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Abstract— We analyze a block Gaussian version of
a well-known Kaczmarz iterative solver. The Kaczmarz
method is one of the most popular methods for solving
large-scale over-determined linear systems due to its speed
and simplicity. The block Gaussian version enjoys the
regularization properties of Gaussian sketching, combined
with the accelerated convergence of the block versions
of the method. We prove that the method converges to
the solution exponentially fast in expectation, and benefits
from the non-trivial size of the block, regardless of the
structure of the original system. We also provide numerical
experiments supporting our theoretical analysis of the
method.

I. INTRODUCTION

The Kaczmarz method [5] is an iterative method
for solving large-scale over-determined linear systems.
Being simple, efficient and well-adapted to the large
amounts of data (due to its iterative nature), the Kacz-
marz method is widely used in a variety of applications,
from image reconstruction to signal processing [13], [7],
[3]. Given a consistent system of linear equations of the
form

Ax = b, (I.1)

the original Kaczmarz method starts with some initial
guess x0, and then iteratively projects the previous
approximation xk onto the solution spaces of the next
equation in the system. Namely, if a1, . . . , am ∈ Rn are
the rows of A, then the k-th step of the algorithm is

xk = xk−1 +
bi − 〈ai, xk−1〉
‖ai‖2

ai,

where b = (b1, . . . , bn) ∈ Rm is the right hand side
of the system, i = k mod m and xk−1 ∈ Rn is
the approximation of a solution x∗ obtained in the
previous step. The process continues until it triggers an
appropriate convergence criterion.

To provide theoretical guarantees for the convergence
of the method, Strohmer and Vershynin [14] proposed to
choose the next row ai at random with the probabilities

weighted proportionally to the L2 norms of the rows ai.
The authors have shown that this randomized Kaczmarz
algorithm is guaranteed to converge exponentially in
expectation, namely,

E ‖xk − x∗‖22 ≤
(
1− 1

R

)k
‖x0 − x∗‖22, (I.2)

where x∗ is the solution of the system (I.1) and R is a
constant depending only on the matrix A, namely, R =
‖A‖2F /s2min(A).

Here and further, we denote by smin(A) and smax(A)
the smallest and largest singular values of the matrix
A (that is, eigenvalues of the matrix

√
A∗A). Then,

‖A‖F := trace(
√
A∗A) (Frobenius, or Hilbert-Shmidt,

norm of the matrix) and ‖A‖ := sup‖x‖2=1 ‖Ax‖2
(operator norm of the matrix). Moreover, we always
assume that the matrix A has full column rank, so that
smin(A) > 0 and the convergence rate is non-trivial.

There is a variety of extensions and refinements of
the first randomized Kaczmarz method. They include
specializations of the method to some other classes of
problems (like solving inconsistent linear systems [8],
phase retrieval [15], stochastic gradient descent [11],
etc); improvements in the weighting of the rows (from
the one based on ‖ai‖2 to some better “optimal” prob-
abilities, see, e.g., [2]), and new hybrid methods based
on Kaczmarz [6]. We omit a detailed discussion of such
related work but refer the reader to those mentioned and
others therein.

A. Block Kaczmarz and sketch-and-project ideas

The extension that will be of our major interest
throughout the paper is a version of the Kaczmarz
algorithm that uses blocks of the rows for iterative
projections (rather than individual rows one by one).
Namely, the k + 1-st iteration has the form

xk+1 = xk + (Aτ )
†(bτ −Aτxk),



where Aτ and bτ denote the restriction onto the (row)
indices from the subset τ ⊂ {1, . . . ,m} and (Aτ )

†

denotes the Moore-Penrose inverse of the matrix Aτ .
This framework was initially proposed by Elfving [4],

and its randomized version was presented and analyzed
in the paper by Needell and Tropp [9]. In the randomized
version, the matrix A is split into several row blocks, and
at each iteration one of these blocks is chosen uniformly
at random with replacement. The authors prove the
exponential convergence of the method with a strong
convergence constant,

E ‖xk−x∗‖22 ≤
(
1− s2min(A)

C‖A‖2 log(m+ 1)

)k
‖x0−x∗‖22,

if we manage to choose a “good” row block partition,
and under an assumption that all the rows are standard-
ized, namely, ‖ai‖2 = 1; see [9] for details.

Although the existence of this “good” partition is
theoretically guaranteed, it is not always straightforward
how to find such partition (e.g., if A has coherent rows).
However, experimental evidence shows that the block
Kaczmarz method still exhibits fast convergence even
in these cases. This observation is especially interesting
since coherent matrices are precisely the examples for
which standard randomized Kaczmarz does not perform
well (as projections at each step follow roughly the
same direction, which might not be a direction toward
the true solution x∗). Some theoretical analysis of this
improvement for blocks of size two is available in [10].

