arfmin llz||1 (e.g., Cai et al. (2014)).
z=y

@ Guarantee only works for basis representations
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Compressed Sensing MRI - the basis case

Donoho-Lustig-Pauly (2007):
Use compressed sensing to reduce number of MRI measurements needed.

Main issue to address:

@ Lack of incoherence between Fourier measurements and good bases
for image representation

In this talk: address this issue, provide reconstruction guarantees
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Dictionaries

Definition

Aset D= {di,...,dy} C C"is called a tight frame if there exists A > 0
such that for all x € C"

N
> ldi, )2 = Allx13
i=1

@ Interpretation: Dictionary,
the d;’s represent different features of the signal.

@ Only few features active: Sparsity

@ Redundancy N > n allows for sparser representations.
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Analysis vs. Synthesis Sparsity

o A signal x € C" is synthesis s-sparse with respect to a dictionary D if
there exist {2}V, such that x = 32, zd;.

@ A signal x € C" is analysis s-sparse with respect to a dictionary D if
D*x is s-sparse in C".

@ For many tight frames that appear in applications, synthesis sparse
signals are also approximately analysis sparse.

Definition

For a dictionary D € C"™N and a sparsity level s, we define the
localization factor as

nep = 1% sup |D*Dz||;
S, - - ——F— 0
IDzlo=1,lzllb<s VS

@ Assumption: Localization factor not too large.
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o If D is coherent, that is some d; are very close, it may be impossible

to recover z even from complete knowledge of Dz.
o Consequently, RIP based guarantees cannot work.
@ Important observation: No need to find z, x = Dz suffices.

Definition (Candés-Eldar-N-Randall (2010))

Fix a dictionary D € C"™N and matrix A € C™*". The matrix A satisfies
the D-RIP with parameters ¢ and s if

(1 9)IDx]3 < |ADx||3 < (1 + 6)[|Dx|3

for all s-sparse vectors x € C".

o Examples of D-RIP matrices:
Subgaussian matrices [Candés-Eldar-N-Randall (2010)],
RIP matrices with random column signs [Krahmer-Ward (2011)]
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D-RIP based recovery guarantees

Theorem (Candés-Eldar-N-Randall (2010))

For A that has the D-RIP and a measurement vector y = Ax = ADz
consider the minimization problem

X = argmin ||D*X||; subject to AX =Y.

xeCn
Then the minimizer X satisfies

|ID*x — (D*x)s||1
NG

[ —x|l2 < C

@ Small localization factor = small error bound

@ In this talk: provide D-RIP constructions closer to applications
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Uniform sampling

The mutual coherence of two bases {¢x} and {b;} is defined to be

= sup [{b;, pi)|.
j?k

Theorem (Rudelson-Vershynin (2006), Rauhut (2007))

Consider the matrix A = ®qB* € C™*N with entries
Aﬁ,k = <(10jea bk>7 le [m]v k € [N]7 (2)

where the p;, are independent samples drawn uniformly at random from
an ONB {goj}jN:l incoherent with the sparsity basis {b;} in the sense that

1 < KN=Y2_ Then once, for some s > log(N),
m > C32K?slog3(s) log(N), (3)

with probability at least 1 — N~7 '°g3(5), the restricted isometry constant Js
of ﬁA satisfies 6s < §. The constants C,~ > 0 are universal.
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Variable density sampling

[Lustig-Donoho-Pauly (2007)]: “For a better

. . EEEEEEEE
performance with real images, one should "TTEEEE T
be undersampling less near the k-space origin i T e = R
and more in the periphery of k-space. For N T T e e I O
example, one may choose samples randomly (1 (Wi
with sampling density scaling according E%g%

. e ==
to a power of distance from the origin. i S =

@ ldea by Puy-Vandergheynst-Wiaux (2011):

Variable density sampling can reduce coherence.

Strategy: Find optimal weights using convex optimization.
Work with problem specific discretization level.

No theoretical recovery guarantees.
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Local coherence

o Empirical observation of Puy et al.:
Often only few Fourier basis vectors have high coherence with the
sparsity basis. Changing the weights can compensate for this
inhomogeneity.

@ We introduce the local coherence to address this issue.

