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The Data Deluge

How can we handle all this data?

<> Build hardware that can store and trasmit more data.

<> We need the resources.
<> There are fundamental limitiations to data storage.

<> Design more efficient compression methods.

<> Enter the world of: Compressive Sensing (CS)

<> CS gives us efficient compression techniques: “Compressive”

<> More surprisingly, we can acquire the compression without ever
having to acquire the entire object!: “Sensing”



A mathematical problem

1. Signal of interest f € C4(= CN*V)
2. Measurement operator «f : C¢ — C™.

3. Measurements y =« f +¢.

4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =« f +¢.

Assume f is sparse:

% In the coordinate basis: | fllo = |supp(f)| < s < d
<> In orthonormal basis: f = Bx where ||xllo<s<d

<> In other dictionary: f = Dx where | x|o<s< d

In practice, we encounter compressible signals.
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Many more...

<> Radar, Error Correction

<> Computational Biology, Geophysical Data Analysis

<> Data Mining, classification

<> Neuroscience

<> Imaging

<> Sparse channel estimation, sparse initial state estimation
<> Topology identification of interconnected systems

>



Background: Restricted Isometry Property

< of satisfies the Restricted Isometry Property (RIP) when thereis 6 < ¢
such that

Q=0 flla= Il flla= A+ fll whenever [[fllo=<s.

<> Gaussian or Bernoulli measurement matrices satisfy the RIP with high
probability when

m 2 slogd.

<> Random Fourier and others with fast multiply have similar property:
m > slog*d.



Reconstructing the signal f from
measurements y

4 /;-minimization [Candes-Romberg-Tao]

Let of satisty the Restricted Isometry Property and set:
f=argmin|gll; suchthat |«/g—yl,<¢,
8

where |¢|l» < €. Then we can stably recover the signal f:

Il — Xl

&

If=fll2Se+

This error bound is optimal. Speed is polynomial (linear programming).



CoSaMP

CoSAMP (N-Tropp)

input: Sampling operator A, measurements y, sparsity level s
initialize: Set x°=0, i = 0.
repeat

signal proxy: Set p = A*(y— Ax"), Q = supp(p.), T = QUsupp(x?).
signal estimation: Using least-squares, set b|r = Al.y and bl = 0.
prune and update: Increment i and to obtain the next approximation,
set x' = b;.

output: s-sparse reconstructed vector X = x°

Same guarantees under RIP as ¢;-minimization.



Super-resolution

Super-resolution

4 Goal: Produce high-resolution image from low-resolution samples

4 Challenge: Model becomes y = Ax + e where A is a (non-random)
partial DFT. Goal: identify (support T of) sparse x.



Super-resolution

4 |dea: Partial DFT has translation invariance: any restriction of a column
ai to s < m consecutive elements gives rise to the same sequence, up to
an overall scalar

4 Moral: A is not an arbitrary dictionary, it has structure we should not
ignore!



Super-resolution

4 Idea: Partial DFT has translation invariance: any restriction of a column
ay to s < m consecutive elements gives rise to the same sequence, up to
an overall scalar

4+ Moral: A is not an arbitrary dictionary, it has structure we should not
ignore!

|ldea: Pick a number 1 < L < m and juxtaposes translated copies of y into
the Hankel matrix Y = Hankel(y), defined as

( Yo Yyi o Ym-1L-1 \
Y = J{l J{z .an—L
\ Vi1 Yo o Ym

4+ Wonderful fact: Without noise, RanY = Ran A%,



Super-resolution

4 Recovery using this idea: Loop over all atoms a; and select those for
which
/(a;,RanY) =0.

From this set T, recovery by solving

ATJ%T =Y, J%Tc = 0.

4 Theorem [Demanet - N - Nguyen] : If m > 2|T| and y = Ax, then X = x.



Super-resolution : Noise?

4+ With noise, we no longer have RanY = Ran A%,

4+ Theorem [Demanet - N - Nguyen] : Let y = Ax+ e with e ~ N(0,0°1,,).
Then with high probability,

sinz(ai, RanY) < ce

for all indices k in the support set (and ce; is explicitly computed).

4+ Extension: Choose atoms with small enough angles.



Super-resolution : Experimental Results
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Figure 1: Probability of recovery, from 1 (white) to 0 (black) for the superset method (left column) and
the matrix pencil method (right column). Top row: 2-sparse signal. Middle row: 3-sparse signal. Bottom row:
4-sparse signal. The plots show recovery as a function of the noise level (x-axis, log,,o) and the coherence

(y-axis, log;, (1 — w)).



Partial Inversion

Can we adapt a method like CoSaMP to super-resolution?