A unified view on both regular and block Kaczmarz
methods, along with many other randomized iterative
solvers, was proposed by Gower and Richtárik in [2].
The main idea of their sketch-and-project framework is
the following. One can observe that the random selection
of a row (or a row block) can be represented as a
sketch, that is, left multiplication by a random vector
(or a matrix), thereby pre-processing every iteration of
the method, which is represented by a projection onto
the image of the sketch.

Thus, the iteration can be written as

xk+1 = (Id−(STA)†STA)xk + (STA)†ST b, (I.3)

where S is the sketch matrix, taken from some random
matrix model at each step. For brevity, we will denote
AS := STA.

Clearly, in the case of block Kaczmarz, sketch ma-
trices S are just shifted identity matrices tabbed by
zeros for the correct size (m by block size). Standard
Kaczmarz can be, of course, considered as a special case
of a block method with the block size one.

The sketch-and-project viewpoint suggests a natural
idea to generalize the methods by adopting some other
sketch matrices S. Gower and Richtárik propose to take
S to be a standard Gaussian matrix with independent
entries. The authors show exponential convergence with
the standard rate (I.2) with R = 2‖A‖2F /πs2min(A) in
the one dimensional case (when S is a Gaussian vector
in Rm).

B. Block Gaussian Kaczmarz and organization of the
paper

We continue the study of the Gaussian sketch matri-
ces in application to the Kaczmarz methods: we prove
an exponential convergence rate for any block size b,
analyze the dependence between b and the convergence
rate in iteration and in time, compare the Gaussian Kacz-
marz methods (block and one-dimensional versions) to
the standard ones, and discuss various ways to select
Gaussian sketches.

First, in Section II-A we prove
Theorem 1.1: Suppose A is a m× n matrix with full

column rank (m ≥ n), such that its condition number
κ2(A) := s2max(A)/s

2
min(A) ≤ em/4/3, and let x∗ be a

solution of the system Ax = b. For any initial estimate
x0, the block Gaussian Kaczmarz method (iteration (I.3)
with S being an m×b random matrix with i.i.d. standard
normal entries) produces a sequence {xk, k ≥ 0} of
iterates that satisfy

E ‖xk − x∗‖22

≤
(
1− b

15mκ2(A)

)k
‖x0 − x∗‖22. (I.4)

Remark 1.2: Note that the condition κ2(A) :=
s2max(A)/s

2
min(A) ≤ em/4/3 naturally holds for many

standard classes of matrices. For example, random Gaus-
sian matrices have condition numbers κ(A) ∼ m.
Random matrices with i.i.d. elements having only two
finite moments still have polynomial condition numbers
κ(A) with high probability.

An alternative (although very similar) estimate can be
obtained for all matrices, without a condition number
assumption, in trade of the absolute constants:

Theorem 1.3: Suppose A is a m× n matrix with full
column rank (m ≥ n) and let x∗ be a solution of the
system Ax = b. For any initial estimate x0, the block
Gaussian Kaczmarz method (iteration (I.3) with S being
an m × b random matrix with i.i.d. standard normal
entries) produces a sequence {xk, k ≥ 0} of iterates that
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satisfy

E‖xk − x∗‖22

≤

1−

[ √
bsmin(A)

9
√
b‖A‖+ C‖A‖F

]2k

‖x0 − x∗‖22.

(I.5)

Here, C > 0 is an absolute constant.
This theorem is proved in Section II-B. It is usually
stronger than Theorem 1.1 (note that since ‖A‖F ≤
m‖A‖ for any matrix, Theorem 1.1 might give tighter
results than Theorem 1.3 for some matrices A with
‖A‖F ≈ m‖A‖, but its advantage will be at most by
a constant multiple in the convergence rate R).

From Theorems 1.1 and 1.3 we can see that the
expected gain of the block iterations is linear in the
size of the block b (if we look at the per iteration
gain). Clearly, for larger b, both the sketching step
(computing STA) and the inversion step (computing
(STA)†) become slower. In Section III we study this
tradeoff numerically.

A natural question is whether we actually need to
generate a new Gaussian matrix at each step. In some
settings, if memory is not an issue, we may rather
have a finite set of matrices (potentially, generated in
advance) and sample from it. For comparison, in the
regular Kaczmarz methods we have only a finite set of
the sketch matrices (and the cardinality of this set is the
number of rows of the matrix divided by the number of
blocks). We prove that in the Gaussian case we can be
satisfied with a finite collection of sketches as well. In
Section II-C we prove the following.

Theorem 1.4: Suppose A is a m× n matrix with full
column rank (m ≥ n) and let x∗ be a solution of the
system Ax = b. Let N be such that Cm2 logm ≤ N ≤
exp(m/3) (for a large absolute constant C). Let S =
{S1, . . . , SN} be a random set of m×b random matrices
with i.i.d. standard normal entries. Then, with probability
at least 1− 3/m, for any initial estimate x0, finite block
Gaussian Kaczmarz method (iteration (I.3) with S being
chosen at random from a set S) produces a sequence
{xk, k ≥ 0} of iterates that satisfy

E ‖xk − x∗‖22

≤
(
1− b

36mκ2(A)

)k
‖x0 − x∗‖22.

