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Setup

Setup

Let Ax = b be an overdetermined, standardized, full rank system
of equations.
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Let Ax = b be an overdetermined, standardized, full rank system
of equations.

Goal

From A and b we wish to recover unknown x . Assume m≫ n.
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Method

Kaczmarz

The Kaczmarz method is an iterative method used to solve
Ax = b.

Due to its speed and simplicity, it’s used in a variety of
applications.
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Method

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i = (k mod m) + 1

3 Repeat (2)
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Geometrically

Denote Hi = {w : 〈ai ,w〉 = b[i ]}.
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Randomized Kaczmarz

Kaczmarz

1 Start with initial guess x0
2 xk+1 = xk + (b[i ]− 〈ai , xk〉)ai where i is chosen randomly

3 Repeat (2)
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Randomized Kaczmarz

Theorem [Strohmer-Vershynin]: Consistent case Ax = b

1 Start with initial guess x0

2 xk+1 = xk + (bp − 〈ap , xk〉)ap where P(p = i) =
‖ai‖

2
2

‖A‖2
F

= 1/m

3 Repeat (2)
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Randomized Kaczmarz (RK)

Theorem [Strohmer-Vershynin]

Let R = m‖A−1‖2 (‖A−1‖
def

= inf{M : M‖Ax‖2 ≥ ‖x‖2 for all x})

Then E‖xk − x‖22 ≤
(

1− 1
R

)k

‖x0 − x‖22
Well conditioned A→ Convergence in O(n) iterations →
O(n2) total runtime.

Better than O(mn2) runtime for Gaussian elimination and
empirically often faster than Conjugate Gradient.
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Randomized Kaczmarz (RK) with noise

System with noise

We now consider the system Ax = b + e.
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Randomized Kaczmarz (RK) with noise

Theorem [N]

Let Ax = b + e. Then

E‖xk − x‖2 ≤
(

1− 1

R

)k/2
‖x0 − x‖2 +

√
R‖e‖∞

.

This bound is sharp and attained in simple examples.
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Randomized Kaczmarz (RK) with noise
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Figure: Comparison between actual error (blue) and predicted threshold
(pink). Scatter plot shows exponential convergence over several trials.
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Even better convergence?

Recall xk+1 = xk + (b[i ]− 〈ai , xk〉)ai
Since these projections are orthogonal, the optimal projection
is one that maximizes ‖xk+1 − xk‖2.
What if we relax: xk+1 = xk + γ(b[i ]− 〈ai , xk〉)ai
Can we choose γ optimally?

Idea: In each “iteration,” project once with relaxation
optimally and then project normally.
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Even better convergence?

Two-subspace Kaczmarz

Randomly select two rows, as and ar

Perform initial projection: y = xk + γ(b[i ]− 〈ai , xk〉)ai with γ
optimal

Peform second projection: xk+1 = y + (b[i ]− 〈ai , y〉)ai
Repeat
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Two-subspace Kaczmarz

Geometrically, we choose γ in such a way:
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Two-subspace Kaczmarz

The optimal choice of γ in a single iteration is

γ =
−〈ar − 〈as , ar 〉as , xk − x + (bs − 〈xk , as〉)as〉

(br − 〈xk , ar 〉)‖ar − 〈as , ar 〉as‖22
.

Two-Subspace Kaczmarz method

Select two distinct rows of A uniformly at random

µk ← 〈ar , as〉
yk ← xk−1 + (bs − 〈xk−1, as〉)as
vk ← ar−µkas√

1−|µk |2

βk ← br−bsµk√
1−|µk |2

xk ← yk + (βk − 〈yk , vk〉)vk
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Two-Subspace Kaczmarz

(a) (b)

Figure: For coherent systems, the one-subspace randomized Kaczmarz
algorithm (a) converges more slowly than the two-subspace Kaczmarz
algorithm (b).
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Two-Subspace Kaczmarz

Define the coherence parameters:

