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Introduction L1-Minimization Reweighted L1 Main Results

Problem Background

Setup

1 Suppose x is an unknown signal in R
d .

2 Design measurement matrix Φ : Rd → R
m.

3 Collect noisy measurements u = Φx + e.
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4 Problem: Reconstruct signal x from measurements u
5 Wait, isn’t this impossible?

Assume x is s-sparse: ‖x‖0 def

= | supp(x)| ≤ s ≪ d .
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Problem Background

Applications

Compressive Imaging

Computational
Biology

Medical Imaging

Astronomy

Geophysical Data
Analysis

Compressive Radar

Many more (see
www.dsp.ece.rice.edu)
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Problem Background

How can we reconstruct?

Obvious way:

Suppose the matrix Φ is one-to-one on the set of sparse vectors
and e = 0. Set

x̂ = argmin ||z ||0 such that Φz = u.

Then x̂ = x!

Bad news:

This would require a search through
(

d

s

)

subspaces! Not
numerically feasible.
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Problem Background

How else can we reconstruct?

Geometric Idea

Minimizing the ℓ0-ball is too hard, so let’s try a different one.

Our favorites...

Least Squares

L1-Minimization (using Linear Programming)

Which one?
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Problem Background

Which one?

x = x*

x*

x

Figure: Minimizing the ℓ2 versus the ℓ1 balls.

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimization



Introduction L1-Minimization Reweighted L1 Main Results

Problem Background

What do we assume about Φ?

Restricted Isometry Property (RIP)

The sth restricted isometry constant of Φ is the smallest δs
such that

(1− δs)‖x‖2 ≤ ‖Φx‖2 ≤ (1 + δs)‖x‖2 whenever ‖x‖0 ≤ s.

For Gaussian or Bernoulli measurement matrices, with high
probability

δs ≤ c < 1 when m & s log d .

Random Fourier and others with fast multiply have similar
property.
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Results

Proven Results

L1-Minimization [Candès-Tao]

Assume that the measurement matrix Φ satisfies the RIP with
δ2s <

√
2− 1. Then every s-sparse vector x can be exactly

recovered from its measurements u = Φx as a unique solution to
the linear optimization problem:

x̂ = argmin ||z ||1 such that Φz = u.
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Results

Numerical Results
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Figure: The percentage of sparse flat signals exactly recovered by Basis
Pursuit as a function of the number of measurements m in dimension
d = 256 for various levels of sparsity s.
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Results

What about noise?

Noisy Formulation

For a non-sparse vector x with noisy measurements u = Φx + e,

x̂ = argmin ||z ||1 such that ‖Φz − u‖2 ≤ ε. (1)

L1-Minimization [Candès-Romberg-Tao]

Let Φ be a measurement matrix satisfying the RIP with
δ2s <

√
2− 1. Then for any arbitrary signal and corrupted

measurements u = Φx + e with ‖e‖2 ≤ ε, the solution x̂ to (1)
satisfies

‖x̂ − x‖2 ≤ Cs · ε+ C ′
s ·

‖x − xs‖1√
s

.

Note: As δ2s →
√
2− 1,Cs ,C

′
s → ∞!!
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Numerical Results

60 80 100 120 140 160 180 200 220 240
0

2

4

6

8

10

12

14

Measurements m

Av
er

ag
e 

Er
ro

r
Recovery Error from BP on Perturbed Measurements (by Gaussian noise), d=256

 

 

s=4

s=12

s=20

s=28

s=36

Figure: The recovery error of L1-Minimization under perturbed
measurements (‖e‖2 = 0.5) as a function of the number of
measurements m in dimension d = 256 for various levels of sparsity s.
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Results

What if we are close?

Suppose we recover x̂ ≈ x

Most likely, this means x̂i ≈ xi

In particular, x̂i is small/large when xi is small/large

Weighted L1

x̂(2) = argmin
z

d
∑

i=1

∣
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∣
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such that ‖Φz − u‖2 ≤ ε
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Results

Weighted Geometry

x = x*
x

x*

Figure: The geometry of the weighted ℓ1-ball.

Noise-free case: In cases where x̂ 6= x , we should have that
x̂(2) is closer to x , or even equal.

Noisy case: This implies x̂(2) should be closer to x than x̂ was.

Can we repeat this again?
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Reweighted L1-Minimization

Reweighted ℓ1-minimization (RWL1)

Input: Measurement vector u ∈ R
m, stability parameter a

Output: Reconstructed vector x̂

Initialize Set the weights wi = 1 for i = 1 . . . d .

Approximate Solve the reweighted ℓ1-minimization problem:

x̂ = argmin
x̂∈Rd

d
∑

i=1

wi x̂i subject to ‖Φx̂ − u‖2 ≤ ε.

Update Reset the weights:

wi =
1

|x̂i |+ a
.
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Reweighted L1-Minimization

Numerical Results
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Figure: ℓ∞-norm error for reweighted L1 in the noise-free case
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Reweighted L1-Minimization

Numerical Results

Figure: Probability of reconstruction [Candès-Wakin-Boyd].
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Reweighted L1-Minimization

Numerical Results with noise
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Figure: Improvements in the ℓ2 reconstruction error using reweighted
ℓ1-minimization versus standard ℓ1-minimization for sparse Gaussian
signals.
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Reweighted L1-Minimization

Numerical Results with noise
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Figure: Improvements in the ℓ2 reconstruction error using reweighted
ℓ1-minimization versus standard ℓ1-minimization for sparse Bernoulli
signals.
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Reweighted L1-Minimization

Observations

The noiseless case suggests that an ℓ∞-norm bound may be
required for RWL1 to succeed.

