SGD and Randomized projection algorithms for overdetermined linear systems

Deanna Needell

Claremont McKenna College

IPAM, Feb. 25, 2014

Includes joint work with Eldar, Ward, Tropp, Srebro-Ward

Setup

Setup

Let Ax = b be an *overdetermined*, full rank system of equations.

Setup

Setup

Let Ax = b be an overdetermined, full rank system of equations.

Goal

From A and b we wish to recover unknown x. Assume $m \gg n$.

- Accelerate Kaczmarz method via dimension reduction [Eldar-N, 2011]
- Accelerate via optimal relaxation [N-Ward, 2013]
- Accelerate via blocking and pavings [N-Tropp, 2013]
- Partially weighted sampling via SGD analysis [N-Sbrero-Ward, 2014]

- Accelerate Kaczmarz method via dimension reduction [Eldar-N, 2011]
- Accelerate via optimal relaxation [N-Ward, 2013]
- Accelerate via blocking and pavings [N-Tropp, 2013]
- Partially weighted sampling via SGD analysis [N-Sbrero-Ward, 2014]

- Accelerate Kaczmarz method via dimension reduction [Eldar-N, 2011]
- Accelerate via optimal relaxation [N-Ward, 2013]
- Accelerate via blocking and pavings [N-Tropp, 2013]
- Partially weighted sampling via SGD analysis [N-Sbrero-Ward, 2014]

- Accelerate Kaczmarz method via dimension reduction [Eldar-N, 2011]
- Accelerate via optimal relaxation [N-Ward, 2013]
- Accelerate via blocking and pavings [N-Tropp, 2013]
- Partially weighted sampling via SGD analysis [N-Sbrero-Ward, 2014]

$$\begin{bmatrix} ----- a_1 ---- \\ ----- a_2 ---- \\ \vdots & \vdots & \ddots & \vdots \\ ----- a_m ---- \end{bmatrix} \cdot \begin{bmatrix} x \\ x \\ ------ \end{bmatrix} = \begin{bmatrix} b[1] \\ b[2] \\ \vdots \\ b[m] \end{bmatrix}$$

- ① Start with initial guess x_0
- $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$ where $i = (k \mod m) + 1$
- Repeat (2)

- ① Start with initial guess x_0
- $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$ where $i = (k \mod m) + 1$
- Repeat (2)

$$\begin{bmatrix} ----- a_1 ---- \\ ----- a_2 ---- \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \cdot \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} b_{[1]} \\ b_{[2]} \\ \vdots \\ b_{[n]} \end{bmatrix}$$

- **1** Start with initial guess x_0
- Repeat (2)

$$\begin{bmatrix} ----- a_1 ---- \\ ----- a_2 ---- \end{bmatrix} \cdot \begin{bmatrix} x \\ x \end{bmatrix} = \begin{bmatrix} b[1] \\ b[2] \\ \cdot \end{bmatrix}$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots \quad b[n]$$

- **1** Start with initial guess x_0
- Repeat (2)

- ① Start with initial guess x_0
- 2 $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$ where i is chosen randomly
- Repeat (2)

- Start with initial guess x_0
- $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$ where i is chosen randomly
- Repeat (2)

Theorem [Strohmer-Vershynin]: Consistent case Ax = b

- ① Start with initial guess x_0
- ② $x_{k+1} = x_k + (b_p \langle a_p, x_k \rangle) a_p$ where $\mathbb{P}(p = i) = \frac{\|a_i\|_2^2}{\|A\|_F^2}$
- 3 Repeat (2)

Theorem [Strohmer-Vershynin]: Consistent case Ax = b

- Start with initial guess x_0
- ② $x_{k+1} = x_k + (b_p \langle a_p, x_k \rangle) a_p$ where $\mathbb{P}(p = i) = \frac{\|a_i\|_2^2}{\|A\|_F^2}$
- 3 Repeat (2)

- Let $R = ||A||_f^2 ||A^{-1}||^2$
- Then $\mathbb{E}||x_k x||_2^2 \le \left(1 \frac{1}{R}\right)^k ||x_0 x||_2^2$
- Well conditioned $A \to \text{Convergence in } \mathrm{O}(n)$ iterations $\to \mathrm{O}(n^2)$ total runtime.
- Better than O(mn²) runtime for Gaussian elimination and empirically often faster than Conjugate Gradient.

- Let $R = ||A||_f^2 ||A^{-1}||^2$
- Then $\mathbb{E}||x_k x||_2^2 \le \left(1 \frac{1}{R}\right)^k ||x_0 x||_2^2$
- Well conditioned $A \to \text{Convergence in } \mathrm{O}(n)$ iterations $\to \mathrm{O}(n^2)$ total runtime.
- Better than $O(mn^2)$ runtime for Gaussian elimination and empirically often faster than Conjugate Gradient.

- Let $R = ||A||_f^2 ||A^{-1}||^2$
- Then $\mathbb{E}||x_k x||_2^2 \le \left(1 \frac{1}{R}\right)^k ||x_0 x||_2^2$
- Well conditioned $A \to \text{Convergence in } \mathrm{O}(n) \text{ iterations } \to \mathrm{O}(n^2) \text{ total runtime.}$
- Better than $O(mn^2)$ runtime for Gaussian elimination and empirically often faster than Conjugate Gradient.