Thus, the convergence rate is as good as in the case
of taking a new sketch at each iteration (Theorem 1.3).
However, the size of a pre-selected set S required by
Theorem 1.4 (N � m2 logm) is likely too big to be

practical. Our experiments show that in practice the size
N ∼ m/b (number of rows divided by the block size,
like in the regular block Kaczmarz case) is enough to
demonstrate the same convergence.

See Section III for all the related numerical ex-
periments. We next turn to the proofs of these main
theorems.

II. PROOFS OF MAIN RESULTS

A. Proof of Theorem 1.1, convergence estimate via con-
dition number

The following lemma is standard and is proved in,
e.g., [[12], Proposition 4.4]:

Lemma 2.1: Let X = (Xij) be an m × n random
matrix, m ≥ n, whose entries are independent copies of
a standard normal random variable. Then for all s ≥ 0

P{smax(X) > (2 + s)
√
m} ≤ exp(−s2m/2).

Lemma 2.2: Let S be m×b matrix with i.i.d. standard
normal entries and A is m×n fixed matrix. Let E be any
event such that P(E) ≥ 1− e−cm for some c ∈ (0, 1/2].
Then for any fixed u ∈ Sn−1 and large enough m,

E(‖ASu‖22|E) ≥ E(‖ASu‖22)− e−cm/2‖A‖2.

If c = 1/2, it is enough to take m ≥ 25 for the
statement to hold.

Proof: For any t > 0,

P(‖ASu‖22 > t|E) = 1− P(‖ASu‖22 ≤ t|E)

≥ 1− P(‖ASu‖22 ≤ t)
P(E)

≥ P(‖ASu‖22 > t)− e−cm,

since P(E) ≥ 1− e−cm. Then,

E(‖ASu‖22|E) ≥
∫ 9m|A‖2

t=0

P(‖ASu‖22 > t|E)dt

≥
∫ 9m‖A‖2

t=0

P(‖ASu‖22 > t)dt−
∫ 9m‖A‖2

t=0

e−cmdt

≥ E(‖ASu‖22)−
∫ ∞
t0

P(‖ASu‖22 > t)dt− 9m‖A‖2

ecm
,

where t0 = 9m‖A‖2. To bound the integral term, note
that a trivial inequality ‖STA‖ ≤ ‖ST ‖‖A‖ implies

P(‖ASu‖22 > t) ≤ P(‖AS‖22 > t) ≤ P(‖ST ‖ >
√
t

‖A‖
).

This allows as to bound∫ ∞
t=9m‖A‖2

P(‖STAu‖22 > t)dt (II.1)

≤
∫ ∞
q=3

P(‖ST ‖ > q
√
m)2qm‖A‖2dq ≤ 6e−m/2‖A‖2,

(II.2)
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using change of variable q =
√
t/
√
m‖A‖, Lemma 2.1

and the fact that q ≤ 3(q − 2) for q ≥ 3. As a result,

E(‖ASu‖22|E) ≥ E(‖ASu‖22)− e−cm‖A‖2(9m+ 6)

≥ E(‖ASu‖22)− e−cm/2‖A‖2

for m large enough. Note that em/4 ≥ 9m + 6 for all
m ≥ 25. Lemma 2.2 is proved.

Proposition 2.3: Suppose A is a m × n matrix with
full column rank (m ≥ n) and let x∗ be a solution of the
system Ax = b. Let xk be a fixed vector in Rn. Let S
be m× b matrix with i.i.d. standard normal entries and
xk+1 is obtained by iteration (I.3). Then,

ES ‖xk+1−x∗‖22

≤ (1− b

10mκ2(A)
− e−m/4

10m
)‖xk − x∗‖22.

Proof: Since

xk+1 − x∗ = xk − x∗ − (A†S)(ASxk −ASx∗)
= (Id−A†SAS)(xk − x∗),

we have

E ‖xk+1 − x∗‖22 = E ‖(Id−A†SAS)(xk − x∗)‖
2
2.

To prove the proposition, we are going to show that there
exists a constant c > 0 such that for any fixed u ∈ Rn

E ‖(Id−A†SAS)u‖
2
2 ≤ (1− r)‖u‖22, (II.3)

where r = b/10mκ2(A) + e−m/4/10m.
Since A†SAS is an orthogonal projector

E ‖(Id−A†SAS)u‖
2
2 = ‖u‖22 − E ‖A†SASu‖

2
2.

