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Imaging via Fourier measurements

Magnetic Resonance Imaging (MRI):
Imaging method for medical diagnostics

Mathematical model: For an image f ∈ L2([0, 1]2),
MRI measures 2D-Fourier series coefficients

F f (ω1, ω2) =

∫∫
f (x , y) exp(2πi(ω1x + ω2y))dxdy .

Discretize to obtain expansion of a discrete image f ∈ CN×N in the
discrete Fourier basis consisting of the vectors

ϕω1,ω2(t1, t2) =
1

N
e i2π(t1ω1+t2ω2)/N , −N/2 + 1 ≤ t1, t2 ≤ N/2.

Model can also be used for other applications.
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Compressed sensing for discrete images

Model assumption: the image x ∈ CN2
, is approximately s-sparse in a

representation system {bi}, i.e., x ≈
∑s

j=1 xkj bkj .

Suitable systems: Wavelets, shearlets, ...

Intuition: Low dimensionality due to image structure, but nonlinear.

Goal: Reconstruction of x from m� N2 linear measurements, that is,
from y = Ax , where A ∈ Cm×N2

.

Underdetermined system ⇒ Many solutions.

Sufficient condition for robust recovery via convex optimization:

m & s logα N random measurements
Incoherence between measurements and basis elements.
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Important tool: The Restricted Isometry Property

Definition (Candès-Romberg-Tao (2006))

A matrix A ∈ Cm×n has the Restricted Isometry Property of order s and
level δ ∈ (0, 1) (in short, (s, δ)-RIP), if one has

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 for all s-sparse x ∈ Cn (1)

The Restricted Isometry Constant δs(A) is the smallest δ satisfying (1).

Idea: Any submatrix of s columns is well-conditioned.

Typical result: If A ∈ Cm×n has the (2k , δ)-RIP with δ ≤ 1√
2

and

the equation y = Ax has a k-sparse solution x#, then one has
x# = argmin

Az=y
‖z‖1 (e.g., Cai et al. (2014)).

Guarantee only works for basis representations
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Compressed Sensing MRI - the basis case

Donoho-Lustig-Pauly (2007):
Use compressed sensing to reduce number of MRI measurements needed.

Main issue to address:

Lack of incoherence between Fourier measurements and good bases
for image representation

In this talk: address this issue, provide reconstruction guarantees
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Dictionaries

Definition

A set D = {d1, . . . , dN} ⊂ Cn is called a tight frame if there exists A > 0
such that for all x ∈ Cn

N∑
i=1

|〈di , x〉|2 = A‖x‖2
2

Interpretation: Dictionary,
the di ’s represent different features of the signal.

Only few features active: Sparsity

Redundancy N > n allows for sparser representations.
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Analysis vs. Synthesis Sparsity

A signal x ∈ Cn is synthesis s-sparse with respect to a dictionary D if
there exist {zi}Ni=1 such that x =

∑N
i=1 zidi .

A signal x ∈ Cn is analysis s-sparse with respect to a dictionary D if
D∗x is s-sparse in CN .

For many tight frames that appear in applications, synthesis sparse
signals are also approximately analysis sparse.

Definition

For a dictionary D ∈ Cn×N and a sparsity level s, we define the
localization factor as

ηs,D = η
def
= sup
‖Dz‖2=1,‖z‖0≤s

‖D∗Dz‖1√
s

.

Assumption: Localization factor not too large.
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D-RIP

If D is coherent, that is some di are very close, it may be impossible
to recover z even from complete knowledge of Dz.

Consequently, RIP based guarantees cannot work.

Important observation: No need to find z, x = Dz suffices.

Definition (Candès-Eldar-N-Randall (2010))

Fix a dictionary D ∈ Cn×N and matrix A ∈ Cm×n. The matrix A satisfies
the D-RIP with parameters δ and s if

(1− δ)‖Dx‖2
2 ≤ ‖ADx‖2

2 ≤ (1 + δ)‖Dx‖2
2

for all s-sparse vectors x ∈ Cn.