- Let $R = ||A||_{f}^{2} ||A^{-1}||^{2}$
- Then $\mathbb{E}||x_k x||_2^2 \le \left(1 \frac{1}{R}\right)^k ||x_0 x||_2^2$
- Well conditioned $A \to \text{Convergence in } \mathrm{O}(n) \text{ iterations } \to \mathrm{O}(n^2) \text{ total runtime.}$
- Better than $O(mn^2)$ runtime for Gaussian elimination and empirically often faster than Conjugate Gradient.

Inconsistent systems

We now consider the system Ax = b + e.

Theorem [N]

• Let Ax = b + e. Then

$$\mathbb{E}\|x_k - x\|_2 \le \left(1 - \frac{1}{R}\right)^{k/2} \|x_0 - x\|_2 + \sqrt{R} \|e\|_{\infty}$$

- This bound is sharp and attained in simple examples.
- Note can set $e = Ax^* b$ where x^* is LS solution.

Theorem [N]

• Let Ax = b + e. Then

$$\mathbb{E}\|x_k - x\|_2 \le \left(1 - \frac{1}{R}\right)^{k/2} \|x_0 - x\|_2 + \sqrt{R} \|e\|_{\infty}$$

- This bound is sharp and attained in simple examples.
- Note can set $e = Ax^* b$ where x^* is LS solution.

Theorem [N]

• Let Ax = b + e. Then

$$\mathbb{E}\|x_k - x\|_2 \le \left(1 - \frac{1}{R}\right)^{k/2} \|x_0 - x\|_2 + \sqrt{R} \|e\|_{\infty}$$

.

- This bound is sharp and attained in simple examples.
- Note can set $e = Ax^* b$ where x^* is LS solution.

Randomized Kaczmarz (RK) with noise

Figure Comparison between actual error (blue) and predicted threshold (pink). Scatter plot shows exponential convergence over several trials.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- Equivalently, one which maximizes: $\frac{|b[i] \langle a_i, x_k \rangle|}{\|a_i\|_2}$.
- We should pick the row which maximizes this. But can only afford to search through a constant number.
- Idea: Use dimension reduction (ala Johnson-Lindenstrauss) to approximate these terms and search through a large number of them.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- Equivalently, one which maximizes: $\frac{|b[i] \langle a_i, x_k \rangle|}{\|a_i\|_2}$.
- We should pick the row which maximizes this. But can only afford to search through a constant number.
- Idea: Use dimension reduction (ala Johnson-Lindenstrauss) to approximate these terms and search through a large number of them.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- Equivalently, one which maximizes: $\frac{|b[i]-\langle a_i,x_k\rangle|}{\|a_i\|_2}$.
- We should pick the row which maximizes this. But can only afford to search through a constant number.
- Idea: Use dimension reduction (ala Johnson-Lindenstrauss) to approximate these terms and search through a large number of them.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- Equivalently, one which maximizes: $\frac{|b[i] \langle a_i, x_k \rangle|}{\|a_i\|_2}$.
- We should pick the row which maximizes this. But can only afford to search through a constant number.
- Idea: Use dimension reduction (ala Johnson-Lindenstrauss) to approximate these terms and search through a large number of them.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- Equivalently, one which maximizes: $\frac{|b[i] \langle a_i, x_k \rangle|}{|a_i||_2}$.
- We should pick the row which maximizes this. But can only afford to search through a constant number.
- Idea: Use dimension reduction (ala Johnson-Lindenstrauss) to approximate these terms and search through a large number of them.

Initialize Set k=0, create a $d\times n$ Gaussian matrix Φ and set $\alpha_i=\Phi a_i$. Repeat the following $\mathrm{O}(n)$ times:

Select Select *n* rows with same prob. dist. Calculate

$$\gamma_i = \frac{|b[i] - \langle \alpha_i, \Phi x_k \rangle|}{\|\alpha_i\|_2},$$

and set $j = \operatorname{argmax}_{i} \gamma_{i}$.

Test For a_j and the first row a_l selected out of the n, explicitly calculate

$$\gamma_j^* = \frac{|b[j] - \langle a_j, x_k \rangle|}{\|a_j\|_2}$$
 and $\gamma_l^* = \frac{|b[l] - \langle a_l, x_k \rangle|}{\|a_l\|_2}$.

If
$$\gamma_I^* > \gamma_j^*$$
, set $j = I$.

Project Set

$$x_{k+1} = x_k + \frac{b[j] - \langle a_j, x_k \rangle}{\|a_j\|_2^2} a_j.$$

Update Set k = k + 1.

Accelerated RK via JL

[Eldar-N]

Fix an estimation x_k and denote by x_{k+1} and x_{k+1}^* the next estimations using the RKJL and the standard RK method, respectively. Set $\gamma_j^* = |\langle a_j, x_k \rangle|^2$ and reorder so that $\gamma_1^* \geq \gamma_2^* \geq \ldots \geq \gamma_m^*$. Then when $d = C\delta^{-2} \log n$,

$$\mathbb{E}\|x_{k+1} - x\|_2^2 \le \min \left[\mathbb{E}\|x_{k+1}^* - x\|_2^2 - \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 \right] \le \min \left[\mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 \right] \le \min \left[\mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + 2\delta, \quad \mathbb{E}\|x_{$$

where p_j are non-negative values satisfying $\sum_{j=1}^m p_j = 1$ and $p_1 \ge p_2 \ge ... \ge p_m = 0$.

