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The mathematical problem (notation)

1. Signal of interest f ∈Cd (=CN×N )

2. Measurement operator A :Cd →Cm.

3. Measurements y =A f +ξ.

y

=

 A




f

+

ξ


4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =A f +ξ.

y

=

 A




f

+

ξ


Assume f is sparse:

G In the coordinate basis: ‖ f ‖0
def= |supp( f )| ≤ s ¿ d

G In orthonormal basis: f = B x where ‖x‖0 ≤ s ¿ d

G In other dictionary: f = Dx where ‖x‖0 ≤ s ¿ d

In practice, we encounter compressible signals.



Digital Cameras



Digital Cameras



MRI



MRI

(Candès et.al.)



Pediatric MRI

(Vasanawala et.al.)



Many more...

G Radar, Error Correction

G Computational Biology, Geophysical Data Analysis

G Data Mining, classification

G Neuroscience

G Imaging

G Sparse channel estimation, sparse initial state estimation

G Topology identification of interconnected systems

G ...



Sparsity...

Sparsity in coordinate basis: f=x



Reconstructing the signal f from
measurements y

F `1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g

‖g‖1 such that ‖A f − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖ f − f̂ ‖2 . ε+ ‖x −xs‖1p
s

.

This error bound is optimal.



Restricted Isometry Property

G A satisfies the Restricted Isometry Property (RIP) when there is δ< c

such that

(1−δ)‖ f ‖2 ≤ ‖A f ‖2 ≤ (1+δ)‖ f ‖2 whenever ‖ f ‖0 ≤ s.

G Gaussian or Bernoulli measurement matrices satisfy the RIP with high
probability when

m & s logd .

G Random Fourier and others with fast multiply have similar property:
m & s log4 d .



Sparsity...

In orthonormal basis: f = B x



Sparsity in orthonormal basis B

F L1-minimization Method

For orthonormal basis B , f = B x with x sparse, one may solve the
`1-minimization program:

f̂ = argmin
f̃ ∈Cn

‖B−1 f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε.

Same results hold.



Sparsity...

In arbitrary dictionary: f = Dx



The CS Process



Example: Oversampled DFT

G n ×n DFT: dk(t ) = 1p
n

e−2πi kt/n

G Sparse in the DFT → superpositions of sinusoids with frequencies in
the lattice.

G Instead, use the oversampled DFT :

G Then D is an overcomplete frame with highly coherent columns →
conventional CS does not apply .



Example: Gabor frames

G Gabor frame: Gk(t ) = g (t −k2a)e2πi k1bt

G Radar, sonar, and imaging system applications use Gabor frames and
wish to recover signals in this basis.

G Then D is an overcomplete frame with possibly highly coherent columns
→ conventional CS does not apply .



Example: Curvelet frames

G A Curvelet frame has some properties of an ONB but is overcomplete.

G Curvelets approximate well the curved singularities in images and are
thus used widely in image processing.

G Again, this means D is an overcomplete dictionary → conventional CS
does not apply .



Example: UWT

G The undecimated wavelet transform has a translation invariance
property that is missing in the DWT.

G The UWT is overcomplete and this redundancy has been found to be
helpful in image processing.

G Again, this means D is a redundant dictionary → conventional CS does
not apply .



`1-Synthesis Method

F For arbitrary tight frame D, one may solve the `1-synthesis program:

f̂ = D

(
argmin

x̃∈Cn
‖x̃‖1 subject to ‖A Dx̃ − y‖2 ≤ ε

)
.

Some work on this method [Candès et.al., Rauhut et.al., Elad et.al.,...]



`1-Analysis Method

F For arbitrary tight frame D, one may solve the `1-analysis program:

f̂ = argmin
f̃ ∈Cn

‖D∗ f̃ ‖1 subject to ‖A f̃ − y‖2 ≤ ε.



Condition on A?

F D-RIP

We say that the measurement matrix A obeys the restricted isometry
property adapted to D (D-RIP) if there is δ< c such that

(1−δ)‖Dx‖2
2 ≤ ‖A Dx‖2

2 ≤ (1+δ)‖Dx‖2
2

holds for all s-sparse x.
F Similarly to the RIP, many classes of random matrices satisfy the D-RIP
with m ≈ s log(d/s).