Examples of D-RIP matrices:
Subgaussian matrices [Candès-Eldar-N-Randall (2010)],
RIP matrices with random column signs [Krahmer-Ward (2011)]
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D-RIP based recovery guarantees

Theorem (Candès-Eldar-N-Randall (2010))

For A that has the D-RIP and a measurement vector y = Ax = ADz
consider the minimization problem

x̂ = argmin
x̃∈Cn

‖D∗x̃‖1 subject to Ax̃ = y.

Then the minimizer x̂ satisfies

‖x̂− x‖2 ≤ C
‖D∗x− (D∗x)s‖1√

s

Small localization factor ⇒ small error bound

In this talk: provide D-RIP constructions closer to applications
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Uniform sampling

The mutual coherence of two bases {ϕk} and {bj} is defined to be

µ = sup
j ,k
|〈bj , ϕk〉|.

Theorem (Rudelson-Vershynin (2006), Rauhut (2007))

Consider the matrix A = ΦΩB∗ ∈ Cm×N with entries

A`,k = 〈ϕj` , bk〉, ` ∈ [m], k ∈ [N], (2)

where the ϕj` are independent samples drawn uniformly at random from
an ONB {ϕj}Nj=1 incoherent with the sparsity basis {bj} in the sense that

µ ≤ KN−1/2. Then once, for some s & log(N),

m ≥ Cδ−2K 2s log3(s) log(N), (3)

with probability at least 1− N−γ log3(s), the restricted isometry constant δs
of 1√

m
A satisfies δs ≤ δ. The constants C , γ > 0 are universal.
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Variable density sampling

[Lustig-Donoho-Pauly (2007)]: “For a better
performance with real images, one should
be undersampling less near the k-space origin
and more in the periphery of k-space. For
example, one may choose samples randomly
with sampling density scaling according
to a power of distance from the origin.”

Idea by Puy-Vandergheynst-Wiaux (2011):

Variable density sampling can reduce coherence.
Strategy: Find optimal weights using convex optimization.
Work with problem specific discretization level.
No theoretical recovery guarantees.
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Local coherence

Empirical observation of Puy et al.:
Often only few Fourier basis vectors have high coherence with the
sparsity basis. Changing the weights can compensate for this
inhomogeneity.

We introduce the local coherence to address this issue.

Definition (Local coherence)

The local coherence of an ONB {ϕj}Nj=1 of CN with respect to another

ONB {ψk}Nk=1 of CN is the function µloc(j) = sup
1≤k≤N

|〈ϕj , ψk〉|.
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RIP for variable density subsampling

Theorem (Consequence of Rauhut-Ward ’12)

Assume the local coherence of an ONB Φ = {ϕj}Nj=1 with respect to an

ONB Ψ = {ψk}Nk=1 is pointwise bounded by the function κ, that is,
sup

1≤k≤N
|〈ϕj , ψk〉| ≤ κj . Consider the matrix A ∈ Cm×N with entries

A`,k = 〈ϕj` , ψk〉, j ∈ [m], k ∈ [N], (4)

where the j` are drawn independently according to ν` = P(`j = `) =
κ2
`

‖κ‖2
2
.

Suppose that

m ≥ Cδ−2‖κ‖2
2s log3(s) log(N), (5)

and let D = diag(dj ,j), where dj ,j = ‖κ‖2/κj . Then with probability at

least 1− N−γ log3(s), the preconditioned matrix 1√
m

DA has a restricted

isometry constant δs ≤ δ. The constants C , γ > 0 are universal.
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Total variation

Discrete image x = (xj ,k) ∈ Cn2
, (j , k) ∈ {1, 2, . . . , n}2 := [n]2

Discrete directional derivatives

(xu)j ,k =xj ,k+1 − xj ,k ,

(xv )j ,k =xj+1,k − xj ,k ,

Discrete gradient ∇x = (xu, xv ) is very close to sparse.

Not a basis representation, does not allow stable image reconstruction

Total variation (TV): ‖x‖TV = ‖∇x‖`1 .
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Compressed sensing via TV minimization

Proposition (N-Ward (2012))

Let (aj) be an orthonormal basis for Cn2
that is incoherent with the

bivariate Haar basis (wj),

sup
j ,k
|〈aj ,wk〉| ≤ C/n.

