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Problem Background

Setup

1 Suppose x is an unknown s-sparse signal in R
d .

‖x‖0
def

= | supp(x)| ≤ s ≪ d .

2 Design measurement matrix Φ : R
d → R

m.

3 Collect noisy measurements u = Φx + e.
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4 Problem: Reconstruct signal x from measurements u
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Problem Background

Designing an algorithm
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Important Questions

What kind(s) of measurement matrices?

How many measurements needed?

Are the guarantees uniform?

Is algorithm stable?

Fast runtime?
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Greedy Methods

Orthogonal Matching Pursuit

Idea

Noiseless case: When Φ is (sub)Gaussian, y
def

= Φ∗u = Φ∗Φx

is a good approximation to x .

At each iteration, select largest component of y to be in
support.

Support of x ⇒ x .

Theorem (Gilbert-Tropp)

When Φ is (sub)Gaussian with m & s log d , OMP correctly
recovers each fixed signal with high probability.
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Greedy Methods

OMP: Good case
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Greedy Methods

OMP: Bad case
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Restricted Isometries

Restricted Isometry Property

The sth restricted isometry constant of Φ is the smallest δs

such that

(1 − δs)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δs)‖x‖2 whenever ‖x‖0 ≤ s.

For Gaussian or Bernoulli measurement matrices, with high
probability

δs ≤ c < 1 when m & s log d .

Random Fourier and others with fast multiply have similar
property.

Convex optimization methods use the RIP and provide
uniform and stable guarantees, but lack the speed of the
greedy approach.
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Restricted Isometries

Gap in the approaches

Convex Opt. OMP

Uniform? yes no

Stable? yes no

Runtime? (LP) O(smd)
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Regularized OMP

Insight of Regularized OMP - Needell, Vershynin

The RIP guarantees that every s columns of Φ is close to an
orthonormal system.

Thus y = Φ∗Φx is locally like x .

Why not choose the s largest components of y , instead of the
largest?

Allow ourselves to make mistakes, as long as we don’t make
too many.

A regularization step is needed to ensure the indentified
energy translates to identified support.

⇒ use RIP in a greedy algorithm!
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Regularized OMP

OMP’s Bad Case:
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Regularized OMP

ROMP Algorithm

ROMP(Φ, u, s)
Input: Measurement matrix Φ, noisy measurements u, sparsity level s

Output: Index set I containing support of x with |I | ≤ 2s.

I = ∅, r = u { Initialization }
while |I | < 2s or s times

Identify Choose a set J of the s biggest coordinates in magnitude of the observation
vector y = Φ∗r , or all of its nonzero coordinates, whichever set is smaller.

Regularize Among all subsets J0 ⊂ J with comparable coordinates:

|y(i)| ≤ 2|y(j)| for all i, j ∈ J0,

choose J0 with the maximal energy ‖y|J0‖2.

Update Add the set J0 to the index set: I ← I ∪ J0, and update the residual:

w = argmin
z∈RI

‖u − Φz‖2; r = u − Φw.
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Regularized OMP

How ROMP works:
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Regularized OMP

How ROMP works:
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Iteration Invariant

The Key Idea

We show that the following holds at each iteration:

Each iteration selects at least one coordinate.

All the selected coordinates have not been selected previously.

For each incorrect coordinate chosen, a correct one is also
chosen.
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Guarantees

Theorem: Needell-Vershynin

For any measurement matrix with Restricted Isometry constant
δ8s ≤ c/

√
log s, ROMP approximately reconstructs any arbitrary

signal x from its noisy measurements u = Φx + e in at most s

iterations:

‖x̂ − x‖2 ≤ C
√

log s
(

‖e‖2 +
‖x − xs‖1√

s

)

.

Breakthrough

ROMP is the first greedy algorithm with strong guarantees similar
to those of convex optimization methods! Note also that ROMP
requires no prior knowledge about the error vector e.
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Answering the questions

Important Questions

1 What kind(s) of measurement matrices?

Any that satisfy RIP (Generic)

2 How many measurements needed?

Approximately s log s log d

3 Are the guarantees uniform?

Uniform guarantees (via RIP)

4 Is algorithm stable?

Is stable.

5 Fast runtime?

Runtime is O(smd).
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Figure: Sparse signals with noiseless measurements.
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Figure: Sparse flat signals with Gaussian matrix.
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Gap in the approaches

Convex Opt. OMP

Uniform? yes no

Stable? yes no

Runtime? (LP) O(smd)
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Bridging the Gap

Convex Opt. ROMP OMP

Uniform? yes yes no

Stable? yes yes no

Runtime? (LP) O(smd) O(smd)
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Finishing remarks

The logarithmic term log s appears both in the RIP and in the
error bounds.

Although ROMP posesses the main ideal properties, it is not
entirely optimal because of the log factor.

Compressive Sampling Matching Pursuit (CoSaMP) by
Needell-Tropp removes the logarithmic term and provides
truly optimal results.

Both algorithms are efficient in practice.
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Thank you

For more information

E-mail:

dneedell@math.ucdavis.edu

romanv@umich.edu

Web: http://www.math.ucdavis.edu/∼dneedell
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