Definition (Local coherence)

The local coherence of an ONB {¢; J-Nzl of CN with respect to another

’<90J"¢k>|-

ONB {1k }_, of CN is the function pijoc(j) = sup
1<k<N
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RIP for variable density subsampling

Theorem (Consequence of Rauhut-Ward '12)

Assume the local coherence of an ONB ¢ = {goj-}jN:l with respect to an

ONB V = {wk}ﬁlzl is pointwise bounded by the function k, that is,

sup (¢, k)| < kj. Consider the matrix A € C™N with entries
1<k<N

Af,k = <90jgawk>7 ./ € [m]7k S [N]7 (4)
where the j; are drawn independently according to v, = P({; = () = %
Suppose that

m > C62||k||3s log(s) log(N), (5)

and let D = diag(d;;), where d; j = ||k||2/Kj. Then with probability at
least 1 — N=7 '°g3(5), the preconditioned matrix ﬁDA has a restricted
isometry constant §s < &. The constants C,~v > 0 are universal.

v
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Total variation

o Discrete image x = (xj «) € (C”2, G, k) € {1,2,...,n}? = [n]?
@ Discrete directional derivatives

Xu)jk =Xjk+1 = Xj ks

(
(Xv)jk =Xj41,6 = Xj k>
(

@ Discrete gradient Vx = (x,, x,) is very close to sparse.

@ Not a basis representation, does not allow stable image reconstruction
e Total variation (TV): ||x]|7v = [|[VX|e.
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Compressed sensing via TV minimization

Proposition (N-Ward (2012))

Let (a;) be an orthonormal basis for C™ that is incoherent with the
bivariate Haar basis (w;),

sykp\(aj,wk)| < C/n.
J7

Let A, : C™ — C™ consist of m > slog®(n) uniformly subsampled bases
aj as rows. Then with high probability, the following holds for all X € c:
Ify = AuX + € with ||€]]2 < & and

A

X =argmin ||Z||7v such that ||F,Z —y|2<e¢
z

then
VX = (VX)slla

NG
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Local incoherence between Fourier and Haar systems

Theorem (Krahmer-Ward (2014))

Fix 6 € (0,1/3) and integers N = 2P, m, and s such that
m > slog® slog® N.

Select m discrete frequencies (,,,) independently according to
p(w, w2) = P[(Q/valz) = (w1, w2)] o< min (17 W%CT,UJ%) , —F4+1<w,w <Y,

and let 7o : €Y' — C™ be the DFT matrix restricted to {(%, %)}
Then with high probability, the following holds for all f ¢ CV*V.
Given measurements y = Fof, the TV-minimizer

f#

= argmin ||g||7v such that Fag =y,
gGCNXN

approximates f to within the best s-term approximation error of Vf:

_ IVF=(V)lly
If — F#]lp < c Y=l
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Numerical Simulations

(a) Original image (b) Lowest frequencies only

(c) Sample oc (k2 + k3)™!  (d) Sample oc (kZ + k3)~>/2

Figure : Reconstruction using m = 12,000 noiseless partial DFT measurements with
frequencies Q = (ki, k2) sampled from various distributions.

@ Relative reconstruction errors (b) .18, (c) .21, and (d) .19
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Which sampling density to choose?

Reconstruction error

0 1 2 3 4 5 6 inf
Power a used in sampling strategy

(a) Reconstruction errors by various power-law den-
sity sampling at low noise (filled line) and high noise
(dashed line)

@ Are all the reconstructions of comparable quality?
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Really all the same?

(b) The wet paint reconstructions indicated by the circled errors on the error
plot, zoomed in on the paint sign.

At high noise level, inverse quadratic-law sampling (left) still reconstructs
fine details of the image better than low frequency-only sampling (right).
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Theorem (Krahmer-N-Ward (2014))

Fix a sparsity level s < N, and constant 0 < § < 1. Let D € C"™*N pe a
tight frame, let A = {a1,...,a,} be an ONB of C", and k € R'| an
entrywise upper bound of the local coherence, that is,

(A, D) = sup |(a;, dj)| < ki.
JE[N]

Consider the localization energy 7. Construct A € ¢mxn by sampling
vectors from A at random according to the probability distribution v given

by v(i) = HHI\?F and normalizing by \/n/m. Then as long as

Co2s||k|3(n)? log*(sn?) log(N),  and
Co2s||k|13n* log(1/7) (6)

then with probability 1 —~, A satisfies the D-RIP with parameters s and §.

m =
m >
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Consequences

@ Recovery guarantees for Fourier measurements and Haar wavelet
frames of redundancy 2 by previous local coherence analysis.

o Constant local coherence: Implies incoherence based guarantees (for
example for oversampled Fourier dictionary).
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Summary and open questions

Compressive imaging via variable density sampling

Uniform recovery guarantees for approximately Haar- and
Gradient-sparse images

First guarantees for Fourier measurements and dictionary sparsity

Goals:

o Basis-independent error bounds via continuous total variation.
o Why is cubic decay better than quadratic?

e Sharper error bounds using shearlets, curvelets

o What is the right noise model?
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