So, our goal is to prove that for a fixed u ∈ Sn−1

E ‖A†SASu‖
2
2 ≥ r. (II.4)

Now, for any γ > 0, by the total expectation theorem,

E ‖A†SASu‖
2
2 ≥ E(s2min(A

†
S) · ‖ASu‖

2
2)

≥ E(s2min(A
†
S)‖ASu‖

2
2

∣∣ s2min(A†S) ≥ 1

γ2
)

· P(s2min(A
†
S) ≥

1

γ2
)

≥ 1

γ2
E(‖ASu‖22|E)P(E), (II.5)

where E := {‖AS‖ ≤ γ}. Now, with γ = 3
√
m‖A‖, we

have
1) P(E) = P{‖STA‖ ≤ 3

√
m‖A‖} ≥ P{‖ST ‖ ≤

3
√
m} since ‖STA‖ ≤ ‖ST ‖‖A‖, and by

Lemma 2.1

P{‖ST ‖ ≤ 3
√
m} ≥ 1− exp(−m/2).

2) Then, by Lemma 2.2 applied to the event E ,

E(‖ASu‖22|E) ≥ E(‖ASu‖22)− e−m/4‖A‖2.

3) Finally, unconditional expectation can be computed
directly:

E(‖ASu‖22) = E
b∑
i=1

〈STi , (Au)〉2 = bs2min(A).

Combining three estimates above, we obtain

E ‖A†SASu‖
2
2 ≥

(bs2min(A)− e−m/4‖A‖2)(1− e−m/2)
9m‖A‖2

≥ bs2min(A)

10ms2max(A)
− e−m/4

10m
, (II.6)

for any m ≥ 25. This concludes the proof of Proposi-
tion 2.3.

Proof of Theorem 1.1. Note the due to the condition
number assumption, κ2(A) ≤ em/4/3, the exponential
term in the one step estimate from the Proposition 2.3
become negligible:

1− b

10mκ2(A)
− e−m/4

10m
≤ 1− b

15mκ2(A)
.

Thus,

E ‖xk − x∗‖22 = ES1
ES2

. . .ESk
‖xk − x∗‖22

≤
[
1− b

15mκ2(A)

]k
‖x0 − x∗‖22.

Theorem 1.1 is proved.

B. Proof of Theorem 1.3, convergence estimate via the
mix of Frobenius and operator norms

The first auxiliary lemma is a direct corollary of
a matrix deviation inequality (see, e.g., [[16], Theo-
rem 9.1.1]). We will use it to make an estimate for
the norm ‖STA‖ (more refined than a trivial estimate
‖STA‖ ≤ ‖ST ‖‖A‖ that was used in the proof of
Theorem 1.1):

Lemma 2.4: Let S be m×b matrix with i.i.d. standard
normal entries and A is m×n fixed matrix. Also, Sn−1

denotes a unit sphere in Rn. Then the following holds
with some absolute constant C > 0:

E( sup
w∈ASn−1

‖STw‖2) ≤
√
b‖A‖+ C‖A‖F .

Proof: The matrix deviation inequality [[16], The-
orem 9.1.1] states that for any U ⊂ Rn

E sup
x∈U

∣∣∣‖STx‖2 −√b‖x‖2∣∣∣ ≤ Cγ(U),

where γ(U) is a Gaussian complexity defined by

γ(U) := E sup
g∼N(0,In)

|〈g, x〉|.
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Now, in the case when U is an ellipsoid U = ASn−1,
Gaussian complexity as well as the L2-norm bound for
the element in U are bounded in terms of the norms of
the matrix A, namely, γ(U) . ‖A‖F (see, e.g., [[16],
Section 7.6]) and supx∈U ‖x‖2 = supy∈Sn−1 ‖Ay‖2 =
‖A‖. Thus,

E( sup
x∈ASn−1

‖STx‖2) ≤
√
b sup
x∈T
‖x‖2 + Cγ(U)

≤
√
b‖A‖+ C‖A‖F .

This concludes Lemma 2.4.
The second auxiliary lemma estimates the L2-norm

‖STAx‖2. It relies on the following version of Cramér’s
concentration inequality (see, e.g., [1])

Theorem 2.5 (Cramér’s Theorem): Let X be a ran-
dom variable, such that for all λ ∈ R E eλX < +∞. Let
X1, . . . Xn be i.i.d. copies of X , and set S =

∑n
i=1Xi.

Then for any a < EX we have

P{ 1
n
S < α} ≤ exp(−I(α) · n),

where the function I : R→ [0,+∞] is defined by

I(α) = sup
t∈R

(tα− logE exp(tX)). (II.7)

Lemma 2.6: Let S be m×b matrix with i.i.d. standard
normal entries and v ∈ Rm is a fixed vector. Then

P(‖ST v‖22 > ‖v‖2b/10) ≥ 0.5.
Proof: Note that a random variable Z :=

‖ST v‖22/‖v‖22 has a distribution of a sum of the squares
of b independent standard normal Gaussian random
variables

Z =

b∑
i=1

(

m∑
j=1

STij
vj
‖v‖22

)2 ∼
b∑
i=1

Z2
i .

So, for any i = 1, . . . , b a random variable Z2
i has

chi-squared distribution with one degree of freedom, and
a direct computation involving its moment generating
function shows that for any α < 1, the function I(α)
defined by (II.7) is

I(α) =
α− 1 + ln(α−1)

2
.

