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Objective 
 Minimize:  

 
 
 Examples: 
 Linear Feasiblity (Ax ≤ b) 
 Least Squares 

 
 
 Hinge Loss 



Assumptions 
 Strong Convexity:   

 
 

 Residual: 
 
 

 Smoothness: 
 

 
 -or- functionals themselves have bounded Lipschitz (later) 



Stochastic Gradient Descent 



Convergence Guarantees 
 Can guarantee                               after: 

 
 [Bach & Moulines `11]:    

 
 
 

 [N & Srebro & Ward `16]: 



Tightness 
 Can guarantee                               after: 

 
 [N & Srebro & Ward `16]: 



Convergence Guarantees 
 Can guarantee                               after: 

 
 [Bach & Moulines `11]:    
 
 [N & Srebro & Ward `16]: 

 
 With weighted sampling (proportional to Li ): 

 
 

 
 With partially weighted sampling (proportional to ½ + ½ Li ): 

 



Convergence – Other scenarios 
 Can guarantee                               using partially 

weighted sampling after: 
 

 In the smooth, non-strongly convex case: 
 
 

 
 In the strongly convex, non-smooth case: 
 Using subgradients, and assuming functionals have Lipschitz Gi 

  We have                                   after: 
  

 



Experiments – Least Squares 
 Consider sampling with weights     proportion of the time 

 
 
 
 
 
 
 
 
 
 
 
 

Gaussian Matrix ~ N(0,1)  



Experiments – Least Squares 
 Consider sampling with weights     proportion of the time 

 
 
 
 
 
 
 
 
 
 
 
 

Gaussian Matrix ~ N(0,1), last row N(0,100)  



Experiments – Least Squares 
 Consider sampling with weights     proportion of the time 

 
 
 
 
 
 
 
 
 
 
 
 

Gaussian Matrix,  Aij ~ N(0,j), large residual 



Experiments – Least Squares 
 Consider sampling with weights     proportion of the time 

 
 
 
 
 
 
 
 
 
 
 
 

Gaussian Matrix,  Aij ~ N(0,j), medium residual 



Experiments – Least Squares 
 Consider sampling with weights     proportion of the time 

 
 
 
 
 
 
 
 
 
 
 
 

Gaussian Matrix,  Aij ~ N(0,j), small residual 



SGD with batching and weighting 
 Batch functionals into d batches of size b (b cores) 



SGD with batching and weighting 
 Batch functionals into d batches of size b (b cores) 



SGD with batching and weighting 
 Batch functionals into d batches of size b (b cores) 



SGD with batching and weighting 
 Batch functionals into d batches of size b (b cores) 



SGD with batching and weighting 



Least Squares Case 
 Non-batched: 

 
 

 
 Batched: 

 
          . 

 
 

                     .   



Examples in Least Squares 
 Orthonormal systems: 

 
 

 



Examples in Least Squares 
 Orthonormal systems: 

 
 Incoherent (nearly) normalized systems: 

 
 



Examples in Least Squares 
 Orthonormal systems: 

 
 Incoherent (nearly) normalized systems: 

 
 Incoherent non-normalized systems: 

 



Examples in Least Squares 
 Orthonormal systems: 

 
 Incoherent (nearly) normalized systems: 

 
 Incoherent non-normalized systems: 

 
 Batching in decreasing arrangement of row norms: 



Practical Considerations 
 How to compute the Lipschitz constants      ? 
 Use upper bound: maximum row norm in batch 
  Power method: 

 After                           iterations,  one obtains approximation       s.t. 
 
 
 

   which yields 
 
 
 
   at a computational cost (over b cores) of just  
 



Non-smooth Hinge Loss 



Least Squares Experiments 

Gaussian systems.  Right:  Ratio of required iterations to reach error tolerance for 
batched SGD with weighting compared to classical SGD. “(opt)” denotes optimal 
step size was used. 



Least Squares Experiments 

Gaussian systems with varying row norms.  Left: Random batches, weighted sampling. 
Center: Sequential batches, weighted SGD. Right: Sequential batched, unweighted 
SGD. 



Least Squares Experiments: weighting 

Gaussian systems with varying row norms.  Left: Error ratios for weighted vs. 
unweighted SGD. Right: Ratio of required iterations to reach error tolerance for 
weighted versus unweighted SGD. “(opt)” denotes optimal step size was used. 
 



Least Squares Experiments: batching 

Gaussian systems with varying row norms.  Left: Error ratios for batched weighted 
SGD versus classical. Right: Ratio of required iterations to reach error tolerance for 
batched weighted SGD versus classical. “(opt)” denotes optimal step size was used. 
 



Least Squares Experiments: power method 

Gaussian systems with varying row norms.  Left: Convergence. Center: Flops versus 
batch size to achieve error tolerance, shared over b cores. Right: Flops versus batch 
size to achieve error tolerance (single core). 
 



Linear Feasibility  
 SVM Classification 



Linear Feasibility  
 Method of Motzkin [`54] to find point in polytope P given 

by Ax < b: 



Linear Feasibility  
 Method of Motzkin [`54] to find point in polytope P given 

by Ax < b: 



Linear Feasibility  
 Method of Motzkin [`54] to find point in polytope P given 
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Linear Feasibility  
 Method of Motzkin [`54] to find point in polytope P given 

by Ax < b: 
 
 Pros: Monotonically decreasing, accelerated convergence 
 Cons: Computationally expensive 

 
 Motivation: Use batched version of Motzkin’s Method 



Batched Motzkin’s Method 



Batched Motzkin’s Method 

Let H denote the Hoffman constant (~ conditioning) of 
the system.  Then: 



Batched Motzkin’s Method 



Batched Motzkin’s Method 



Batched Motzkin’s Method 



Thank you! 
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