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So much data...

The

Economist

The data deluge

AND HOW TO HANDLE IT: A 14-PAGE SPECIAL REPORT

0bama the warrior

Misgoverning Argentina

The economic shift from West to East
Genetically modified crops blossom
The right to cat cats and dogs




So much do’ro...




So much data...
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Systems to handle big data might be this generation’s
moon landing

Apr.1,2012 - 9:00 PM PST




ow can we handle all this
datae

Option 1 : Build bigger computing systems
* We need the resources
% Fundamental limitations
“ Wasteful (resources, energy, cost, ...)




ow can we handle all this
datae

¥

3 MB of infernet data transfer = boiling one cup of water

(https://www.katescomment.com/energy-of-downloads/)




ow can we handle all this

datae

Option 2 : Design more efficient data analysis
methods

Data scientists are the new rock stars of IT

“Of course, I don't
even get out of bed for
less than a petabyte”



Compressed sensing
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1-bit compressed sensing

% Store only the first bit — the SIGN of each measurement
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1-bit compressed sensing

% Store only the first bit — the SIGN of each measurement

Geometric intuition

X




1-bit compressed sensing

% Store only the first bit — the SIGN of each measurement

Geometric intuition

X

Sn—l

% Remedy: Use “dithers” to estimate the norm of x

yi = sign({(aj, x) — 77)




Moral:

* One-bit (binary) data is as efficient as it
gefts

It may still contain enough “information”
| about the signal to perform inference
» fasks 2
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Problem: classification

CLUSTERING CLASSIFICATION

* Datais not labeled o « Labeled data points

= Group points that are “close” to = Wanta “rule” that assigns labels
each other to new points

= Identify structure or patterns in « Supervised learning
data

= Unsupervised learning
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Problem: reality i

(c) WikiDoc (t-SNE) (d) WikiDoc (LargeVis)

(Tang etal. 2016)




Background: SVM

Linear SVM Demo
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Background: SVM
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Background: Deep Learning

Patterns of Local [gSrtts
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Our goals

Design classification scheme that:

“ Uses binary data l

% Is simple and efficient

% Uses layers in an interpretable way
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Notation

% X . nxp training data matrix (data in columns)
A . mxn (random) matrix

% Q =sign(AX) : mxp binary training data

“ G : # of classes

“ b : p training labels (1-G)

L : # of layers in our design




Main ided

¢ Each row of A corresponds to a hyperplane

< Each binary measurement Q; indicates on i
which side of the i hyperplane data point X; lies

- “ If we gather enough of this info for all the
training data, we can use it to predict the class
label for a new test point x




Single layer

 All the hyperplane information in Q is enough

* Train: 1 :
8 « Test:1 |
gl * Train:2|
4
2

x Test:2 |
* Train: 3 :

For a new point x, simply
compare its sign pattern
with those of the training
points and choose the
label it matches the most
often




Multiple layers

<+ What about?¢
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For ANY hyperplane,
there are both red and

blue on atf least one side
of it




Multiple layers

“ Now PAIRS of hyperplanes do the trick

For a new point x, simply
compare its sign pattern
for hyperplane PAIRS with
those of the training
points and choose the
label it matches the most
often




Multiple layers

What about higher dimensionse

% We continue this strategy to build layers, the 1"
layer corresponding to I-tuples of hyperplanes

% For simplicity (and computation), we consider m 7
I-tuples at each layer, selected randomly from
all ("Z") possible

% For a new test point x, we use the sign patterns
across all layers for classification




Using all layers

How to integrate the info from all layers?

1 :layer
i:indexfrom1tom 1

% Mei: the set of 1 indices indicating which

l hyperplanes are selected in the it 1-tuple

P < 1 : a possible sign pattern of 1 +/- 1s

% g .aclassindex (from 1 to G)

. . the # of fraining points from the g™ class

gl

having sign pattern t from the hyperplanes in Ag,i




Using all layers

< Pyt : the # of training points from the g™ class
having sign pattern t from the hyperplanes in Ay ;

G
Pglt 2 _j—1 Pt = Pjjel

r(l,i,t,g) =

G
Ey —1 Pyt Zj:l Py




Using all layers

. - the # of training points from the g™ class
hovmg sign pattern t from the hyperplanesin Ay,

P
r(lyist,g) = —=2

G
Zg 1| — ]|t|

Zg =1 ]It z] 1 ]lt

I_f

fraction of training points in class
g out of all points with pattern t




Using all layers

gt - the # of training points from the g™ class
having sign pattern t from the hyperplanes in Ay ;

