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Let Ax = b be an overdetermined, full rank system of equations.
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Setup

Let Ax = b be an overdetermined, full rank system of equations.

Goal

From A and b we wish to recover unknown x . Assume m≫ n.
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This talk:

Accelerate Kaczmarz method via dimension reduction
[Eldar-N, 2011]

Accelerate via optimal relaxation [N-Ward, 2013]

Accelerate via blocking and pavings [N-Tropp, 2013]

Partially weighted sampling via SGD analysis [N-Sbrero-Ward,
2014]
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Method

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i = (k mod m) + 1

3 Repeat (2)

D. Needell SGD and Randomized projection algorithms for overdetermined linea



Method

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i = (k mod m) + 1

3 Repeat (2)

D. Needell SGD and Randomized projection algorithms for overdetermined linea



Method

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i = (k mod m) + 1

3 Repeat (2)

D. Needell SGD and Randomized projection algorithms for overdetermined linea



Method

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i = (k mod m) + 1

3 Repeat (2)

D. Needell SGD and Randomized projection algorithms for overdetermined linea



Geometrically

Denote Hi = {w : 〈ai ,w〉 = b[i ]}.
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Randomized Kaczmarz

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i is chosen randomly

3 Repeat (2)

D. Needell SGD and Randomized projection algorithms for overdetermined linea



Randomized Kaczmarz

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i is chosen randomly

3 Repeat (2)

D. Needell SGD and Randomized projection algorithms for overdetermined linea



Randomized Kaczmarz

Theorem [Strohmer-Vershynin]: Consistent case Ax = b

1 Start with initial guess x0

2 xk+1 = xk + (bp − 〈ap , xk〉)ap where P(p = i) =
‖ai‖

2
2

‖A‖2
F

3 Repeat (2)
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Randomized Kaczmarz (RK)

Theorem [Strohmer-Vershynin]

Let R = ‖A‖2f ‖A−1‖2

Then E‖xk − x‖22 ≤
(
1− 1

R

)k

‖x0 − x‖22
Well conditioned A→ Convergence in O(n) iterations →
O(n2) total runtime.

Better than O(mn2) runtime for Gaussian elimination and
empirically often faster than Conjugate Gradient.
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Randomized Kaczmarz (RK) with noise

Inconsistent systems

We now consider the system Ax = b + e.
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Randomized Kaczmarz (RK) with noise

Theorem [N]

Let Ax = b + e. Then

E‖xk − x‖2 ≤
(
1− 1

R

)k/2
‖x0 − x‖2 +

√
R‖e‖∞

.

This bound is sharp and attained in simple examples.

Note can set e = Ax⋆ − b where x⋆ is LS solution.
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Randomized Kaczmarz (RK) with noise
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Figure Comparison between actual error (blue) and predicted
threshold (pink). Scatter plot shows exponential convergence over
several trials.
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Even better convergence?

Recall xk+1 = xk + (b[i ]− 〈ai , xk〉)ai
Since these projections are orthogonal, the optimal projection
is one that maximizes ‖xk+1 − xk‖2.
Equivalently, one which maximizes: |b[i ]−〈ai ,xk〉|

‖ai‖2
.

We should pick the row which maximizes this. But – can only
afford to search through a constant number.

Idea: Use dimension reduction (ala Johnson-Lindenstrauss) to
approximate these terms and search through a large number
of them.
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Initialize Set k = 0, create a d × n Gaussian matrix Φ and
set αi = Φai . Repeat the following O(n) times:

Select Select n rows with same prob. dist. Calculate

γi =
|b[i ]− 〈αi ,Φxk〉|

‖αi‖2
,

and set j = argmaxi γi .

Test For aj and the first row al selected out of the n,
explicitly calculate

γ∗j =
|b[j]− 〈aj , xk〉|

‖aj‖2
and γ∗l =

|b[l ]− 〈al , xk〉|
‖al‖2

.

If γ∗l > γ∗j , set j = l .

Project Set

xk+1 = xk +
b[j]− 〈aj , xk〉
‖aj‖22

aj .

