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The Data Deluge



The Data Deluge

How can we handle all this data?

G Build hardware that can store and trasmit more data.

G We need the resources.
G There are fundamental limitiations to data storage.

G Design more efficient compression methods.

G Enter the world of: Compressive Sensing (CS)
G CS gives us efficient compression techniques: “Compressive”
G More surprisingly, we can acquire the compression without ever

having to acquire the entire object!: “Sensing”



A mathematical problem

1. Signal of interest f ∈Cd (=CN×N )

2. Measurement operator A :Cd →Cm.

3. Measurements y =A f +ξ.
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4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =A f +ξ.
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Assume f is sparse:

G In the coordinate basis: ‖ f ‖0
def= |supp( f )| ≤ s ¿ d

G In orthonormal basis: f = B x where ‖x‖0 ≤ s ¿ d

G In other dictionary: f = Dx where ‖x‖0 ≤ s ¿ d

In practice, we encounter compressible signals.



Digital Cameras



Digital Cameras



MRI



MRI

(Candès et.al.)



Pediatric MRI



Many more...

G Radar, Error Correction

G Computational Biology, Geophysical Data Analysis

G Data Mining, classification

G Neuroscience

G Imaging

G Sparse channel estimation, sparse initial state estimation

G Topology identification of interconnected systems

G ...



Background: Restricted Isometry Property

G A satisfies the Restricted Isometry Property (RIP) when there is δ< c

such that

(1−δ)‖ f ‖2 ≤ ‖A f ‖2 ≤ (1+δ)‖ f ‖2 whenever ‖ f ‖0 ≤ s.

G Gaussian or Bernoulli measurement matrices satisfy the RIP with high
probability when

m & s logd .

G Random Fourier and others with fast multiply have similar property:
m & s log4 d .



Reconstructing the signal f from
measurements y

F `1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g

‖g‖1 such that ‖A g − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖ f − f̂ ‖2 . ε+ ‖x −xs‖1p
s

.

This error bound is optimal. Speed is polynomial (linear programming).



CoSaMP

COSAMP (N-Tropp)

input: Sampling operator A, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p = A∗(y − Ax i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T = A†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i

Same guarantees under RIP as `1-minimization.



Super-resolution

F Goal: Produce high-resolution image from low-resolution samples

F Challenge: Model becomes y = Ax +e where A is a (non-random)
partial DFT. Goal: identify (support T of) sparse x.



Super-resolution

F Idea: Partial DFT has translation invariance: any restriction of a column
ak to s ≤ m consecutive elements gives rise to the same sequence, up to
an overall scalar

F Moral: A is not an arbitrary dictionary, it has structure we should not
ignore!



Super-resolution

F Idea: Partial DFT has translation invariance: any restriction of a column
ak to s ≤ m consecutive elements gives rise to the same sequence, up to
an overall scalar

F Moral: A is not an arbitrary dictionary, it has structure we should not
ignore!

Idea: Pick a number 1 < L < m and juxtaposes translated copies of y into
the Hankel matrix Y =Hankel(y), defined as

Y =


y0 y1 · · · ym−L−1

y1 y2 · · · ym−L
... ... ... ...

yL−1 yL · · · ym

 .

F Wonderful fact : Without noise, RanY =Ran AL
T



Super-resolution

F Recovery using this idea: Loop over all atoms ak and select those for
which

∠(aL
k ,RanY ) = 0.

From this set T , recovery by solving

AT x̂T = y, x̂T c = 0.

F Theorem [Demanet - N - Nguyen] : If m > 2|T | and y = Ax, then x̂ = x.



Super-resolution : Noise?

F With noise, we no longer have RanY =Ran AL
T

F Theorem [Demanet - N - Nguyen] : Let y = Ax +e with e ∼ N (0,σ2Im).
Then with high probability,

sin∠(aL
k ,RanY ) ≤ c ε1

for all indices k in the support set (and cε1 is explicitly computed).

F Extension: Choose atoms with small enough angles.



Super-resolution : Experimental Results
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Figure 1: Probability of recovery, from 1 (white) to 0 (black) for the superset method (left column) and

the matrix pencil method (right column). Top row: 2-sparse signal. Middle row: 3-sparse signal. Bottom row:

4-sparse signal. The plots show recovery as a function of the noise level (x-axis, log10σ) and the coherence

(y-axis, log10(1−µ)).



Partial Inversion

Can we adapt a method like CoSaMP to super-resolution?