Therefore, Cramer’s Theorem 2.5 with b ≥ 1 gives

P(‖ST v‖22/‖v‖2 ≤
b

10
) ≤ exp(−b(ln(10)− 0.9)

2
) ≤ 1

2
.

Proposition 2.7: Suppose A is a m × n matrix with
full column rank (m ≥ n) and let x∗ be a solution of the
system Ax = b. Let xk be a fixed vector in Rn. Let S

be m× b matrix with i.i.d. standard normal entries and
xk+1 is obtained by iteration (I.3). Then,

ES‖xk+1 − x∗‖22

≤ (1− bs2min(A)

80(
√
b‖A‖+ C‖A‖F )2

)‖xk − x∗‖22.

Proof: Exactly like in the first part of the proof
of Theorem 2.3, it is enough to show that for a fixed
u ∈ Sn−1

E ‖A†SASu‖
2
2 ≥

bs2min(A)

64(
√
b‖A‖+ C‖A‖F )2

. (II.8)

This time we apply total expectation theorem, condition-
ing on the norm of ‖ASu‖2. For any parameter γ2 > 0,

E ‖A†SASu‖
2
2 = E(

∥∥A†S ASu

‖ASu‖22

∥∥2
2
· ‖ASu‖2)

≥ E(
∥∥A†S ASu

‖ASu‖2
∥∥2
2
‖ASu‖22

∣∣ ‖ASu‖22 ≥ γ2)
· P(‖ASu‖22 ≥ γ2)

≥ γ2 E( inf
v∈Sn−1

‖A†Sv‖
2
2

∣∣ Eγ)P(Eγ) (II.9)

where the event Eγ = {‖ASu‖22 ≥ γ2}. Futhermore,

E( inf
v∈Sn−1

‖A†Sv‖
2
2

∣∣ Eγ) = E(
1

sup
v∈Sn−1

‖ASv‖22

∣∣ Eγ)
≥ 1

E2( sup
v∈Sn−1

‖ASv‖2
∣∣ Eγ)

by the fact that f(x) = x2 is a monotone function on x ≥
0 (and so sup ‖.‖2 = (sup ‖.‖)2) and Jensen’s inequality
applied to a convex function g(x) = x−2. To estimate
the denominator from above, we can use total probability
theorem again, namely, for any event Eγ

E( sup
v∈Sn−1

‖ASv‖2
∣∣ Eγ) ≤ E(sup ‖ASv‖2)

P(Eγ)
.

Finally, E( sup
v∈Sn−1

‖ASv‖2) can be estimated by

Lemma 2.4 as

E sup
w∈ASn−1

‖STw‖2 ≤
√
b‖A‖+ C‖A‖F .

Combining the last two estimates with (II.9), we
obtain

E ‖A†SASu‖
2
2 ≥

γ2P3(‖ASu‖22 ≥ γ2)
(
√
b‖A‖+ C‖A‖F )2

.

The numerator can be estimated by the Lemma 2.6 if
we take v = Au and γ2 = ‖Au‖22b/8:

γ2P3(‖ASu‖22 ≥ γ2) ≥
‖Au‖22b

10
P3(‖ASu‖22 ≥

‖Au‖22b
10

)

≥ ‖Au‖
2
2b

80
≥ s2min(A)b

80
.
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So,

E ‖A†SASu‖
2
2 ≥

γ2P3(‖ASu‖22 ≥ γ2)
L2
‖A‖,‖A‖F

≥ s2min(A)b

80L2
‖A‖,‖A‖F

,

where L‖A‖,‖A‖F =
√
b‖A‖ + C‖A‖F . This concludes

the proof of Proposition 2.7.

Proof of Theorem 1.3. Theorem 1.3 follows imme-
diately from the result of Proposition 2.7, since

E ‖xk−x∗‖22 = ES1 ES2 . . .ESk
‖xk − x∗‖22

≤
[
1− c bs2min(A)

(
√
b‖A‖+ C‖A‖F )2

]k
‖x0 − x∗‖22.

C. Proof of Theorem 1.4, when we select a sketch from
a pre-selected finite set of Gaussian matrices

The following lemma is a standard Bernstein’s in-
equality for sub-exponential random variables (its proof
can be found in, e.g., [[16], Corollary 2.8.3])

Lemma 2.8: Let X1, . . . , XN be independent, mean
zero, sub-exponential random variables. Then, for every
t ≥ 0, we have

P

{
P
∣∣ 1
N

N∑
i=1

Xi

∣∣ ≥ t} ≤ 2 exp(−cmin(
t2

K2
,
t

K
)N),

where K = maxi ‖Xi‖φ1
is maximum sub-exponential

norm of Xi.
Remark 2.9: We will also use the following easy facts

about sub-exponential random variables (their proofs can
be also found in [16]):

1) If a random variable X is standard Gaussian
then X2 is sub-exponential. Moreover, ‖X2‖φ1

=
‖X‖2φ2

= const
2) If a random variables X,Y are standard Gaussians

then XY is a sub-exponential random variable.
Moreover, ‖XY ‖φ1

= ‖X‖φ2
‖Y ‖φ2

= const
3) Centering of a sub-exponential random variable X

produces another sub-exponential random variable,
such that ‖X − EX‖φ1

≤ C‖X‖φ1
.

