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Objective
» Minimize:

1 n
Flx) = — Y filx)=Ef;(x)
i=1

» Examples:
Linear Feasiblity (Ax < b)
Least Squares

. 1 1 & n .
X5 = argmin ~ | Ax — b||% = argmin — Y. (b —(a;,x))* = argminE f; (x)
xeRm xeRm N i=1 *ER™

Hinge Loss
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Assumptions
» Strong Convexity:

(x—y,VF(x) - VF(y)) = pllx -yl
» Residual:

1 n

— Y IVfi(x)ll5 < 0°

i

» Smoothness:

IVfi(x) =V fi(pl2= Lillx -yl

-or- functionals themselves have bounded Lipschitz (later)



Stochastic Gradient Descent
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Convergence Guarantees

» Can guarantee [|X; — X« ||§ < € after:

[Bach & Moulines "I I]:

2
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’{3:210g(80/€) (( nE:z 7’) +%

[N & Srebro & Ward " | 6]:

k = 2log(¢/=0) (SUP; Ly ;225)



Tightness

» Can guarantee [|X; — X« ||§ < € after:

sup, L;

[N & Srebro & Ward " 16]: /f—210g(5/50)( r
1 0 1
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Convergence Guarantees

» Can guarantee [F|Xj — X« ||§ < € after:
[Bach & Moulines "1 ]: k= 2log(g/c) ((—EL)Q + 5—)

[N & Srebro & Ward "16]: k= 2log( 6/60)( Bl “—f)

With weighted sampling (proportional to L, ):

1
| w2l (L)
k= 2log(s/20) ( 10 nZQL p2e

With partially weighted sampling (proportional to /2 + 2 L, ):

2

k= 4log(a‘0/&‘)(;2?‘h + = )

n p2e




Convergence — Other scenarios
» Can guarantee [F|Xj — X« ||§ < € using partially

weighted sampling after:

In the smooth, non-strongly convex case:

c

{7y

In the strongly convex, non-smooth case:

Using subgradients, and assuming functionals have Lipschitz G,
We have E[F(xg) — F(x,)] =€ after:

=0 ((Zi &:1-)2>
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Experiments — Least Squares

» Consider sampling with weights A\ proportion of the time

Error (log)
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Experiments — Least Squares

» Consider sampling with weights A\ proportion of the time
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Gaussian Matrix ~ N(0, ), last row N(0, 100)



Experiments — Least Squares

» Consider sampling with weights A\ proportion of the time

Error (log)
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Gaussian Matrix, A; ~ N(0,j), large residual



Experiments — Least Squares

» Consider sampling with weights A\ proportion of the time
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Iterations

Gaussian Matrix, A; ~ N(0,j), medium residual



Experiments — Least Squares

» Consider sampling with weights A\ proportion of the time

Error (log)
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Gaussian Matrix, A; ~ N(0,j), small residual



SGD with batching and weighting

» Batch functionals into d batches of size b (b cores)

n 1 d
F(x) = % > S =Efitm) = F&x) =~ Y gr,(0) = Egr, ()
i=1 i=1



SGD with batching and weighting

» Batch functionals into d batches of size b (b cores)
d
gr.(x) =g (x)

L 1
F(x) = : Y fix)=Efi(x) = F(x) =
n iz d i3

» The strong convexity parameter u for the function F remains invariant to the batching rule.



SGD with batching and weighting

» Batch functionals into d batches of size b (b cores)

n 1 d
Flx) = % > i) =Efi®) = F®) ==Y g, (x) = Egr,(x
i=1 i=1

» The strong convexity parameter u for the function F remains invariant to the batching rule.

+ The residual error o such that %Ele IVgr,(x:)ll5 < 05 can only decrease with increasing batch

size, since

, 14 1 , 1a& .
aﬁzg Y IEV(Z fk(xJ)llés—ZIVﬁ(xllésa‘*.
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SGD with batching and weighting

» Batch functionals into d batches of size b (b cores)

=1

n 1 d
Fx) = % > S =Efitm) = F&x) =~ Y gr,(0) = Egr, ()
i=1 i

» The strong convexity parameter u for the function F remains invariant to the batching rule.

e The residual error cr such that Zf IV gr; (x4) ||2 cr can only decrease with increasing batch
size, since

| , 1& , .
== 'EV(Z fk(xJ)nés ~ ) IVfimlz =0
k=1

kert; i=1

e The average Lipschitz constant L, = éZf': 1 L+, of the gradients of the batched functions g;, can

only decrease with increasing batch size, since by the triangle inequality, L;, < %Zkgf Ly, and
thus