∆ = ∆(A) = max
j 6=k
|〈aj , ak〉| and δ = δ(A) = min

j 6=k
|〈aj , ak〉|. (1)
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Figure: Randomized Kaczmarz (RK) versus two-subspace RK (2SRK). A
has highly coherent rows with δ = 0.992 and ∆ = 0.998.
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Two-Subspace Kaczmarz
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Figure: Randomized Kaczmarz (RK) versus two-subspace RK (2SRK). A
has highly coherent rows with coherence parameters (a) δ = 0.837 and
∆ = 0.967, (b) δ = 0.534 and ∆ = 0.904, (c) δ = 0.018 and ∆ = 0.819,
and (d) δ = 0 and ∆ = 0.610.
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Results

Recall the coherence parameters:

∆ = ∆(A) = max
j 6=k
|〈aj , ak〉| and δ = δ(A) = min

j 6=k
|〈aj , ak〉|. (2)

Theorem [N-Ward]

Let b = Ax + e, then the two-subspace Kaczmarz method yields

E‖x − xk‖2 ≤ ηk/2‖x − x0‖2 +
3

1−√η ·
‖e‖∞√
1−∆2

,

where D = min
{

δ2(1−δ)
1+δ , ∆

2(1−∆)
1+∆

}

, R = m‖A−1‖2 denotes the

scaled condition number, and η =
(

1− 1
R

)2 − D
R
.
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Results

Remarks

1. When ∆ = 1 or δ = 0 we recover the same convergence rate as
provided for the standard Kaczmarz method since the
two-subspace method utilizes two projections per iteration.
2. The bound presented in the theorem is a pessimistic bound.
Even when ∆ = 1 or δ = 0, the two-subspace method improves on
the standard method if any rows of A are highly correlated (but
not equal).
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The parameter D

Figure: A plot of the improved convergence factor D as a function of the
coherence parameters δ and ∆ ≥ δ.
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Generalization to more than two rows?
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Block Kaczmarz [N-Tropp]

Randomized Block Kaczmarz method

Given a partition of the rows, T :

Select a block τ of the partition at random

xk ← xk−1 + Aτ
†(bτ − Aτxk−1)

The convergence rate heavily depends on the conditioning of the
blocks Aτ → need to control geometric properties of the partition.
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Block Kaczmarz

Row paving

An (d , α, β) row paving of a matrix A is a partition
T = {τ1, . . . , τd} of the row indices that verifies

α ≤ λmin(AτA
∗
τ ) and λmax(AτA

∗
τ ) ≤ β for each τ ∈ T .

Theorem [N-Tropp]

Suppose A admits an (d , α, β) row paving T and that b = Ax + e.
The convergence of the block Kaczmarz method satisfies

E‖xk − x‖22 ≤
[

1− σ2
min(A)

βd

]k

‖x0 − x‖22 +
β

α
· ‖e‖

2
2

σ2
min(A)

. (3)
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Block Kaczmarz

Good row pavings [Bougain-Tzafriri, Tropp]

For any δ ∈ (0, 1), A admits a row paving with

d ≤ C · δ−2‖A‖2 log(1 + n) and 1− δ ≤ α ≤ β ≤ 1 + δ.

Theorem [N-Tropp]

Let A have row paving above with δ = 1/2. The block Kaczmarz
method yields

E‖xk − x‖22 ≤
[

1− 1

Cκ2(A) log(1 + n)

]k

‖x0 − x‖22 +
3‖e‖22
σ2
min(A)

.
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Block Kaczmarz

Theorem [Bougain-Tzafriri, Tropp]

A random partition of the row indices with m ≥ ‖A‖2 blocks is a
row paving with upper bound β ≤ 6 log(1 + n), with probability at
least 1− n−1.

Theorem [Bourgain-Tzafriri, Tropp]

Suppose that A is incoherent. A random partition of the row
indices into m blocks where m ≥ C · δ−2‖A‖2 log(1 + n) is a row
paving of A whose paving bounds satisfy 1− δ ≤ α ≤ β ≤ 1 + δ,
with probability at least 1− n−1.
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Block Kaczmarz

Figure: The matrix A is a fixed 300× 100 matrix consisting of 15 partial
circulant blocks. Error ‖xk − x‖2 per flop count.
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Block Kaczmarz

Figure: The matrix A is a fixed 300× 100 matrix with rows drawn
randomly from the unit sphere, with d = 10 blocks. Error ‖xk − x‖2 over
various computational resources.
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For more information

E-mail:

dneedell@cmc.edu

Web: www.cmc.edu/pages/faculty/DNeedell
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