Large initial computation but accelerated convergence

Accelerated RK via JL

[Eldar-N]

Fix an estimation x_k and denote by x_{k+1} and x_{k+1}^* the next estimations using the RKJL and the standard RK method, respectively. Set $\gamma_j^* = |\langle a_j, x_k \rangle|^2$ and reorder so that $\gamma_1^* \geq \gamma_2^* \geq \ldots \geq \gamma_m^*$. Then when $d = C\delta^{-2} \log n$,

$$\mathbb{E}\|x_{k+1} - x\|_2^2 \le \min \left[\mathbb{E}\|x_{k+1}^* - x\|_2^2 - \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 \right] \le \min \left[\mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 \right] \le \min \left[\mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + \sum_{j=1}^m \left(p_j - \frac{1}{m}\right)\gamma_j^* + 2\delta, \quad \mathbb{E}\|x_{k+1}^* - x\|_2^2 + 2\delta, \quad \mathbb{E}\|x_{$$

where p_j are non-negative values satisfying $\sum_{j=1}^m p_j = 1$ and $p_1 \ge p_2 \ge ... \ge p_m = 0$.

Large initial computation but accelerated convergence.

 ℓ_2 -Error (y-axis) as a function of the iterations (x-axis). The dashed line is standard Randomized Kaczmarz, and the solid line is the modified one, without a Johnson-Lindenstrauss projection. Instead, the best move out of the randomly chosen n rows is used. Note that we cannot afford to do this computationally.

 ℓ_2 -Error (y-axis) as a function of the iterations (x-axis) for various values of d with m=60000 and n=1000.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- What if we relax: $x_{k+1} = x_k + \gamma(b[i] \langle a_i, x_k \rangle)a_i$
- Can we choose γ optimally?
- Idea: In each "iteration," project once with relaxation optimally and then project normally.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- What if we relax: $x_{k+1} = x_k + \frac{\gamma}{(b[i] \langle a_i, x_k \rangle)} a_i$
- Can we choose γ optimally?
- Idea: In each "iteration," project once with relaxation optimally and then project normally.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- What if we relax: $x_{k+1} = x_k + \frac{\gamma}{(b[i] \langle a_i, x_k \rangle)} a_i$
- Can we choose γ optimally?
- Idea: In each "iteration," project once with relaxation optimally and then project normally.

- Recall $x_{k+1} = x_k + (b[i] \langle a_i, x_k \rangle)a_i$
- Since these projections are orthogonal, the optimal projection is one that maximizes $||x_{k+1} x_k||_2$.
- What if we relax: $x_{k+1} = x_k + \frac{\gamma}{(b[i] \langle a_i, x_k \rangle)} a_i$
- Can we choose γ optimally?
- Idea: In each "iteration," project once with relaxation optimally and then project normally.

- Randomly select two rows, a_s and a_r
- Perform initial projection: $y = x_k + \gamma (b[i] \langle a_i, x_k \rangle) a_i$ with γ optimal
- Peform second projection: $x_{k+1} = y + (b[i] \langle a_i, y \rangle)a_i$
- Repeat

- Randomly select two rows, a_s and a_r
- Perform initial projection: $y = x_k + \gamma(b[i] \langle a_i, x_k \rangle)a_i$ with γ optimal
- Peform second projection: $x_{k+1} = y + (b[i] \langle a_i, y \rangle)a_i$
- Repeat

- Randomly select two rows, a_s and a_r
- Perform initial projection: $y = x_k + \gamma(b[i] \langle a_i, x_k \rangle)a_i$ with γ optimal
- Peform second projection: $x_{k+1} = y + (b[i] \langle a_i, y \rangle)a_i$
- Repeat

- Randomly select two rows, a_s and a_r
- Perform initial projection: $y = x_k + \gamma(b[i] \langle a_i, x_k \rangle)a_i$ with γ optimal
- Peform second projection: $x_{k+1} = y + (b[i] \langle a_i, y \rangle)a_i$
- Repeat

Two-subspace Kaczmarz

Geometrically, we choose γ in such a way:

Two-subspace Kaczmarz

The optimal choice of γ in a single iteration is

$$\gamma = \frac{-\langle a_r - \langle a_s, a_r \rangle a_s, x_k - x + (b_s - \langle x_k, a_s \rangle) a_s \rangle}{(b_r - \langle x_k, a_r \rangle) ||a_r - \langle a_s, a_r \rangle a_s||_2^2}.$$

Two-Subspace Kaczmarz method

- Select two distinct rows of A uniformly at random
- $\mu_k \leftarrow \langle a_r, a_s \rangle$
- $y_k \leftarrow x_{k-1} + (b_s \langle x_{k-1}, a_s \rangle)a_s$
- $v_k \leftarrow \frac{a_r \mu_k a_s}{\sqrt{1 |\mu_k|^2}}$
- $\bullet \ \beta_k \leftarrow \frac{b_r b_s \mu_k}{\sqrt{1 |\mu_k|^2}}$
- $x_k \leftarrow y_k + (\beta_k \langle y_k, v_k \rangle)v_k$