Update Set k = k + 1.
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Accelerated RK via JL

[Eldar-N]

Fix an estimation xk and denote by xk+1 and x∗k+1 the next
estimations using the RKJL and the standard RK method,
respectively. Set γ∗j = |〈aj , xk〉|2 and reorder so that

γ∗1 ≥ γ∗2 ≥ . . . ≥ γ∗m. Then when d = Cδ−2 log n,

E‖xk+1−x‖22 ≤ min


E‖x∗k+1 − x‖22 −

m∑

j=1

(
pj −

1

m

)
γ∗j + 2δ, E‖x∗k+1 −

where pj are non-negative values satisfying
∑m

j=1 pj = 1 and
p1 ≥ p2 ≥ . . . ≥ pm = 0.

Large initial computation but accelerated convergence.
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ℓ2-Error (y-axis) as a function of the iterations (x-axis). The
dashed line is standard Randomized Kaczmarz, and the solid line is
the modified one, without a Johnson-Lindenstrauss projection.
Instead, the best move out of the randomly chosen n rows is used.
Note that we cannot afford to do this computationally.
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ℓ2-Error (y-axis) as a function of the iterations (x-axis) for various
values of d with m = 60000 and n = 1000.
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Even better (cheaper) convergence?

Recall xk+1 = xk + (b[i ]− 〈ai , xk〉)ai
Since these projections are orthogonal, the optimal projection
is one that maximizes ‖xk+1 − xk‖2.
What if we relax: xk+1 = xk + γ(b[i ]− 〈ai , xk〉)ai
Can we choose γ optimally?

Idea: In each “iteration,” project once with relaxation
optimally and then project normally.
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Even better convergence?

Two-subspace Kaczmarz

Randomly select two rows, as and ar

Perform initial projection: y = xk + γ(b[i ]− 〈ai , xk〉)ai with γ
optimal

Peform second projection: xk+1 = y + (b[i ]− 〈ai , y〉)ai
Repeat
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Two-subspace Kaczmarz

Geometrically, we choose γ in such a way:
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Two-subspace Kaczmarz

The optimal choice of γ in a single iteration is

γ =
−〈ar − 〈as , ar 〉as , xk − x + (bs − 〈xk , as〉)as〉

(br − 〈xk , ar 〉)‖ar − 〈as , ar 〉as‖22
.

Two-Subspace Kaczmarz method

Select two distinct rows of A uniformly at random

µk ← 〈ar , as〉
yk ← xk−1 + (bs − 〈xk−1, as〉)as
vk ← ar−µkas√

1−|µk |2

βk ← br−bsµk√
1−|µk |2

xk ← yk + (βk − 〈yk , vk〉)vk
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Two-Subspace Kaczmarz

(a) (b)

Figure For coherent systems, the one-subspace randomized
Kaczmarz algorithm (a) converges more slowly than the
two-subspace Kaczmarz algorithm (b).
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Two-Subspace Kaczmarz

Define the coherence parameters:

∆ = ∆(A) = max
j 6=k
|〈aj , ak〉| and δ = δ(A) = min

j 6=k
|〈aj , ak〉|. (1)
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Figure Randomized Kaczmarz (RK) versus two-subspace RK
(2SRK). A has highly coherent rows with δ = 0.992 and ∆ = 0.998.
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Two-Subspace Kaczmarz
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Figure Randomized Kaczmarz (RK) versus two-subspace RK
(2SRK). A has highly coherent rows with coherence parameters (a)
δ = 0.837 and ∆ = 0.967, (b) δ = 0.534 and ∆ = 0.904, (c)
δ = 0.018 and ∆ = 0.819, and (d) δ = 0 and ∆ = 0.610.
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Results

Recall the coherence parameters:

∆ = ∆(A) = max
j 6=k
|〈aj , ak〉| and δ = δ(A) = min

j 6=k
|〈aj , ak〉|. (2)

Theorem [N-Ward]

Let b = Ax + e, then the two-subspace Kaczmarz method yields

E‖x − xk‖2 ≤ ηk/2‖x − x0‖2 +
3

1−√η ·
‖e‖∞√
1−∆2

,

where D = min
{

δ2(1−δ)
1+δ , ∆

2(1−∆)
1+∆

}
, R = m‖A−1‖2 denotes the

scaled condition number, and η =
(
1− 1

R

)2 − D
R
.
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Results

Remarks

1. When ∆ = 1 or δ = 0 we recover the same convergence rate as
provided for the standard Kaczmarz method since the
two-subspace method utilizes two projections per iteration.
2. The bound presented in the theorem is a pessimistic bound.
Even when ∆ = 1 or δ = 0, the two-subspace method improves on
the standard method if any rows of A are highly correlated (but
not equal).
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The parameter D