SGD with batching and weighting

Theorem Assume that the convexity and smoothness conditions on F(x) = % Y., fi(x) are in force.
Consider the d = n/b batches g;,(x) = % 2 ker; Jk(x), and the baiched weighted SGD iteration
X+l — Xk — #wv&% (xk)
where batch t; is selected at iteration k with probability
1 1 Ly
P(T,‘)=E+E-I—T. (3.1)

For any desired €, and using a stepsize of

_ ke

 Aeul; +02)

we have that after a number of iterations

L, 02>
k =4log(2ey/€) —+% ,
K poE

the following holds in expectation with respect to the weighted distribution (3.1): E? ||x; — X, |I§ <E.



Least Squares Case

» Non-batched: fi(x) = Z(b; —(a;, x))*

(1) The individual Lipschitz constants are bounded by L; = nl|a; ||§, and the average Lipschitz con-
stant by % YiLi=| AII% (where || - | r denotes the Frobenius norm),
(2) The strong convexity parameter is yu = ﬁ (where |[A7!|| = 0} (A) is the reciprocal of the

min
smallest singular value of A),
(3) Theresidualis 0% = nY; lla;l5/{a;, x.) — a;|*.

» Batched: g;.(x)= g"AT;'I_bTi 12
||vg‘ri-(-r] —Vgr;-(y)llz n

L, =sup = —|A;, Aq,
Y- lx—yll2 p' T

d d
02 =d) |IA} (Ar,x —br)l5<d ) | Ag,I°]| Ar, %4 — by, II5
=1 i=1



Examples in Least Squares

» Orthonormal systems:

_ d n
L, = AT A ||=—=—-L
T igi\l Az =D



Examples in Least Squares

» Orthonormal systems: - & . n o 1—
Y Lo=) 14} Ayl =7 =T
i=1
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Examples in Least Squares

» Orthonormal systems: - & . n o 1—
Y Lo=) 14} Ayl =7 =T
i=1
. — d n C
Incoherent (nearly) normalized systems: L:=) 474 l<Cy =<5

. o d
Incoherent non-normalized systems: L= ). 14; 4 ||¢CZmax||ak||2

i= 1
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Examples in Least Squares

» Orthonormal systems: - ¢ n o 1-
Y LTZZ\IA;AT,-II:E EL
i=1
. — a n C
Incoherent (nearly) normalized systems: L:=) 474 l<Cy =<5
. d d
Incoherent non-normalized systems: :Z 147, Ar, | = C )" max|lal}

i=1 KETi

Batching in decreasing arrangement of row norms:

d
L; < Z”a(z 1)b+1) "2
i=1
C n
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Practical Considerations

» How to compute the Lipschitz constants Lz, ?
Use upper bound: maximum row norm in batch

Power method:

After T = ¢ 'log(e~'b) iterations, one obtains approximation ¢, s.t.

. A7, Aqll
A7 Ar || = Q= ———
147, Arll 2 Qr, 2 ——
which yields
b i n f
n = b 1+¢

at a computational cost (over b cores) of just be !log(e~!log(b))



Non-smooth Hinge Loss

Corollary 4.3. Consider P(x)= LY [y;i(x,a;)], + 3 |x|3. Consider the batched weighted SGD iteration

1 1
Xjpi] — Xp— Axp + — Axp)via;|, (4.5)
k+1 k p:kp{rf}( k b};fx; klYj ;]

where y j(x) =1 ifyj(x,a;) <1 and 0 otherwise. Let A; have rows y;a;j for j € 1. For any desired €, we have
that after

2
Cmin(a,1-a) [}I, + %Eil I Az, ||J

k= e (4.6)

iterations of (4.5) with weights
IA;, I+ AVD
ﬁf‘l‘FE; HATJ |III

p(r;) = 4.7)

it holds that E'P' [P(x;) — P(x.)] <&.



Least Squares |
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Least Squares Experiments

|—Batch size 1 |
e, ---Bafch size 2
o ~—Batch size 4
|~ Batoh size 5
. “e.|~—Balch size 8
“~._|~Batch size 10
|—~Balch size 20 T
——Balch size 25-.
Balch size 40
'Ealch size 50

L2 Error (log)
L2 Error (log)

10

L2 Error (log)

=
[=

. o
-~

4000 6000 8000

4000 G000 B000 0 2000
lterations

lterations

=k

=
-
wh

4000 G000 G000
[terations

=

= -
=

=

Gaussian systems with varying row norms. Left: Random batches, weighted sampling.
Center: Sequential batches, weighted SGD. Right: Sequential batched, unweighted

SGD.