Let Au : Cn2 → Cm consist of m & s log6(n) uniformly subsampled bases
aj as rows. Then with high probability, the following holds for all X ∈ Cn2

:
If y = AuX + ξ with ‖ξ‖2 ≤ ε and

X̂ = argmin
Z
‖Z‖TV such that ‖FuZ− y‖2 ≤ ε

then

‖X̂ − X‖2 . (
‖∇X − (∇X )s‖1√

s
+ ε

Deanna Needell (CMC) Compressed Sensing with Dictionaries Feb. 2015 20 / 29



Outline

1 Compressed Sensing and MRI

2 Compressed Sensing with Dictionaries

3 Beyond Incoherence

4 Total variation minimization

5 Main Results

6 Discussion

Deanna Needell (CMC) Compressed Sensing with Dictionaries Feb. 2015 21 / 29



Local incoherence between Fourier and Haar systems

Theorem (Krahmer-Ward (2014))

Fix δ ∈ (0, 1/3) and integers N = 2p,m, and s such that

m & s log3 s log5 N.

Select m discrete frequencies
(
Ωj

1,Ω
j
2

)
independently according to

µ(ω1, ω2) := P
[
(Ωj

1,Ω
j
2) = (ω1, ω2)

]
∝ min

(
1, C ′

ω2
1 +ω2

2

)
, −N

2
+ 1 ≤ ω1, ω2 ≤ N

2
,

and let FΩ : CN2

→ Cm be the DFT matrix restricted to {
(
Ωj

1,Ω
j
2

)
}.

Then with high probability, the following holds for all f ∈ CN×N .

Given measurements y = FΩf , the TV-minimizer

f # = argmin
g∈CN×N

‖g‖TV such that FΩg = y ,

approximates f to within the best s-term approximation error of ∇f :

‖f − f #‖2 ≤ C ‖∇f−(∇f )s‖1√
s

.
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Numerical Simulations

(a) Original image (b) Lowest frequencies only

(c) Sample ∝ (k2
1 + k2

2 )−1 (d) Sample ∝ (k2
1 + k2

2 )−3/2

Figure : Reconstruction using m = 12, 000 noiseless partial DFT measurements with

frequencies Ω = (k1, k2) sampled from various distributions.

Relative reconstruction errors (b) .18, (c) .21, and (d) .19
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Which sampling density to choose?
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(a) Reconstruction errors by various power-law den-
sity sampling at low noise (filled line) and high noise
(dashed line)

Are all the reconstructions of comparable quality?
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Really all the same?
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(b) The wet paint reconstructions indicated by the circled errors on the error
plot, zoomed in on the paint sign.

At high noise level, inverse quadratic-law sampling (left) still reconstructs
fine details of the image better than low frequency-only sampling (right).
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Theorem (Krahmer-N-Ward (2014))

Fix a sparsity level s < N, and constant 0 < δ < 1. Let D ∈ Cn×N be a
tight frame, let A = {a1, . . . , an} be an ONB of Cn, and κ ∈ Rn

+ an
entrywise upper bound of the local coherence, that is,

µloci (A,D) = sup
j∈[N]

|〈ai , dj〉| ≤ κi .

Consider the localization energy η. Construct Ã ∈ Cm×n by sampling
vectors from A at random according to the probability distribution ν given

by ν(i) =
κ2
i

‖κ‖2
2

and normalizing by
√

n/m. Then as long as

m ≥ Cδ−2s‖κ‖2
2(η)2 log3(sη2) log(N), and

m ≥ Cδ−2s‖κ‖2
2η

2 log(1/γ) (6)

then with probability 1− γ, Ã satisfies the D-RIP with parameters s and δ.
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Consequences

Recovery guarantees for Fourier measurements and Haar wavelet
frames of redundancy 2 by previous local coherence analysis.

Constant local coherence: Implies incoherence based guarantees (for
example for oversampled Fourier dictionary).
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Summary and open questions

Compressive imaging via variable density sampling

Uniform recovery guarantees for approximately Haar- and
Gradient-sparse images

First guarantees for Fourier measurements and dictionary sparsity

Goals:

Basis-independent error bounds via continuous total variation.
Why is cubic decay better than quadratic?
Sharper error bounds using shearlets, curvelets
What is the right noise model?
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