Figure A plot of the improved convergence factor D as a function of
the coherence parameters δ and ∆ ≥ δ.
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Generalization to more than two rows?
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Block Kaczmarz [N-Tropp]

Randomized Block Kaczmarz method

Given a partition of the rows, T :

Select a block τ of the partition at random

xk ← xk−1 + Aτ
†(bτ − Aτxk−1)

The convergence rate heavily depends on the conditioning of the
blocks Aτ → need to control geometric properties of the partition.
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Block Kaczmarz

Row paving

A (d , α, β) row paving of a matrix A is a partition
T = {τ1, . . . , τd} of the row indices that verifies

α ≤ λmin(AτA
∗
τ ) and λmax(AτA

∗
τ ) ≤ β for each τ ∈ T .

Theorem [N-Tropp]

Suppose A admits an (d , α, β) row paving T and that b = Ax + e.
The convergence of the block Kaczmarz method satisfies

E‖xk − x‖22 ≤
[
1− σ2

min(A)

βd

]k
‖x0 − x‖22 +

β

α
· ‖e‖

2
2

σ2
min(A)

. (3)
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Block Kaczmarz

Good row pavings [Bougain-Tzafriri]

For any δ ∈ (0, 1), A admits a row paving with

d ≤ C · δ−2‖A‖2 log(1 + n) and 1− δ ≤ α ≤ β ≤ 1 + δ.

Theorem [N-Tropp]

Let A have row paving above with δ = 1/2. The block Kaczmarz
method yields

E‖xk − x‖22 ≤
[
1− 1

Cκ2(A) log(1 + n)

]k
‖x0 − x‖22 +

3‖e‖22
σ2
min(A)

.
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Block Kaczmarz

Theorem [Bougain-Tzafriri, Vershynin, Tropp]

A random partition of the row indices with m ≥ ‖A‖2 blocks is a
row paving with upper bound β ≤ 6 log(1 + n), with probability at
least 1− n−1.

Theorem [Bourgain-Tzafriri, Vershynin, Tropp]

Suppose that A is incoherent. A random partition of the row
indices into m blocks where m ≥ C · δ−2‖A‖2 log(1 + n) is a row
paving of A whose paving bounds satisfy 1− δ ≤ α ≤ β ≤ 1 + δ,
with probability at least 1− n−1.
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Block Kaczmarz

Figure The matrix A is a fixed 300× 100 matrix consisting of 15
partial circulant blocks. Error ‖xk − x‖2 per flop count.
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Block Kaczmarz

Figure The matrix A is a fixed 300× 100 matrix with rows drawn
randomly from the unit sphere, with d = 10 blocks. Error ‖xk − x‖2
over various computational resources.
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Block Kaczmarz

Figure Shout out to going Hogwild – with versus without
replacement for circulant matrix.
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Recall SGD to minimize F (x) = Efi(x) [N-Srebro-Ward]

SGD

Input:

Initial estimate x0 ∈ R
d

Degree of nonuniform sampling λ ∈ [0, 1]

Step size γ > 0

Tolerance parameter δ > 0

Access to the source distribution D
If λ < 1: bounds on the Lipschitz constants Li ;

k ← 0
Repeat:

k ← k + 1

Draw an index i ∼ D(λ)

xk ← xk−1 − γ
wλ(i)
∇fi(xk−1)
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Recall SGD to minimize F (x) = Efi(x) [N-Srebro-Ward]

Convergence rate for SGD with partially biased sampling

Let fi be continuously differentiable convex functionals, where each
∇fi has Lipschitz constant Li , and let F (x) = Ei∼Dfi (x) be
µ-strongly convex. Set σ2 = Ei∼D‖∇fi (x⋆)‖22, where x⋆ is the
minimizer of

x⋆ = argmin
x

F (x).