Definition 2.10 (Good collection): We will call a set
S = {S1, . . . , SN} of m × b matrices good, if the
following conditions hold:

1) all Sk ∈ S : ‖Sk‖ ≤ 3
√
m;

2) all (i, j) 6= (i, u) ∈ [m]× [b]: |
∑N
k=1 s

k
jis

k
ui| ≤ N

4m ;
3) all (i, j) ∈ [m]× [b] : |

∑N
k=1(s

k
ij)

2| ≥ N
2

Here, Skij denotes (i, j)-entry of the matrix Sk and N =
|S|.

Intuitively, conditions (2) and (3) from the definition
of a good collection mean that, if in the process of
sampling entries of the matrices in the collection S

(uniformly with replacement), the sample covariance
matrix obtained would be reasonably close to identity.
Now we will show that a a random collection of standard
Gaussian matrices is likely a good collection:

Proposition 2.11: Let S1, . . . , SN be independent,
mean zero m × b random matrices with i.i.d. standard
normal entries. If (m2 lnm) � N ≤ exp(m/3), then
with probability 1 − 3/m they form a good collection
S = {S1, . . . , SN} (in the sense of Definition 2.10).

Proof: Let us compute the probability that a
random set of N standard Gaussian matrices is not good,
namely, one of the conditions is not satisfied.

By Lemma 2.1 combined with the union bound,

P{∃S ∈ S : ‖S‖ > 3
√
m} ≤ N exp(−m/2).

For j 6= u, for any matrix Sk from the collection, its
(j, i) and (u, i) entries are independent Gaussian random
variables, hence, there product is an exponential random
variable. Moreover, all ξkj,i,u = skjis

k
ui are mean zero

(as a product of two independent mean zero random
variables) and independent for the non-coinciding j, i, u.
So, by Lemma 2.8,

P

(∣∣∣∣∣ 1N
N∑
i=k

ξkj,i,u

∣∣∣∣∣ ≥ 1

4m

)
≤ 2 exp(−c1N/16m2).

Taking union bound over all pairs of indices (j, i) and
(u, i), the probability that (2) does not hold for for S is
bounded by 2m2b exp(−c1N/16m2).

Finally, (skij)
2 are sub-exponential random variables,

E(skij)2 = 1. By Lemma 2.8 again,

P

(
1

N

N∑
i=k

(skij)
2 ≤ 1

2

)
≤ P

(∣∣∣∣∣ 1N
N∑
i=k

(skij)
2 − 1

∣∣∣∣∣ ≥ 1

2

)
≤ 2 exp(−c2N/4).

Taking union bound over all pairs of indices (j, i), the
probability that (3) does not hold for for S is bounded
by 2mb exp(−c2N/4).

Therefore, combining three probabilities of the excep-
tional events, if C3m

2 lnm ≤ N ≤ exp(m/3) with
C3 ≥ 48/c1, the probability that a random collection
S of cardinality N is good is

1− 2m2be−c1N/16m
2

− 2e−c2N/4 −Ne−m/2 ≥ 1− 3

m
.

This concludes the proof of Proposition 2.11.
Now we will prove that given a good collection S,

iterative process (I.3) (choosing a sketch S from S
randomly at each iteration) converges as fast as the
analogous process, that samples a new Gaussian matrix
at every step.
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Proposition 2.12: Suppose A is a m× n matrix with
full column rank (m ≥ n) and let x∗ be a solution of
the system Ax = b. Let xk be a fixed vector in Rn. Let
S = {S1, . . . , SN} be a good set of m × b matrices Si
(in the sense of Definition 2.10). At every iteration we
choose a random matrix S uniformly at random from S
(with replacement), and iterate according to (I.3). Then,

E ‖xk+1 − x∗‖22 ≤
[
1− b

36mκ2(A)

]
‖xk − x∗‖22.

Proof: Exactly like in the first part of the proof
of Proposition 2.3, it is enough to show that for a fixed
u ∈ Sn−1

E ‖A†SASu‖
2
2 ≥

b

36mκ2(A)
, (II.10)

where expectation is taken over the random choices of
S ∈ S.

Since S is a good collection, for any S ∈ S we have

1/s2min(A
†
S) = s2max(S

TA) ≤ ‖ST ‖2‖A‖2 ≤ 9m‖A‖2.

