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The mathematical problem (notation)

<> Wish to construct high-resolution image x € CV*¥ from low resolution
yeCr
< Model: y=SHx+n

$ SeC"*N': downsampling matrix
$ He CNV*N': filtering (antialiasing) matrix
<> 1: Sensor noise
<> Formulation: x=%¥c¢
$ W e CV N sparsifying basis (ONB or frame)
< y=SH¥Yc+n=®c+n

<> Problem: Reconstruct signal ¢ from measurements y



Sampling matrix ®

4+ © tyically assumed to be random/incoherent/RIP

4 Here, ® has structure and correlated columns

<> Assume H imperfect filter — ® preserves enough high frequency info
<> Hope: SH and ¥ have sufficient incoherency

<> For typical sparsifiers ¥, ® has spatial/structured incoherence



Sampling matrix ©

4+ V¥: Haar basis, SH a 128 x 256 downsampler and filter

Figure 1: Absolute values of ®*®.

Filtered wavelet basis correlated with spatially overlapping bases, but
uncorrelated with spatially distant ones.



Sampling matrix structure

4+ General problem: Sparse reconstruction from sampling operator with
groups of correlated atoms

4+ Not necessarily due to some redundant dictionary
4 How to exploit such structure?

4+ Simple modification of existing greedy algorithms?



CoSaMP

CoSAMP (N-Tropp)

input: Sampling operator ®, measurements y, sparsity level s
initialize: Set x°=0, i =0.
repeat

signal proxy: Set p = ®*(y — ®x'), Q = supp(poy), T = QUsupp(x?).
signal estimation: Using least-squares, set b|r = cpTTy and b|7c =0.
prune and update: Increment i and to obtain the next approximation,
set x’ = b,.

output: s-sparse reconstructed vector X = x!




Partial Inversion

PARTINV ( Divekar-N)

input: Sampling operator ®, measurements y, sparsity level s
initialize: ¢*=®*y, Q =supp(c?), i=0
repeat

signal proxy: Set ¢ =®|y, r = y—dqcl, T=Q°
signal estimation: ¢} = ®.r.

prune and update: Set Q = supp(c!), increment i.
output: s-sparse reconstructed vector ¢ = ¢!




Motivation

4 Partlnv;

A

Co = DLy =cq+ (D)D) DfDecqe.
4+ CoSaMP:

Co=Dny = P5Dqcq +PoDqccae = cq+ (PoDq — I)cq + DLPecqe
4+ High mutual interference whereas (®;;®q) "' can be controlled by tuning
1Ql (=3).
4+ Improved error when Q and Q¢ sufficiently uncorrelated.

4 Better estimate — more accurate QQ — better estimate.



Experiments
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Figure 2: Proportion of successes on Gaussian matrices using (a) Partinv, (b) CoSaMP
and (c) ¢1-minimization, and proportion of successes on correlated column subset matrices
using (d) Partinv, (e) CoSaMP and (f) ¢,-minimization for various values of § = ]‘—]\f € (0,1)

(horizontal axis) and p =

4 € (0,1) (vertical axis).
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Wavelet tree structured sparsity

<> Suppose Q is index set of wavelet basis belonging to a tree rooted at a
coarse scale.

< Set 20 = CI)SJ/ = (I)S(DQCQ + q);zq)QCCQC.

< Q and Q¢ uncorrelated — second term small
< cq has non-zero entries & () correlated — first term large

< Therefore, so =3 ;cqlz;l @ good proxy for strength of non-zeros in tree
Q.



Partinv for wavelet tree structured sparsity

PARTINV Il ( Divekar-N)

input: Sampling operator ®, measurements y, sparsity level s, # trees ¢
initialize: *=®*y, i=0
*Foreach j=1...t:5;,— ¥ Ic;

leT;
* Selection: Q — indices of columns in the sets with the largest s;, to
include at least s

repeat
signal proxy: Set ¢, =@y, r=y—®qcl, T=0Q°
signal estimation: c.. = ®}r.
prune and update: Repeat steps *, increment i.

output: s-sparse reconstructed vector ¢ = ¢!




Experiments
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Figure 3: Proportion of successes with nonzero coefficients concentrated on wavelet
tfrees from (a) ¢,-minimization and (b) Partinv. Daubechies-5 wavelet basis using 32 x 32
patches with 5 levels of decomposition, using t = 49 tree sets.



More

4 Theoretical Resulis?

< Need to control (®}®;)!

<> Can bound for certain signal/sampling schemes
4 Can adapt to other sparsity structures

<> Block

<> Level sets



Thank you!
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Web:
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