Two-subspace Kaczmarz

The optimal choice of γ in a single iteration is

$$\gamma = \frac{-\langle a_r - \langle a_s, a_r \rangle a_s, x_k - x + (b_s - \langle x_k, a_s \rangle) a_s \rangle}{(b_r - \langle x_k, a_r \rangle) \|a_r - \langle a_s, a_r \rangle a_s \|_2^2}.$$

Two-Subspace Kaczmarz method

- Select two distinct rows of A uniformly at random
- $\mu_k \leftarrow \langle a_r, a_s \rangle$
- $\bullet \ y_k \leftarrow x_{k-1} + (b_s \langle x_{k-1}, a_s \rangle) a_s$
- $V_k \leftarrow \frac{a_r \mu_k a_s}{\sqrt{1 |\mu_k|^2}}$
- $\bullet \ \beta_k \leftarrow \frac{b_r b_s \mu_k}{\sqrt{1 |\mu_k|^2}}$
- $x_k \leftarrow y_k + (\beta_k \langle y_k, v_k \rangle)v_k$

Figure For coherent systems, the one-subspace randomized Kaczmarz algorithm (a) converges more slowly than the two-subspace Kaczmarz algorithm (b).

Two-Subspace Kaczmarz

Define the coherence parameters:

$$\Delta = \Delta(A) = \max_{j \neq k} |\langle a_j, a_k \rangle| \quad and \quad \delta = \delta(A) = \min_{j \neq k} |\langle a_j, a_k \rangle|. \quad (1)$$

Figure Randomized Kaczmarz (RK) versus two-subspace RK (2SRK). *A* has highly coherent rows with $\delta = 0.992$ and $\Delta = 0.998$.

Figure Randomized Kaczmarz (RK) versus two-subspace RK (2SRK). *A* has highly coherent rows with coherence parameters (a) $\delta = 0.837$ and $\Delta = 0.967$, (b) $\delta = 0.534$ and $\Delta = 0.904$, (c) $\delta = 0.018$ and $\Delta = 0.819$, and (d) $\delta = 0$ and $\Delta = 0.610$.

Recall the coherence parameters:

$$\Delta = \Delta(A) = \max_{j \neq k} |\langle a_j, a_k \rangle| \quad \text{and} \quad \delta = \delta(A) = \min_{j \neq k} |\langle a_j, a_k \rangle|. \quad (2)$$

Theorem [N-Ward]

Let b=Ax+e, then the two-subspace Kaczmarz method yields

$$\mathbb{E}\|x - x_k\|_2 \le \eta^{k/2} \|x - x_0\|_2 + \frac{3}{1 - \sqrt{\eta}} \cdot \frac{\|e\|_{\infty}}{\sqrt{1 - \Delta^2}},$$

where $D=\min\Big\{\frac{\delta^2(1-\delta)}{1+\delta},\frac{\Delta^2(1-\Delta)}{1+\Delta}\Big\}$, $R=m\|A^{-1}\|^2$ denotes the scaled condition number, and $\eta=\left(1-\frac{1}{R}\right)^2-\frac{D}{R}$.

Results

Recall the coherence parameters:

$$\Delta = \Delta(A) = \max_{j \neq k} |\langle a_j, a_k \rangle| \quad \text{and} \quad \delta = \delta(A) = \min_{j \neq k} |\langle a_j, a_k \rangle|. \quad (2)$$

Theorem [N-Ward]

Let b = Ax + e, then the two-subspace Kaczmarz method yields

$$\mathbb{E}\|x - x_k\|_2 \le \eta^{k/2} \|x - x_0\|_2 + \frac{3}{1 - \sqrt{\eta}} \cdot \frac{\|e\|_{\infty}}{\sqrt{1 - \Delta^2}},$$

where $D=\min\Big\{\frac{\delta^2(1-\delta)}{1+\delta}, \frac{\Delta^2(1-\Delta)}{1+\Delta}\Big\}$, $R=m\|A^{-1}\|^2$ denotes the scaled condition number, and $\eta=\left(1-\frac{1}{R}\right)^2-\frac{D}{R}$.

Results

Remarks

- 1. When $\Delta=1$ or $\delta=0$ we recover the same convergence rate as provided for the standard Kaczmarz method since the two-subspace method utilizes two projections per iteration.
- 2. The bound presented in the theorem is a pessimistic bound. Even when $\Delta=1$ or $\delta=0$, the two-subspace method improves on the standard method if any rows of A are highly correlated (but not equal).

Results

Remarks

- 1. When $\Delta=1$ or $\delta=0$ we recover the same convergence rate as provided for the standard Kaczmarz method since the two-subspace method utilizes two projections per iteration.
- 2. The bound presented in the theorem is a pessimistic bound. Even when $\Delta=1$ or $\delta=0$, the two-subspace method improves on the standard method if any rows of A are highly correlated (but not equal).

The parameter D

Figure A plot of the improved convergence factor D as a function of the coherence parameters δ and $\Delta \geq \delta$.

Generalization to more than two rows?

Randomized Block Kaczmarz method

Given a partition of the rows, T:

- Select a block τ of the partition at random
- $x_k \leftarrow x_{k-1} + A_{\tau}^{\dagger} (b_{\tau} A_{\tau} x_{k-1})$

The convergence rate heavily depends on the conditioning of the blocks $A_{\tau} \rightarrow$ need to control geometric properties of the partition.