Thus,

E ‖A†SASu‖
2
2 ≥ E(s2min(A

†
S) · ‖ASu‖

2
2)

≥ 1

9m‖A‖2
E(‖ASu‖22) (II.11)

Now, to estimate the expectation term, with the notation
v = Au,

E(‖ASu‖22) = E
b∑
i=1

〈STi , v〉2 =

b∑
i=1

E(
n∑
j=1

STijvj)
2

=

b∑
i=1

 m∑
j=1

E(S2
ji)v

2
j +

∑
j 6=r

E(SjiSri)vjvr


=

b∑
i=1

 m∑
j=1

1

N

N∑
k=1

(skji)
2v2j +

∑
j 6=r

1

N

N∑
k=1

(skjis
k
ri)vjvr


≥

b∑
i=1

 m∑
j=1

1

N

N∑
k=1

(skji)
2v2j


−

b∑
i=1

∑
j 6=r

1

N

∣∣ N∑
k=1

skjis
k
ri

∣∣ · |vjvr|
 (II.12)

≥
b∑
i=1

 m∑
j=1

1

2
v2j

− b∑
i=1

 m∑
j,r=1

1

4m
|vjvr|

 ≥ b

4
‖v‖2.

(II.13)

In (II.12), we used the properties (2) and (3) of a good
collection, and the last line holds since∑

j,r

|vjvr| ≤ 0.5
∑
j,r

(v2j + v2r) ≤ n‖v‖22.

Now recall that ‖v‖2 = ‖Au‖2 ≥ s2min(A). Combining
(II.11) with (II.13) we conclude that

E ‖A†SASu‖
2
2 ≥

1

9m‖A‖2
b

4
s2min(A).

Proof of Theorem 1.4. Given the constraints on the
size of the collection N , a random collection S of
standard normal matrices will be a good set (in the sense
of Definition 2.10) with the probability at least 1−3/m.
Conditioned on this high probability event, the iteration
process will converge exponentially fast as promised by
statement of Theorem 1.4, since

E(‖xk − x∗‖22| S is good )

= ES1 ES2 . . .ESk
(‖xk − x∗‖22| S is good )

≤
[
1− b

36mκ2(A)

]k
‖x0 − x∗‖22.

Here, ES1
, . . . ,ESk

refer to the randomness of choosing
a matrix Si ∈ S (uniformly at random with replacement).
The last inequality is guaranteed by Proposition 2.12.

III. NUMERICAL EXPERIMENTS

In this section, we present some numerical experi-
ments to complement the discussion of the theoretical
performance of the Gaussian block Kaczmarz method.
Everything was coded and run in MATLAB R2018b.
In comparing different methods, we run the iteration
process until the fastest method reaches relative error 1e-
4, or until 1000 iterations. Relative error is defined as
‖xk−x∗‖22/‖x∗‖22. Time is always measured in seconds.
We generate the solution of a system as a random vector
(and define the left hand side b accordingly), so we do
not need to worry about the case when ‖x∗‖2 = 0. We
use x0 = 0 as an initial point.

We consider two main models of matrices A: the
first one is an incoherent Gaussian matrix with i.i.d.
N(0, 1) elements (“Gaussian model”), the second one
models a coherent matrix with almost collinear rows,
Aij ∼ Unif [0.8, 1] (“flat model”). Unless otherwise
stated, we consider matrices of size m = 50000 and
n = 500.

A. Comparison with the other Kaczmarz methods

First, we compare the rate of convergence of four
Kaczmarz methods. As mentioned earlier, all of them can
be described in terms of iteration (I.3). Regular Kacz-
marz method uses sketches S = (0, . . . , 0, 1, 0, . . . , 0)T ,
where the position of 1 is chosen randomly st each
iteration. Block Kaczmarz uses m× b sketches

S = (zeros(b, shift), I(b, b), zeros(b,m− shift− b))T ,
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Fig. 1: Gaussian model. Decay of the relative error of
four Kaczmarz methods in 25 iterations (until block
methods reach the error 1e-4).

where b is the block size and shift = bz, z ∈
{1, 2, ..., bm/bc} is selected randomly at each step. For
the sake of efficiency, we realize these methods by selec-
tion of rows (or row blocks) for projection rather than
by the sketching procedure described above. Gaussian
Kaczmarz uses sketches S = ξ, where the vectors ξ ∈
Rm have N(0, 1) independent coordinates, and Gaussian
block Kaczmarz uses sketches S, where the matrices
S ∈ Rm×b have N(0, 1) independent coordinates.

Figures 1 and 2 show that the block methods converge
much faster in iteration on both coherent and incoherent
matrices. Figure 3 shows that the same holds for the
rate of convergence in time. Moreover, in iteration, block
Gaussian Kaczmarz and regular randomized block Kacz-
marz behave almost identically (the Gaussian version
converges slightly faster), but, because of the heavy step
of multiplication by Gaussian matrices (rather than the
light step of selecting a row block), in time, regular
block Kaczmarz converges faster. We used block size
b = 223 ∼

√
m.