Then the iterate xk satisfies

E‖xk − x⋆‖22 ≤
[
1− 2γµ(1− γα)

)]k
‖x0 − x⋆‖22 +

γβσ2

µ
(
1− γα

) ,

where the expectation is with respect to the random sampling in

the Algorithm, α = α(λ) = min
(

L
1−λ ,

supi Li
λ

)
, and

β = β(λ) = min
(

1
λ ,

L
(1−λ) inf i Li

)
.
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SGD and Kaczmarz

Want to minimize:

F (x) =
1

2

n∑

i=1

(〈ai , x〉 − bi )
2 =

1

2
‖Ax − b‖22

which can be formulated as a general problem of minimizing
F (x) = Efi(x) where

The components are fi =
n
2 (〈ai , x〉 − bi)

2

The Lipschitz constants are Li = n‖ai‖22, and the average
Lipschitz constant is 1

n

∑
i Li = ‖A‖2F .

The strong convexity parameter is µ = 1
‖A−1‖2

, so that

K (A) := L/µ = ‖A‖2F‖A−1‖2

The residual is σ2 = n
∑

i‖ai‖22| 〈ai , x⋆〉 − bi |2.
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SGD and Kaczmarz

Consider the relaxed Kaczmarz method:

xk+1 = xk + c · bi − 〈ai , xk〉‖ai‖22
ai P(i) = ‖ai‖22/‖A‖2F

Convergence rate for Kaczmarz with fully biased sampling

Set e = Ax⋆ − b, a2min = inf i‖ai‖22, a2max = supi‖ai‖22, and
e2max = supi e

2
i . Then

E‖xk − x⋆‖22 ≤
[
1− 2c(1− c)

K (A)

]k
‖x0 − x⋆‖22 +

c

1− c
K (A)r̃ ,

with r̃ = (a2max/a
2
min)min

{
e2max/a

2
max, ‖e‖22/‖A‖2F

}
.
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SGD and Kaczmarz

xk+1 = xk + c · bi − 〈ai , xk〉‖ai‖22
ai P(i) = ‖ai‖22/‖A‖2F

Convergence rate for Kaczmarz with fully biased sampling

E‖xk − x⋆‖22 ≤
[
1− 2c(1− c)

K (A)

]k
‖x0 − x⋆‖22 +

c

1− c
K (A)r̃ ,

Small step size c diminishes the convergence horizon.

Tradeoff between convergence horizon and convergence rate.

Non-uniform sampling.
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SGD and Kaczmarz

Convergence rate for randomized Kaczmarz with uniform sampling

Let D be the diagonal matrix with terms dj ,j = ‖ai‖2 and set
ew = D−1(Axw⋆ − b), where

xw⋆ = argmin
x

1

2
‖D−1(Ax − b)‖22.

Then

E‖xk − xw⋆ ‖22 ≤
[
1− 2c(1− c)

K (D−1A)

)]k
‖x0 − xw⋆ ‖22+

c

1− c
K (D−1A)rw ,

(4)
where rw = ‖ew‖22/n.
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SGD and Kaczmarz

Convergence rate for randomized Kaczmarz with uniform sampling

E‖xk − xw⋆ ‖22 ≤
[
1− 2c(1− c)

K (D−1A)

)]k
‖x0 − xw⋆ ‖22+

c

1− c
K (D−1A)rw ,

Convergence to pre-conditioned system solution.

Small step size still diminishes convergence horizon.

Uniform sampling!
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SGD and Kaczmarz

Convergence rate for hybrid randomized Kaczmarz

For any λ ∈ [0, 1],

E‖xk − x⋆‖22 ≤
(
1− 2γmin(1− γmaxα)

‖A−1‖2
))k

‖x0 − x⋆‖22

+
γmaxβamaxn‖A−1‖2‖e‖22

(1− γmaxα)
,

where amin = mini‖ai‖22, amax = maxi‖ai‖22,
α = min

(
‖A‖2

F

1−λ ,
namax
λ

)
, β = min

(
1
λ ,

‖A‖2
F

namin(1−λ)

)
,

γmin = cλ
namax

+ c(1−λ)
‖A‖2

F

, and γmax =
cλ

namin
+ c(1−λ)

‖A‖2
F

.

Allows for an alternative way to tradeoff.
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SGD and Kaczmarz

Can also consider “variant” of Kaczmarz method, SGD with
fi (x) =

n
2 (〈ai , x〉 − bi )

2, sampling uniformly 1− λ proportion of
the time.
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For more information

E-mail:

dneedell@cmc.edu

Web: www.cmc.edu/pages/faculty/DNeedell
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