Randomized Block Kaczmarz method

Given a partition of the rows, T:

ullet Select a block au of the partition at random

$$\bullet \ x_k \leftarrow x_{k-1} + A_{\tau}^{\dagger} (b_{\tau} - A_{\tau} x_{k-1})$$

The convergence rate heavily depends on the conditioning of the blocks $A_{\tau} \to \text{need}$ to control geometric properties of the partition.

Randomized Block Kaczmarz method

Given a partition of the rows, T:

- ullet Select a block au of the partition at random
- $\bullet \ x_k \leftarrow x_{k-1} + A_{\tau}^{\dagger} (b_{\tau} A_{\tau} x_{k-1})$

The convergence rate heavily depends on the conditioning of the blocks $A_{\tau} \rightarrow$ need to control geometric properties of the partition.

Randomized Block Kaczmarz method

Given a partition of the rows, T:

- ullet Select a block au of the partition at random
- $\bullet \ x_k \leftarrow x_{k-1} + A_{\tau}^{\dagger} (b_{\tau} A_{\tau} x_{k-1})$

The convergence rate heavily depends on the conditioning of the blocks $A_{\tau} \to \text{need}$ to control geometric properties of the partition.

Block Kaczmarz

Row paving

A (d, α, β) row paving of a matrix A is a partition $T = \{\tau_1, \dots, \tau_d\}$ of the row indices that verifies

$$\alpha \leq \lambda_{\min}(A_{\tau}A_{\tau}^*)$$
 and $\lambda_{\max}(A_{\tau}A_{\tau}^*) \leq \beta$ for each $\tau \in T$.

Theorem [N-Tropp]

Suppose A admits an (d, α, β) row paving T and that b = Ax + e. The convergence of the block Kaczmarz method satisfies

$$\mathbb{E}\|x_k - x\|_2^2 \le \left[1 - \frac{\sigma_{\min}^2(A)}{\beta d}\right]^k \|x_0 - x\|_2^2 + \frac{\beta}{\alpha} \cdot \frac{\|e\|_2^2}{\sigma_{\min}^2(A)}.$$
 (3)

Row paving

A (d, α, β) row paving of a matrix A is a partition $T = \{\tau_1, \dots, \tau_d\}$ of the row indices that verifies

$$\alpha \leq \lambda_{\min}(A_{\tau}A_{\tau}^*)$$
 and $\lambda_{\max}(A_{\tau}A_{\tau}^*) \leq \beta$ for each $\tau \in T$.

Theorem [N-Tropp]

Suppose A admits an (d, α, β) row paving T and that b = Ax + e. The convergence of the block Kaczmarz method satisfies

$$\mathbb{E}\|x_{k}-x\|_{2}^{2} \leq \left[1-\frac{\sigma_{\min}^{2}(A)}{\beta d}\right]^{k}\|x_{0}-x\|_{2}^{2} + \frac{\beta}{\alpha} \cdot \frac{\|e\|_{2}^{2}}{\sigma_{\min}^{2}(A)}. \quad (3)$$

Good row pavings [Bougain-Tzafriri]

For any $\delta \in (0,1)$, A admits a row paving with

$$d \le C \cdot \delta^{-2} ||A||^2 \log(1+n)$$
 and $1 - \delta \le \alpha \le \beta \le 1 + \delta$.

Theorem [N-Tropp]

Let A have row paving above with $\delta=1/2$. The block Kaczmarz method yields

$$\mathbb{E}\|x_k - x\|_2^2 \le \left[1 - \frac{1}{C\kappa^2(A)\log(1+n)}\right]^k \|x_0 - x\|_2^2 + \frac{3\|e\|_2^2}{\sigma_{\min}^2(A)}$$

Good row pavings [Bougain-Tzafriri]

For any $\delta \in (0,1)$, A admits a row paving with

$$d \le C \cdot \delta^{-2} ||A||^2 \log(1+n)$$
 and $1 - \delta \le \alpha \le \beta \le 1 + \delta$.

Theorem [N-Tropp]

Let A have row paving above with $\delta=1/2$. The block Kaczmarz method yields

$$\mathbb{E}\|x_k - x\|_2^2 \le \left[1 - \frac{1}{C\kappa^2(A)\log(1+n)}\right]^k \|x_0 - x\|_2^2 + \frac{3\|e\|_2^2}{\sigma_{\min}^2(A)}.$$

Theorem [Bougain-Tzafriri, Vershynin, Tropp]

A random partition of the row indices with $m \ge ||A||^2$ blocks is a row paving with upper bound $\beta \le 6 \log(1+n)$, with probability at least $1-n^{-1}$.

Theorem [Bourgain-Tzafriri, Vershynin, Tropp]

Suppose that A is incoherent. A random partition of the row indices into m blocks where $m \geq C \cdot \delta^{-2} \|A\|^2 \log(1+n)$ is a row paving of A whose paving bounds satisfy $1-\delta \leq \alpha \leq \beta \leq 1+\delta$, with probability at least $1-n^{-1}$.

Figure The matrix A is a fixed 300×100 matrix consisting of 15 partial circulant blocks. Error $||x_k - x||_2$ per flop count.