COSAMP (N-Tropp)

input: Sampling operator A, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p = A∗(y − Ax i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T = A†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i



Partial Inversion

General model:

G S: downsampling matrix

G H : filtering (antialiasing) operation

G Ψ: sparsifying basis

G A = SHΨ: sampling operator

G y = Ax +e



Partial Inversion

256×256 example:

G SH : by shifting the filter kernel h = {0.1,0.2,0.4,0.2,0.1} by two from one
row to the next

G Ψ: Haar wavelet basis

G A = SHΨ: sampling operator

G y = Ax +e

Absolute values of A∗A.



PARTIAL INVERSION (Chen-Divekar-N)

input: y = Ax, return best s-sparse approximation x̂
initialize: x̂ ← A∗y ; I ← indices of the L-largest magnitudes of x̂
repeat

signal proxy: x̂I ← A†
I y

r ← y − AI x̂I

J ← I c

signal estimation: x̂ J ← A∗
J r

prune and update: I ← indices of the L-largest magnitude
components of x̂



Partial Inversion

F PartInv:

x̂I = A†
I y = A†

I (AI xI + AI c xI c )

= xI + (A∗
I AI )−1 A∗

I AI c xI c .

F CoSaMP:

x̂I = A∗
I y

= A∗
I AI xI + A∗

I AI c xI c

= xI + (A∗
I AI − I )xI + A∗

I AI c xI c



Partial Inversion

F Theorem [Chen- Divekar - N] Let x ∈CN be a s-sparse vector with
support set T satisfying

|xi | ≥ 3ε‖x‖2, ∀i ∈ T, (1)

for some fixed constant 0 < ε≤ 1
3
p

s
. Assume that the dictionary A satisfies

the following properties:

‖A∗
T1

AT1
xT1

‖2 ≥ (1−ε)2‖xT1
‖2, ∀ T1 ⊆ T (2)

‖AI‖ ≤C , ∀ |I | ≤ L (3)

‖A†
I‖ ≤C , ∀ |I | ≤ L (4)

‖AI A†
I AI c∩T‖ ≤ ε/C , ∀ |I | ≤ L. (5)

Then PartInv reconstructs the signal, x̂ = x in at most s iterations.



PartInv : Experimental Results

(a) (d)

(b) (e)

(c) (f)

Figure 2: Proportion of successes on Gaussian matrices using (a) PartInv, (b) CoSaMP
and (c) `1-minimization, and proportion of successes on correlated column subset matrices
using (d) PartInv, (e) CoSaMP and (f) `1-minimization for various values of δ = m

n ∈ (0,1)

(horizontal axis) and ρ = s
m ∈ (0,1) (vertical axis).



Even newer braches of CS



1-bit compressive sensing

G Measurements: y = sign(A f ) (extreme quantization)

G Noise: Random or adversarial bit flips

G Assumption: signal f lies in some (convex) set K

G f̂ = maxx〈y, Ax〉 s.t. x ∈ K

G (Plan-Vershynin): ‖ f̂ − f ‖2 . w(K )/
p

m

G Greedy methods for accurate recovery from optimal number of (e.g.
Gaussian) measurements [Baraniuk et al.]



1-bit compressive sensing

F In general, results are of the form:

‖ f̂ − f ‖2 .λ−c ,

where λ= m
s log(n/s) is the oversampling factor.

F New results [Baraniuk-Foucart-N-Plan-Wootters]: Provide a
reconstruction method to obtain

‖ f̂ − f ‖2 . e−λ,

(in preparation).



1-bit compressive sensing

F To do:

G Optimal greedy methods for recovery (what is optimal?)

G Methods for recovery when sparsity is w.r.t. aribtrary dictionary D

G Mixed models of quantization – unified framework for all precision



Adaptive measurement schemes

F Design measurement operator on the fly

G Fundamental limitations on improved recovery [Candès-Davenport]

G However, improvements still possible (such as reduced number of
measurements needed) [Aldroubi et al., Iwen-Tewfik, Indyk et al.]

G Adaptive measurement schemes for fixed sampling structures, total
variation, sparsity in dictionaries, average case results, ...



Adaptive measurement schemes

F Sampling from constrained measurements

G Certain constrained settings don’t afford improvements via adaptivity
(Davenport-N)

G Identify geometric properties of constraints that offer adaptive
improvements

G Design adaptive measurement schemes and recovery algorithms for
those that do



Thank you!

E-mail:
G dneedell@cmc.edu

Web:
G www.cmc.edu/pages/faculty/DNeedell
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