We can also observe that both one-dimensional meth-
ods perform much worse on the flat (coherent) matrices,
whereas block methods do not seem to distinguish
between coherent and incoherent case. The effect of
Gaussian sketching is especially impressive in the one-
dimensional case and a flat model, when the Gaussian
method has decent convergence, and the regular ran-
domized Kaczmarz is barely making progress toward the
solution. See also the related discussion in Section IV.

Fig. 2: Flat model. Decay of the relative error of four
Kaczmarz methods in 25 iterations (until block methods
reach the error 1e-4).

Fig. 3: Left: Gaussian model; right: flat model. Decay
of the relative error of four Kaczmarz methods in time.

B. Dependence on the size of the block

Then, confirming the fact that convergence rates (I.4)
and (I.5) are better with larger b, we observe that the
error decays faster for larger values of b (See Figure 4
(left) where we plot the decay of the relative error with
the iterations for the Gaussian model, varying block sizes
b = 1, 10, 50, 500). Note that since the dimension of
the solution xk is n = 500 and A have full column
rank, for the block sizes larger or equal than 500, the
process converges in one iteration. Moreover, the same
trend preserves when we look at the convergence rate
in time (Figure 4, right): it is worth taking larger block
sizes for faster convergence. However, in some cases (see
Figure 5) it might be practical to use smaller block sizes
to achieve a reasonable error before the completion of
the first step of a slower iteration (corresponding to larger
b).

Figure 6 confirms the advantage of taking bigger
block sizes (as long as b ≤ n), and also illustrates that
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Fig. 4: Iteration (left) and time (right) vs error; block
sizes 1 (blue); 10 (red); 100 (yellow) and 500 (purple)

Fig. 5: Time vs error; A ∼ randn(2000, 500).

iterations become slower as b increases (for b ≥ 500
convergence to the error requires exactly one iteration
of the algorithm).

C. Finite number of samples

The final part of the experiments is related to the
second way of sketching, when we pre-select a set of
Gaussian matrices S and take sketch matrices from it.
Although our theoretical analysis requires the cardinality
of S to be at least Cm2 logm, the numerical experiments
show that in practice the cardinality of dm/be is enough
to reproduce the per iteration convergence rate of the

Fig. 6: Block size vs time until error 1e-4; block size
ranges 1:2000 (left); 50:500 (right)

Fig. 7: Blue: Block Gaussian Kaczmarz selecting new
gaussian sketch each time. Red: Block Gaussian Kacz-
marz selecting sketches from the finite collection. Left:
block size = 70; |S| = 70 ∼ 5000/70; right: block size =
70; |S| = 7 (too small). Matrix A ∼ randn(5000, 500)

original Gaussian block Kaczmarz. However, for very
small collections S the method stops converging too far
from the solution (see Figure 7).

IV. CONCLUSIONS AND FUTURE DIRECTIONS

To the best of our knowledge, our paper presents the
first theoretical analysis of the exponential convergence
properties of Gaussian block Kaczmarz algorithm for
arbitrary block size (Theorems 1.1 and 1.3). In the
trivial block size case b = 1, Theorem 1.3 recovers the
expected exponential convergence rate with the factor
1 − cs2min(A)/‖A‖2F , which coincides with the results
of Gower and Richtárik [2] for the one-dimensional
Gaussian Kaczmarz (and the standard convergence rate
of the randomized Kaczmarz, proved by Strohmer and
Vershynin [14]).

We also propose a way that allows an approach to
avoid potentially infinite generation of the Gaussian
sketch matrices: one could rather be satisfied by sam-
pling sketches from a pre-determined collection of Gaus-
sian matrices. We prove (Theorem 1.4) that with high
probability, a random collection of Gaussian matrices
will provide the same rate of convergence as the original
random sampling approach.

Unlike the analysis of the randomized block Kaczmarz
method, the convergence guarantees for the Gaussian
version (Theorems 1.3 and 1.4) do not require any
additional structural assumptions on the matrix (such as
regularized rows), or any non-trivial preprocessing (to
find a special “good” partition of the rows into the paving
row blocks). Namely, the Gaussian algorithm is theo-
retically justified in its most straightforward execution
version.

Our estimates show clear positive correlation between
the convergence rate per iteration with the block size.
Numerical experiments support this: per iteration con-
vergence gets faster with the increasing block size. Our
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simulations also show that despite the fact that with
bigger blocks every iteration of the algorithm becomes
slower, the relative error still decays faster in time with
bigger block size. However, for some combinations of
the desired time and error, average sized blocks b might
be preferable.

The block versions, as well as Gaussian versions (even
one-dimensional), overcome a well-known issue of the
original randomized Kaczmarz method, namely, its poor
performance on coherent matrices (see also Figure 3,
right). One of the next directions of the current work
is to explain this observation theoretically. Some other
interesting related questions are: to give a better upper
bound on the required size of the collection from The-
orem 1.4, to investigate the effect of sampling with and
without replacement on the convergence, and to consider
some “lighter” versions of the sketch matrices (such as
sparsified Gaussian matrices) for faster computation.
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