Figure The matrix A is a fixed 300×100 matrix with rows drawn randomly from the unit sphere, with d=10 blocks. Error $\|x_k - x\|_2$ over various computational resources.

Figure Shout out to going Hogwild – with versus without replacement for circulant matrix.

Recall SGD to minimize $F(x) = \mathbb{E}f_i(x)$ [N-Srebro-Ward]

SGD'

Input:

- Initial estimate $x_0 \in \mathbb{R}^d$
- ullet Degree of nonuniform sampling $\lambda \in [0,1]$
- Step size $\gamma > 0$
- Tolerance parameter $\delta > 0$
- ullet Access to the source distribution ${\cal D}$
- If $\lambda < 1$: bounds on the Lipschitz constants L_i ;

$k \leftarrow 0$

Repeat:

$$k \leftarrow k + 1$$
 Draw an index $i \sim \mathcal{D}^{(\lambda)}$

$$x_k \leftarrow x_{k-1} - \frac{\gamma}{w_{\lambda}(i)} \nabla f_i(x_{k-1})$$

Recall SGD to minimize $F(x) = \mathbb{E}f_i(x)$ [N-Srebro-Ward]

Convergence rate for SGD with partially biased sampling

Let f_i be continuously differentiable convex functionals, where each ∇f_i has Lipschitz constant L_i , and let $F(x) = \mathbb{E}_{i \sim \mathcal{D}} f_i(x)$ be μ -strongly convex. Set $\sigma^2 = \mathbb{E}_{i \sim \mathcal{D}} \|\nabla f_i(x_\star)\|_2^2$, where x_\star is the minimizer of

$$x_{\star} = \underset{x}{\operatorname{argmin}} F(x).$$

Then the iterate x_k satisfies

$$\mathbb{E}\|x_k - x_\star\|_2^2 \leq \left[1 - 2\gamma\mu(1 - \gamma\alpha)\right]^k \|x_0 - x_\star\|_2^2 + \frac{\gamma\beta\sigma^2}{\mu(1 - \gamma\alpha)},$$

where the expectation is with respect to the random sampling in the Algorithm, $\alpha=\alpha(\lambda)=\min\left(\frac{\overline{L}}{1-\lambda},\frac{\sup_i L_i}{\lambda}\right)$, and $\beta=\beta(\lambda)=\min\left(\frac{1}{\lambda},\frac{\overline{L}}{(1-\lambda)\inf_i L_i}\right).$

Want to minimize:

$$F(x) = \frac{1}{2} \sum_{i=1}^{n} (\langle a_i, x \rangle - b_i)^2 = \frac{1}{2} ||Ax - b||_2^2$$

- The components are $f_i = \frac{n}{2}(\langle a_i, x \rangle b_i)^2$
- The Lipschitz constants are $L_i = n||a_i||_2^2$, and the average Lipschitz constant is $\frac{1}{n}\sum_i L_i = ||A||_F^2$.
- The strong convexity parameter is $\mu=\frac{1}{\|A^{-1}\|^2}$, so that $K(A):=\overline{L}/\mu=\|A\|_F^2\|A^{-1}\|^2$
- The residual is $\sigma^2 = n \sum_i ||a_i||_2^2 |\langle a_i, x_* \rangle b_i|^2$.

Want to minimize:

$$F(x) = \frac{1}{2} \sum_{i=1}^{n} (\langle a_i, x \rangle - b_i)^2 = \frac{1}{2} ||Ax - b||_2^2$$

- The components are $f_i = \frac{n}{2}(\langle a_i, x \rangle b_i)^2$
- The Lipschitz constants are $L_i = n||a_i||_2^2$, and the average Lipschitz constant is $\frac{1}{n}\sum_i L_i = ||A||_F^2$.
- The strong convexity parameter is $\mu=\frac{1}{\|A^{-1}\|^2}$, so that $K(A):=\overline{L}/\mu=\|A\|_F^2\|A^{-1}\|^2$
- The residual is $\sigma^2 = n \sum_i ||a_i||_2^2 |\langle a_i, x_* \rangle b_i|^2$.

Want to minimize:

$$F(x) = \frac{1}{2} \sum_{i=1}^{n} (\langle a_i, x \rangle - b_i)^2 = \frac{1}{2} ||Ax - b||_2^2$$

- The components are $f_i = \frac{n}{2}(\langle a_i, x \rangle b_i)^2$
- The Lipschitz constants are $L_i = n||a_i||_2^2$, and the average Lipschitz constant is $\frac{1}{n}\sum_i L_i = ||A||_F^2$.
- The strong convexity parameter is $\mu=\frac{1}{\|A^{-1}\|^2}$, so that $K(A):=\overline{L}/\mu=\|A\|_F^2\|A^{-1}\|^2$
- The residual is $\sigma^2 = n \sum_i ||a_i||_2^2 |\langle a_i, x_* \rangle b_i|^2$.