CS with tight frame dictionaries

F Theorem [Candès-Eldar-N-Randall]

Let D be an arbitrary tight frame and let A be a measurement matrix
satisfying D-RIP. Then the solution f̂ to `1-analysis satisfies

‖ f̂ − f ‖2 . ε+ ‖D∗ f − (D∗ f )s‖1p
s

.

F In other words, This result says that `1-analysis is very accurate when
D∗ f has rapidly decaying coefficients and D is a tight frame.



`1-analysis: Experimental Setup

n = 8192,m = 400,d = 491,520

A: m ×n Gaussian, D: n ×d Gabor



`1-analysis: Experimental Setup

n = 8192,m = 400,d = 491,520

A: m ×n Gaussian, D: n ×d Gabor



`1-analysis: Experimental Results



Other algorithms

F `1-analysis is very accurate when D∗ f has rapidly decaying
coefficients and D is a tight frame. This is precisely because this method
operates in “analysis” space.

F What about operating in signal or coefficient space?



Is it really a pipe?

(Thanks to M. Davenport for this clever analogy.)



CoSaMP

COSAMP (N-Tropp)

input: Sampling operator A, measurements y , sparsity level s
initialize: Set x0 = 0, i = 0.
repeat

signal proxy: Set p = A∗(y − Ax i ), Ω= supp(p2s), T =Ω∪ supp(x i ).
signal estimation: Using least-squares, set b|T = A†

T y and b|T c = 0.
prune and update: Increment i and to obtain the next approximation,
set x i = bs.
output: s-sparse reconstructed vector x̂ = x i



Signal Space CoSaMP

SIGNAL SPACE COSAMP (Davenport-N-Wakin)

input: A, D, y, s, stopping criterion
initialize: r =y, x0 = 0, `= 0, Γ=;
repeat

proxy: h=A∗r
identify: Ω=SD(h,2s)
merge: T =Ω∪Γ
update: x̃= argminz ‖y−Az‖2 s.t. z ∈R(DT )

Γ=SD(x̃, s)
x`+1 =PΓx̃

r =y−Ax`+1

`= `+1
output: x̂=x`



Signal Space CoSaMP

F Here we must contend with

Λopt(z, s) := argmin
Λ:|Λ|=s

‖z−PΛz‖2 , PΛ :Cn →R(DΛ).

F Estimate by SD(z, s) with |SD(z, s)| = s, that satisfies

∥∥PΛopt(z,s)z−PSD(z,s)z
∥∥

2
≤ min

(
ε1

∥∥PΛopt(z,s)z
∥∥

2
,ε2

∥∥z−PΛopt(z,s)z
∥∥

2

)
for some constants ε1,ε2 ≥ 0.



Approximate Projection

F Practical choices for SD(z, s) :

G Any sparse recovery algorithm!

G OMP

G CoSaMP

G `1-minimization followed by hard thresholding



Signal Space CoSaMP

F Theorem [Davenport-N-Wakin] Let D be an arbitrary tight frame, A be a
measurement matrix satisfying D-RIP, and f a sparse signal with respect
to D. Then the solution f̂ from Signal Space CoSaMP satisfies

‖ f̂ − f ‖2 . ε.

(And similar results for approximate sparsity.)



Signal Space CoSaMP: Experimental Results

Figure 1: Performance in recovering signals having a s = 8 sparse representation in a
dictionary D with orthogonal, but not normalized, columns.



Signal Space CoSaMP: Experimental Results

(a) (b)

Figure 2: Results with s = 8 sparse representation in a 4× overcomplete DFT dictionary:
(a) well-separated coefficients, (b) clustered coefficients.