Ratio of Errors

Least Squares Experiments: weighting
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Gaussian systems with varying row norms. Left: Error ratios for weighted vs.
unweighted SGD. Right: Ratio of required iterations to reach error tolerance for
weighted versus unweighted SGD.*“(opt)” denotes optimal step size was used.



Least Squares |

L2 Error {log)

|—Balch size 1 |

--~Bafch size 2
‘Batch size 4
Batch size 5

. .. |—Baltch size 8
——Baltch size 10~

——Baich size 20

e Bateh size 25
| Balch size 40 -

—~Batch size 50

"'\-\.\_\_\_\-\_\-

4000 G000

lterations

| —Accurecy 0.1
=== Accuracy 0.01
. s Antureay 0,001
“ Accuracy 00001
T ——Accuracy 15
i e, . ——Accuracy 106
\ e e TS
10 20 30 40
Batch Size

Required flops

10

Cxperiments: batching

20
Batch Size

—fecuracy 0.1 i

| == -#ccuracy 0.01

—#ccuracy 0.001
Agcuracy 0.000

——Accuracy 1e-05

—*=Accuracy 1e-06

40 50

Gaussian systems with varying row norms. Left: Error ratios for batched weighted
SGD versus classical. Right: Ratio of required iterations to reach error tolerance for
batched weighted SGD versus classical.“(opt)” denotes optimal step size was used.



Ratio of Errors

Least Squares Experiments: power method
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Gaussian systems with varying row norms. Left: Convergence. Center: Flops versus
batch size to achieve error tolerance, shared over b cores. Right: Flops versus batch
size to achieve error tolerance (single core).
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Linear Feasibility

» SVM Classification
Given hil_lary classified training data, {(a;,v;)}/"; where
a; € R* 1 and {1 if a; € class 1
Y =

—1 if a; € class 2

Ta, + = so that

find a linear classifier F'(a;) = x

yiF'(a;) >0 forall i =1,...,m.



Linear Feasibility

» Method of Motzkin [ 54] to find point in polytope P given
by Ax < b:

Given rg € R", fix 0 < A < 2 and iteratively construct
approximations to P:

1. If 2. 1s feasible, stop.

2. Choose i, € |m| as i} := argmax aﬂ?:r;;_l — b;.
i€ [m]
T
. ) a; ‘;I’-;C_l—b-g_ .
3. Define ), ;= 2.1 — A EA||a- I - a;, .
i

4. Repeat.



Linear Feasibility

» Method of Motzkin [ 54] to find point in polytope P given
by Ax < b:

AN
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Linear Feasibility

» Method of Motzkin [ 54] to find point in polytope P given
by Ax < b:

oL




Linear Feasibility

» Method of Motzkin [ 54] to find point in polytope P given
by Ax < b:

Pros: Monotonically decreasing, accelerated convergence

Cons: Computationally expensive

Motivation: Use batched version of Motzkin’s Method



Batched Motzkin’s Method

Given zg € R", fix 0 < A < 2 and iteratively construct
approximations to P in the following way:

1. If ;. is feasible, stop.

2. Choose 75, C [m] to be a sample of size 3 constraints chosen
uniformly at random from among the rows of A.

3. From among these 3 rows, choose
1} = argmax a?mk_l — b;.
1ETL
(a'g;;mk—l_bik )+

i 112

4. Define xp := xp_1 — A i), -

5. Repeat.



Batched Motzkin’s Method

Let H denote the Hoffman constant (~ conditioning) of
the system. Then:

If the feasible region (for normalized A) is nonempty, then the
SKM methods with samples of size 3 converge at least linearly
. expectation:

Let sj._1 be the number of constraints satisfied by xj_1 and
Vi—1 = max{m — s_1,m — 3+ 1}. Then, in the kth iteration,

I\ — \?
Vie_1H3

E [d(;r,f, P)ﬂ < (1 - )d(i??kla P)?



Batched Motzkin’s Method

Gaussian Random System: A € =
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Batched Motzkin’s Method

Correlated Random System: A g 10000x100
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Batched Motzkin’s Method

Breast Cancer data classification, A 569x30
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Thank youl!
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"Stochastic Gradient Descent and the Randomized Kaczmarz algorithm"
by D. Needell, N. Srebro, R.Ward.
Mathematical Programming Series A, vol. 155, num. I, 549 - 573,2016.

www.cmc.edu/pages/faculty/DNeedell ~ deanna@math.ucla.edu
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