G
lyit,g) = Poie 2521 1Pgie = Pl
,r.( 727 7g) - G G

ijl let Zj:l Pj|t

4

fraction of fraining points in class gives more weight to group

g out of all points with pattern t g when its size is much
different than others with
same sign pattern




Our method: training

Algorithm 1 Training

input: binary training data @, training labels b, number of classes G, number of layers L

for ¢ from 1 to L, i from 1 to m do
select: Randomly select Ag; C [m], [Agi| =¢
determine: Determine the 7;; € N unique column patterns in QM
for ¢ from 1 to T ;, g from 1 to G do
compute: Compute r(¢,i,t,g) by (1)
end for
end for

* “For each layer, pick the I-tuples and then
compute all values of r(Li,t,g)”




Our method: testing

Algorithm 2 Classification

input: binary data ¢, number of classes G, number of layers L, learned parameters r(¢,1,t, g),
Ty,i, and Ag; from Algorithm 1

initialize: 7(g) =0forg=1,...,G.
for 7 from 1 to L, ¢ from 1 to m do |
identify: Identify the pattern t* € [T};] to which ¢"¢i corresponds
for g from 1 to G do
update: 7(g) =7(9) +r(l,i,t*, g)
end for

’ end for i
scale: Set 7(g) = %;%) forg=1,....,G

.....

% “For a new point x with sign pattern t*, compute

the sum of all r(1,i,t*,g) for each class g and then
assign the label g which has the largest sum.”




Results (L=1
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Results (L=4

2t -":‘ - ey s
1 f g O
.“-.- - » = g
0 L ..4:". < 4’. ".-"L’. §
* ‘-. . 8
¥ L 1
!p.:.'l‘:,-. :,: g 0.96' s > .
e N z : : : | —e—25 Training per Group
: 0.955f - : i | —— 50 Training per Groug|:
e |==75 TrainingperGroup_l

: : : ' 40 60 80 100 120 140
-1 0 1 2 3 4 Number of Measurements (m)

8




Results (L=5
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Training Data
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Results (L=5
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Results (L=5) )
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Ag|t - the angle of
class g with sign
patftern t for the ith 1 -
tuple in layer 1

G

j=1 |[Agle — Ajel
G G

Zj:l Ajlt ijl Ajlt




Theory

A, =046,

Theorem 1. Let the classes G1 and G be two cones in R? defined by angular measures Ay and
Ao, respectively, and suppose regions of the same angular measure have the same density of training
points. Suppose Ay = As, 01 = 05, and Ao + Ay + As < w. Then, the probability that a data point
x € G1 gets classified in class G1 by Algorithms 1 and 2 using a single layer and a measurement
matriz A € R™*2 with independent standard Gaussian entries is bounded as follows,

~ m  m m m m m A\ [ Ay Frethie
]P’[bz—l]Zl—Z Z Z ZZ (j,kl,ol,k1,02,k2ak) (T) (%)

J=0ky 9,=0k; 5,=0k2=0 k=0
j+k1,91 +k1,02 +k2+k=m, k1,92 29(j+k1,91 )

§ (%)’*2 <7r—2A7:—A12)k. 3)




Theory

A, =0,+6,

Theorem 1. Let the classes G1 and G be two cones in R? defined by angular measures Ay and
Ao, respectively, and suppose regions of the same angular measure have the same density of training
points. Suppose Ay = As, 01 = 05, and Ao + Ay + As < w. Then, the probability that a data point
x € G1 gets classified in class G1 by Algorithms 1 and 2 using a single layer and a measurement
matriz A € R™*2 with independent standard Gaussian entries is bounded as follows,

- m m m m m m Al J Ay k1,0, +k1,0,
]P)bx B 1] = b Z Z Z Z Z (]a k1,01,k1,02,k2,k) (T) <%)

7=0 k1’01 =0 k1’92 =0 ko=0 k=0
J+k1,0, +k1,05 +ka+k=m, k1,9, >9(j+k1,6,)

§ (%)"2 <W—2A;—A12)k. 3)
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Take-away

< Simple classification from binary data
« Efficient storage of the data l
« Efficient and simple algorithm

<« Theoretical analysis possible
« Already competes with state of the art

<« Future work
<« Dithers to allow for more complicated
geometries?
« Theoretical analysis of the discrete case?
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— Needell, Saab, Woolf