Signal Space CoSaMP: Relaxing assumptions

SIGNAL SPACE COSAMP (Giryes-N)

input: A, D, y, s, stopping criterion
initialize: r =y, x0 = 0, `= 0, Γ=;
repeat

proxy: h=A∗r
identify: Ω=S1,D(h,2s)
merge: T =Ω∪Γ
update: x̃= argminz ‖y−Az‖2 s.t. z ∈R(DT )

Γ=S2,D(x̃, s)
x`+1 =PΓx̃

r =y−Ax`+1

`= `+1
output: x̂=x`



Signal Space CoSaMP: Relaxing Assumptions

F A procedure Ŝk implies a near-optimal projection PŜk(·) with constants
Ck and C̃k if for any z ∈Rd ,

∣∣Ŝk(z)
∣∣≤ k, and

∥∥z−PŜk(z)z
∥∥

2
2
2 ≤Ck

∥∥z−PS ∗
k (z)z

∥∥
2

2
2 as well as

∥∥PŜk(z)z
∥∥

2
2
2 ≥ C̃k

∥∥PS ∗
k (z)z

∥∥
2

2
2.

where PS ∗
k

denotes the optimal projection.



Signal Space CoSaMP: Relaxing Assumptions

Theorem [Giryes-N] : Let M satisfy the D-RIP. Suppose that Sζk,1 and
S2k,2 are near optimal projections with constants Ck,C̃k and C2k,C̃2k

respectively. Apply SSCoSaMP and let xt denote the approximation after t

iterations. If

(1+Ck)

(
1− C̃2k

(1+γ)2

)
< 1, (1)

then after a constant number of iterations t∗ it holds that

∥∥xt∗−x
∥∥

2 ≤C ‖e‖2 . (2)



Signal Space CoSaMP: Relaxing Assumptions

Now, the assumptions of the theorem hold when

G D is unitary (use thresholding)

G D satisfies the RIP (use CS algorithms)

G D is incoherent (use CS algorithms)

G D has large correlations between small groups of atoms (use
approximate CS algorithms)



Super-resolution

F Goal: Produce high-resolution image from low-resolution samples

F Challenge: Model becomes y = Ax +e where A is a (non-random)
partial DFT. Goal: identify (support T of) sparse x.



Super-resolution

F Idea: Partial DFT has translation invariance: any restriction of a column
ak to s ≤ m consecutive elements gives rise to the same sequence, up to
an overall scalar

F Moral: A is not an arbitrary dictionary, it has structure we should not
ignore!



Super-resolution

F Idea: Partial DFT has translation invariance: any restriction of a column
ak to s ≤ m consecutive elements gives rise to the same sequence, up to
an overall scalar

F Moral: A is not an arbitrary dictionary, it has structure we should not
ignore!

Idea: Pick a number 1 < L < m and juxtaposes translated copies of y into
the Hankel matrix Y =Hankel(y), defined as

Y =


y0 y1 · · · ym−L−1

y1 y2 · · · ym−L
... ... ... ...

yL−1 yL · · · ym

 .

F Wonderful fact : Without noise, RanY =Ran AL
T



Super-resolution

F Recovery using this idea: Loop over all atoms ak and select those for
which

∠(aL
k ,RanY ) = 0.

From this set T , recovery by solving

AT x̂T = y, x̂T c = 0.

F Theorem [Demanet - N - Nguyen] : If m > 2|T | and y = Ax, then x̂ = x.



Super-resolution : Noise?

F With noise, we no longer have RanY =Ran AL
T

F Theorem [Demanet - N - Nguyen] : Let y = Ax +e with e ∼ N (0,σ2Im).
Then with high probability,

sin∠(aL
k ,RanY ) ≤ c ε1

for all indices k in the support set (and cε1 is explicitly computed).

F Extension: Choose atoms with small enough angles.



Super-resolution : Experimental Results
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Figure 3: Probability of recovery, from 1 (white) to 0 (black) for the superset method (left column) and

the matrix pencil method (right column). Top row: 2-sparse signal. Middle row: 3-sparse signal. Bottom row:

4-sparse signal. The plots show recovery as a function of the noise level (x-axis, log10σ) and the coherence

(y-axis, log10(1−µ)).



Natural images

Sparse...

256×256 “Boats" image



Natural images

Sparse wavelet representation...



Natural images

Images are compressible in discrete gradient.



Natural images

Images are compressible in discrete gradient.

The discrete directional derivatives of an image f ∈CN×N are

fx :CN×N →C(N−1)×N , ( fx) j ,k = f j ,k − f j−1,k,

fy :CN×N →CN×(N−1), ( fy) j ,k = f j ,k − f j ,k−1,

the discrete gradient operator is

∇[ f ] = ( fx, fy)



Sparsity in gradient

F CS Theory

The gradient operator ∇ is not an orthonormal basis or a tight frame.