CoSAMP (N-Tropp)

input: Sampling operator A, measurements y, sparsity level s
initialize: Set x°=0, i =0.
repeat

signal proxy: Set p = A*(y— Ax"), Q = supp(p.), T = QUsupp(x?).
signal estimation: Using least-squares, set b|r = Al.y and bl =0.
prune and update: Increment i and to obtain the next approximation,
set x' = b;.

output: s-sparse reconstructed vector X = x'




Partial Inversion

General model:

< §: downsampling matrix

<> H: filtering (antialiasing) operation
< W: sparsifying basis

< A= SHVY: sampling operator

> y=Ax+e



Partial Inversion

256 x 256 example:

<> SH: by shifting the filter kernel h =1{0.1,0.2,0.4,0.2,0.1} by two from one
row to the next

< W: Haar wavelet basis
< A=SHY: sampling operator
> y=Ax+e

Absolute values of A* A.



PARTIAL INVERSION (Chen-Divekar-N)

input: y = Ax, return best s-sparse approximation x
initialize: X — A*y; I — indices of the L-largest magnitudes of x
repeat

signal proxy: &; — Aly

r—y—Apx;

J—1I°

signal estimation: i; — Ajr

prune and update: [ — indices of the L-largest magnitude
components of x




Partial Inversion

4 Partlnv;

4 CoSaMP:

2= Aly = AN(Arxr+ Arexpo)

=x7+(A;A) T AL Apexe.

.72] = A;y
= A;A]x] + A;A[cxlc

= X5+ (A;A[— Dx;+ A}‘A[cxlc



Partial Inversion

4+ Theorem [Chen- Divekar - N] Let x € C" be a s-sparse vector with
support set T satisfying

|xi|23€”x”2) ViET) (1)

for some fixed constant 0 < e < ﬁg Assume that the dictionary A satisfies
the following properties:

| A5 Agxr, 1l = (1— €)%l x7, Iz, VT cT (2)
Al =C, VII[=L (3)
1A < C, VI|Il<L (4)
IA; Al Apenrll < €/C, v |Il<L. (5)

Then Partlnv reconstructs the signal, X = x in at most s iterations.



Partinv : Experimental Results
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Figure 2: Proportion of successes on Gaussian matrices using (a) Partinv, (b) CoSaMP
and (c) ¢:-minimization, and proportion of successes on correlated column subset matrices

using (d) Partinv, (e) CoSaMP and (f) ¢,-minimization for various values of 6 = ™ € (0,1)
(horizontal axis) and p = - € (0,1) (vertical axis).
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Even newer braches of CS




1-bit compressive sensing

<> Measurements: y = sign(Af) (extreme quantization)
<> Noise: Random or adversarial bit flips

<> Assumption: signal f lies in some (convex) set K

$ f=max.(y,Ax) st xe€K

% (Plan-Vershynin): | f — fll. < w(K)/v/m

< Greedy methods for accurate recovery from optimal number of (e.g.
Gaussian) measurements [Baraniuk et al.]



1-bit compressive sensing

4 In general, results are of the form:

1f—=fll. <A

— m i i
where A = STog(nTs) 1S the oversampling factor.

4 New results [Baraniuk-Foucart-N-Plan-Wootters]: Provide a
reconstruction method to obtain

If=fll.<e™?,

(in preparation).



1-bit compressive sensing

4 To do:

<> Optimal greedy methods for recovery (what is optimal?)
<> Methods for recovery when sparsity is w.r.t. aribtrary dictionary D

<> Mixed models of quantization — unified framework for all precision



Adaptive measurement schemes

4 Design measurement operator on the fly

<> Fundamental limitations on improved recovery [Candes-Davenport]

<> However, improvements still possible (such as reduced number of
measurements needed) [Aldroubi et al., lwen-Tewfik, Indyk et al.]

<> Adaptive measurement schemes for fixed sampling structures, total
variation, sparsity in dictionaries, average case results, ...



Adaptive measurement schemes

4 Sampling from constrained measurements

<> Certain constrained settings don’t afford improvements via adaptivity
(Davenport-N)

<> ldentify geometric properties of constraints that offer adaptive
improvements

<> Design adaptive measurement schemes and recovery algorithms for
those that do



Thank you!

E-mail:

<>

dneedell@cmc.edu

Web:

<>

www . cmc . edu/pages/faculty/DNeedell

References:

<>

<>

<>

E. J. Candés, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Communications on Pure and Applied Mathematics, 59(8):1207-1223, 2006.

E. J. Candés, Y. C. Eldar, D. Needell and P. Randall. Compressed sensing with coherent and redundant
dictionaries. Applied and Computational Harmonic Analysis, 31(1):59-73, 2010.

M. A. Davenport, D. Needell and M. B. Wakin. Signal Space CoSaMP for Sparse Recovery with
Redundant Dictionaries, IEEE Trans. Info. Theory, to appear.

D. Needell and R. Ward. Stable image reconstruction using total variation minimization. SIAM J.
Imaging Sciences, vol. 6, num. 2, pp. 1035-1058.

D. Needell and R. Ward. Near-optimal compressed sensing guarantees for total variation minimization,
IEEE Trans. Image Proc., iss. 99, 2013.

L. Demanet, D. Needell and N. Nguyen. Super-resolution via superset selection and pruning. SAMPTA
2013.

R. Giryes and D. Needell. Greedy Signal Space Methods for Incoherence and Beyond, Appl. Harmon.
Analysis, to appear.