In the noisy case it is clear that we cannot recover signal
coordinates that are below some threshold.

If each iteration of RWL1 improves the error, perhaps we
should take a → 0. (Recall wi =

1
|x̂i |+a

).
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Main Results

Main Results

RWL1 - Sparse case [N]

Assume Φ satisfies the RIP with δ2s ≤ δ where δ <
√
2− 1. Let x

be an s-sparse vector with noisy measurements u = Φx + e where
‖e‖2 ≤ ε. Assume the smallest nonzero coordinate µ of x satisfies
µ ≥ 4αε

1−ρ . Then the limiting approximation from reweighted
ℓ1-minimization satisfies

‖x − x̂‖2 ≤ C ′′ε,

where C ′′ = 2α
1+ρ , ρ =

√
2δ

1−δ and α = 2
√
1+δ

1−δ .
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Main Results

Remarks

Without noise, this result coincides with previous results on
L1.

The key improvement: As δ →
√
2− 1, C ′′ remains bounded.

The error bound is the limiting bound, but a recursive relation
in the proof gives exact improvements per iteration. We show
in practice it is attained quite quickly.

For signals whose smallest non-zero coefficient µ does not
satisfy the condition of the theorem, we may apply the
theorem to those coefficients that do satisfy this requirement,
and treat the others as noise...

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimization



Introduction L1-Minimization Reweighted L1 Main Results

Main Results

Remarks

Without noise, this result coincides with previous results on
L1.

The key improvement: As δ →
√
2− 1, C ′′ remains bounded.

The error bound is the limiting bound, but a recursive relation
in the proof gives exact improvements per iteration. We show
in practice it is attained quite quickly.

For signals whose smallest non-zero coefficient µ does not
satisfy the condition of the theorem, we may apply the
theorem to those coefficients that do satisfy this requirement,
and treat the others as noise...

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimization



Introduction L1-Minimization Reweighted L1 Main Results

Main Results

Remarks

Without noise, this result coincides with previous results on
L1.

The key improvement: As δ →
√
2− 1, C ′′ remains bounded.

The error bound is the limiting bound, but a recursive relation
in the proof gives exact improvements per iteration. We show
in practice it is attained quite quickly.

For signals whose smallest non-zero coefficient µ does not
satisfy the condition of the theorem, we may apply the
theorem to those coefficients that do satisfy this requirement,
and treat the others as noise...

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimization



Introduction L1-Minimization Reweighted L1 Main Results

Main Results

Remarks

Without noise, this result coincides with previous results on
L1.

The key improvement: As δ →
√
2− 1, C ′′ remains bounded.

The error bound is the limiting bound, but a recursive relation
in the proof gives exact improvements per iteration. We show
in practice it is attained quite quickly.

For signals whose smallest non-zero coefficient µ does not
satisfy the condition of the theorem, we may apply the
theorem to those coefficients that do satisfy this requirement,
and treat the others as noise...

D. Needell Noisy Signal Recovery via Iterative Reweighted L1-Minimization



Introduction L1-Minimization Reweighted L1 Main Results

Main Results

Extension

RWL1 - non-sparse extension [N]

Assume Φ satisfies the RIP with δ2s ≤
√
2− 1. Let x be an

arbitrary vector with noisy measurements u = Φx + e where
‖e‖2 ≤ ε. Assume the smallest nonzero coordinate µ of xs satisfies
µ ≥ 4αε0

1−ρ , where ε0 = 1.2(‖x − xs‖2 + 1√
s
‖x − xs‖1) + ε. Then the

limiting approximation from reweighted ℓ1-minimization satisfies

‖x − x̂‖2 ≤
4.1α

1 + ρ

(‖x − xs/2‖1√
s

+ ε
)

,

and

‖x − x̂‖2 ≤ 2.4α

1 + ρ

(

‖x − xs‖2 +
‖x − xs‖1√

s
+ ε

)

,

where ρ and α are as before.
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Main Results

Theoretical Results
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Figure: Number of iterations required for theoretical error bounds to
reach limiting theoretical error when (a) µ = 10, ε = 0.01, (b) µ = 10,
ε = 0.1, (c) µ = 10, ε = 0.5, (d) µ = 10, ε = 1.0.
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Main Results

Recent work

Wipf-Nagarajan elaborate on convergence and show
connections to reweighted ℓ2-minimization.

Wipf-Nagarajan also show that a non-separable variant has
desirable properties.

Xu-Khajehnejad-Avestimehr-Hassibi provide a theoretical
foundation for the analysis of RWL1 and show that for a
nontrivial class of signals, a variant of RWL1 indeed can
improve upon L1 in the noiseless case.
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Thank you

For more information

E-mail:

dneedell@stanford.edu

Web: http://www-stat.stanford.edu/~dneedell
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