Comparison of two compressed sensing
reconstruction algorithms

F Haar-minimization (L1-Haar)

f̂H aar = argmin‖H(Z )‖1 subject to ‖A Z − y‖2 ≤ ε
F Total Variation minimization (TV)

f̂T V = argmin‖∇[Z ]‖1 subject to ‖A Z − y‖2 ≤ ε, where ‖Z‖T V = ‖∇[Z ]‖1

is the total-variation norm.



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 4: Reconstruction using m = .2N 2



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 5: Reconstruction using m = .2N 2 measurements



Imaging via compressed sensing

(a) Original

(b) TV (c) L1-Haar

Figure 6: Reconstruction using m = .2N 2 measurements.



Imaging via compressed sensing

(a) (Quantization)

(b) TV (c) L1-Haar

Figure 7: Reconstruction using m = .2N 2 measurements



Imaging via compressed sensing

InView (Austin TX)

Figure 8: SWIR Reconstruction using m = .5N 2 measurements



Imaging via compressed sensing

InView (Austin TX)

Figure 9: InView SWIR camera



Empirical → Theoretical?

F TV Works

Empirically, it has been well known that

f̂T V = argmin‖Z‖T V subject to ‖A Z − y‖2 ≤ ε, (T V )

provides quality, stable image recovery.

F No provable stability guarantees.



Stable signal recovery using total-variation
minimization

Theorem 1. [N-Ward] From m & s log(N ) linear RIP measurements, for
any f ∈CN×N ,

f̂ = argmin‖Z‖T V such that ‖A (Z )− y‖2 ≤ ε,

satisfies
‖ f − f̂ ‖T V . ‖∇[ f ]−∇[ f ]s‖1+

p
sε (gradient error)

and
‖ f − f̂ ‖2 . log(N ) ·

[‖∇[ f ]−∇[ f ]s‖1p
s

+ε
]

(signal error)

This error guarantee is optimal up to the log(N ) factor



Higher dimensional objects

Movies, higher dimensional objects?

Theorem 2. [N-Ward] From m & s log(N d ) linear RIP measurements, for
any f ∈CN d

,

f̂ = argmin‖Z‖T V such that ‖A (Z )− y‖2 ≤ ε,

satisfies
‖ f − f̂ ‖T V . ‖∇[ f ]−∇[ f ]s‖1+

p
sε (gradient error)

and
‖ f − f̂ ‖2 . log(N d /s) ·

[‖∇[ f ]−∇[ f ]s‖1p
s

+ε
]

(signal error)

This error guarantee is optimal up to the log(N d /s) factor



Proof Sketch

F Strengthened Sobolev inequalities for random subspaces

Proposition 3. [Sobolev inequality for discrete images] Let X ∈RN×N

be mean-zero. Then
‖X ‖2 ≤ ‖X ‖T V

Proposition 4. [New: Strengthed Sobolev inequality] With probability
≥ 1−e−cm, the following holds for all images X ∈RN×N in the null space of
an m ×N 2 random Gaussian matrix

‖X ‖2 .
[log(N )]3/2

p
m

‖X ‖T V



Strengthened Sobolev inequalities

Proof ingredients:

G [CDPX 99:] Denote the bivariate Haar wavelet coefficients of X ∈RN×N

by c(1) ≥ c(2) ≥ ·· · ≥ c(N 2). Then

|c(k)|. ‖X ‖T V

k

That is, the sequence is in weak-`1.

G If Φ :Rd →Rm has (properly normalized) i.i.d. Gaussian entries then
with probability exceeding 1−e−cm, Φ has the RIP of order s ∼ m

logd :

3

4
‖ f ‖2 ≤ ‖Φ f ‖2 ≤ 5

4
‖ f ‖2 for all s-sparse f .



Stable signal recovery using total-variation
minimization

Method of proof:

G First prove stable gradient recovery

G Translate stable gradient recovery to stable signal recovery using the
strengthened Sobolev inequality.



Thank you!

E-mail:
G dneedell@cmc.edu

Web:
G www.cmc.edu/pages/faculty/DNeedell
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