Want to minimize:

$$F(x) = \frac{1}{2} \sum_{i=1}^{n} (\langle a_i, x \rangle - b_i)^2 = \frac{1}{2} ||Ax - b||_2^2$$

- The components are $f_i = \frac{n}{2}(\langle a_i, x \rangle b_i)^2$
- The Lipschitz constants are $L_i = n||a_i||_2^2$, and the average Lipschitz constant is $\frac{1}{n}\sum_i L_i = ||A||_F^2$.
- The strong convexity parameter is $\mu=\frac{1}{\|A^{-1}\|^2}$, so that $K(A):=\overline{L}/\mu=\|A\|_F^2\|A^{-1}\|^2$
- The residual is $\sigma^2 = n \sum_i ||a_i||_2^2 |\langle a_i, x_* \rangle b_i|^2$.

Want to minimize:

$$F(x) = \frac{1}{2} \sum_{i=1}^{n} (\langle a_i, x \rangle - b_i)^2 = \frac{1}{2} ||Ax - b||_2^2$$

- The components are $f_i = \frac{n}{2}(\langle a_i, x \rangle b_i)^2$
- The Lipschitz constants are $L_i = n||a_i||_2^2$, and the average Lipschitz constant is $\frac{1}{n}\sum_i L_i = ||A||_F^2$.
- The strong convexity parameter is $\mu=\frac{1}{\|A^{-1}\|^2}$, so that $K(A):=\overline{L}/\mu=\|A\|_F^2\|A^{-1}\|^2$
- The residual is $\sigma^2 = n \sum_i ||a_i||_2^2 |\langle a_i, x_* \rangle b_i|^2$.

Want to minimize:

$$F(x) = \frac{1}{2} \sum_{i=1}^{n} (\langle a_i, x \rangle - b_i)^2 = \frac{1}{2} ||Ax - b||_2^2$$

- The components are $f_i = \frac{n}{2}(\langle a_i, x \rangle b_i)^2$
- The Lipschitz constants are $L_i = n||a_i||_2^2$, and the average Lipschitz constant is $\frac{1}{n}\sum_i L_i = ||A||_F^2$.
- The strong convexity parameter is $\mu=\frac{1}{\|A^{-1}\|^2}$, so that $K(A):=\overline{L}/\mu=\|A\|_F^2\|A^{-1}\|^2$
- The residual is $\sigma^2 = n \sum_i ||a_i||_2^2 |\langle a_i, x_{\star} \rangle b_i|^2$.

Consider the relaxed Kaczmarz method:

$$x_{k+1} = x_k + c \cdot \frac{b_i - \langle a_i, x_k \rangle}{\|a_i\|_2^2} a_i \quad \mathbb{P}(i) = \|a_i\|_2^2 / \|A\|_F^2$$

Convergence rate for Kaczmarz with fully biased sampling

Set
$$e = Ax_* - b$$
, $a_{\min}^2 = \inf_i ||a_i||_2^2$, $a_{\max}^2 = \sup_i ||a_i||_2^2$, and $e_{\max}^2 = \sup_i e_i^2$. Then

$$\mathbb{E}\|x_k - x_\star\|_2^2 \le \left[1 - \frac{2c(1-c)}{K(A)}\right]^k \|x_0 - x_\star\|_2^2 + \frac{c}{1-c}K(A)\tilde{r},$$

with
$$\tilde{r} = (a_{\text{max}}^2 / a_{\text{min}}^2) \min \{e_{\text{max}}^2 / a_{\text{max}}^2, \|e\|_2^2 / \|A\|_F^2 \}$$
.

Consider the relaxed Kaczmarz method:

$$x_{k+1} = x_k + c \cdot \frac{b_i - \langle a_i, x_k \rangle}{\|a_i\|_2^2} a_i \quad \mathbb{P}(i) = \|a_i\|_2^2 / \|A\|_F^2$$

Convergence rate for Kaczmarz with fully biased sampling

Set
$$e = Ax_{\star} - b$$
, $a_{\min}^2 = \inf_i ||a_i||_2^2$, $a_{\max}^2 = \sup_i ||a_i||_2^2$, and $e_{\max}^2 = \sup_i e_i^2$. Then

$$\mathbb{E}||x_k - x_{\star}||_2^2 \leq \left[1 - \frac{2c(1-c)}{K(A)}\right]^k ||x_0 - x_{\star}||_2^2 + \frac{c}{1-c}K(A)\tilde{r},$$

with $\tilde{r} = (a_{\max}^2/a_{\min}^2) \min \{e_{\max}^2/a_{\max}^2, \|e\|_2^2/\|A\|_F^2\}$.

$$x_{k+1} = x_k + c \cdot \frac{b_i - \langle a_i, x_k \rangle}{\|a_i\|_2^2} a_i \quad \mathbb{P}(i) = \|a_i\|_2^2 / \|A\|_F^2$$

Convergence rate for Kaczmarz with fully biased sampling

$$\mathbb{E}\|x_k - x_{\star}\|_2^2 \leq \left[1 - \frac{2c(1-c)}{K(A)}\right]^k \|x_0 - x_{\star}\|_2^2 + \frac{c}{1-c}K(A)\tilde{r},$$

- Small step size *c* diminishes the convergence horizon.
- Tradeoff between convergence horizon and convergence rate.
- Non-uniform sampling.

Convergence rate for randomized Kaczmarz with uniform sampling

Let D be the diagonal matrix with terms $d_{j,j} = ||a_i||_2$ and set $e_w = D^{-1}(Ax_{\star}^w - b)$, where

$$x_{\star}^{w} = \underset{x}{\operatorname{argmin}} \frac{1}{2} \|D^{-1}(Ax - b)\|_{2}^{2}.$$

Then

$$\mathbb{E}\|x_{k} - x_{\star}^{w}\|_{2}^{2} \leq \left[1 - \frac{2c(1-c)}{K(D^{-1}A)}\right]^{k} \|x_{0} - x_{\star}^{w}\|_{2}^{2} + \frac{c}{1-c}K(D^{-1}A)r_{w},$$

$$(4)$$
where $r_{w} = \|e_{w}\|_{2}^{2}/n$.

Convergence rate for randomized Kaczmarz with uniform sampling

$$\mathbb{E}\|x_k - x_{\star}^w\|_2^2 \leq \left[1 - \frac{2c(1-c)}{K(D^{-1}A)}\right]^k \|x_0 - x_{\star}^w\|_2^2 + \frac{c}{1-c}K(D^{-1}A)r_w,$$

- Convergence to pre-conditioned system solution.
- Small step size still diminishes convergence horizon.
- Uniform sampling!

Convergence rate for hybrid randomized Kaczmarz

For any $\lambda \in [0,1]$,

$$\begin{split} \mathbb{E}\|x_{k} - x_{\star}\|_{2}^{2} &\leq \left(1 - \frac{2\gamma_{\min}(1 - \gamma_{\max}\alpha)}{\|A^{-1}\|^{2}}\right)^{k} \|x_{0} - x_{\star}\|_{2}^{2} \\ &+ \frac{\gamma_{\max}\beta a_{\max}n\|A^{-1}\|^{2}\|e\|_{2}^{2}}{(1 - \gamma_{\max}\alpha)}, \end{split}$$

where
$$a_{\min} = \min_i \|a_i\|_2^2$$
, $a_{\max} = \max_i \|a_i\|_2^2$, $\alpha = \min\left(\frac{\|A\|_F^2}{1-\lambda}, \frac{na_{\max}}{\lambda}\right)$, $\beta = \min\left(\frac{1}{\lambda}, \frac{\|A\|_F^2}{na_{\min}(1-\lambda)}\right)$, $\gamma_{\min} = \frac{c\lambda}{na_{\max}} + \frac{c(1-\lambda)}{\|A\|_F^2}$, and $\gamma_{\max} = \frac{c\lambda}{na_{\min}} + \frac{c(1-\lambda)}{\|A\|_F^2}$.

Allows for an alternative way to tradeoff.

Convergence rate for hybrid randomized Kaczmarz

For any $\lambda \in [0,1]$,

$$\begin{split} \mathbb{E}\|x_{k} - x_{\star}\|_{2}^{2} &\leq \left(1 - \frac{2\gamma_{\min}(1 - \gamma_{\max}\alpha)}{\|A^{-1}\|^{2}}\right)^{k} \|x_{0} - x_{\star}\|_{2}^{2} \\ &+ \frac{\gamma_{\max}\beta a_{\max}n\|A^{-1}\|^{2}\|e\|_{2}^{2}}{(1 - \gamma_{\max}\alpha)}, \end{split}$$

where
$$a_{\min} = \min_i \|a_i\|_2^2$$
, $a_{\max} = \max_i \|a_i\|_2^2$, $\alpha = \min\left(\frac{\|A\|_F^2}{1-\lambda}, \frac{na_{\max}}{\lambda}\right)$, $\beta = \min\left(\frac{1}{\lambda}, \frac{\|A\|_F^2}{na_{\min}(1-\lambda)}\right)$, $\gamma_{\min} = \frac{c\lambda}{na_{\max}} + \frac{c(1-\lambda)}{\|A\|_F^2}$, and $\gamma_{\max} = \frac{c\lambda}{na_{\min}} + \frac{c(1-\lambda)}{\|A\|_F^2}$.

Allows for an alternative way to tradeoff.

Can also consider "variant" of Kaczmarz method, SGD with $f_i(x) = \frac{n}{2}(\langle a_i, x \rangle - b_i)^2$, sampling uniformly $1 - \lambda$ proportion of the time.

Entries of A N(0,1) but last row N(0,100)

Entries of A N(0,1)

Can also consider "variant" of Kaczmarz method, SGD with $f_i(x) = \frac{n}{2}(\langle a_i, x \rangle - b_i)^2$, sampling uniformly $1 - \lambda$ proportion of the time.

Entries of A_{ik} N(0,j), large residual.

Entries of A_{ik} N(0,j), small residual.

For more information

E-mail:

• dneedell@cmc.edu

Web: www.cmc.edu/pages/faculty/DNeedell

References:

- Strohmer, Vershynin, "A randomized Kaczmarz algorithm with exponential convergence", J. Four. Ana. and App. 2009.
- Needell, "Randomized Kaczmarz solver for noisy linear systems", BIT Num. Math., 2010.
- Needell, Ward, "Two-subspace Projection Method for Coherent Overdetermined Systems", J. Four. Ana. and App., 2013.
- Needell, Tropp, "Paved with Good Intentions: Analysis of a Randomized Block Kaczmarz Method", Lin. Alg. App., 2014.
- Needell, Srebro, Ward, "Stochastic gradient descent and the randomized Kaczmarz algorithm", submitted.

