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Setup

» Considern ¢ R,

vl := |suppv| < n < d.
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Setup

 Considen € RY,
» We call such sighals-sparse.

 Given someV x d measurement matrik, we
collect N <« d nonadaptive linear measurements
of v, In the formz = Pw.

vl := |suppv| < n < d.
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Setup ctd.

* From these measurements we wish to efficiently
recover the original signali.
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Setup ctd.

* From these measurements we wish to efficiently
recover the original signali.

 How many measurementé < d are needed?

» Exact recovery is possible with just = 2n.
However, recovery in this regime Is not
numerically feasible.
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Setup ctd.

» Work in Compressed Sensing has shown that the
sighalv can be efficiently exactly recovered from
r = ®v with Just N ~ n polylogd.

Greedy Signal Recovery and Uniform Uncertainty Principles — p.5/24



Setup ctd.

» Work in Compressed Sensing has shown that the
sighalv can be efficiently exactly recovered from
r = ®v with Just N ~ n polylogd.

« Two major algorithmic approaches:

Greedy Signal Recovery and Uniform Uncertainty Principles — p.5/24



Setup ctd.

» Work in Compressed Sensing has shown that the

sighalv can be efficiently exactly recovered from
r = ®v with Just N ~ n polylogd.

« Two major algorithmic approaches:
* L1-Minimization (Donoho et. al.)

Greedy Signal Recovery and Uniform Uncertainty Principles — p.5/24



Setup ctd.

» Work in Compressed Sensing has shown that the
sighalv can be efficiently exactly recovered from
r = ®v with Just N ~ n polylogd.

« Two major algorithmic approaches:
* L1-Minimization (Donoho et. al.)

* Iterative methods such as Orthogonal Matching
Pursuit (Tropp-Gilbert)
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L 1-Minimization Methods

* The sparse recovery problem can be stated as
solving the optimization problem:

min || z||o subjectto  $z = dv
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L 1-Minimization Methods

* The sparse recovery problem can be stated as
solving the optimization problem:

min || z||o subjectto  $z = dv

e For certain measurement matriceshis hard
problem is equivalent to:

min ||ul|; subjectto  du = dv

(Donoho, Candes-Tao)
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Restricted | sometry Condition

« A measurement matrie satisfies thdrestricted
|sometry Condition (RIC) with parameterém, ¢)

fore € (0,1) if we have

(I—¢)||lv]le < [|Pv]|2 < (14€)||v]|ls  Vm-Sparsev.
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Restricted | sometry Condition

« A measurement matrie satisfies thdrestricted
|sometry Condition (RIC) with parameterém, ¢)

fore € (0,1) if we have

(1=¢)|jv]l2 < || @v

“Every set ofn co

o < (14¢€)||v]|a  Vm-sparsev.

umns of® forms

approximately an orthonormal system.”
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L1 and theRIC

 Assume that the measurement matbisatisfies
the Restricted Isometry Condition with

parameter$2n, v/2 — 1).
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L1 and theRIC

 Assume that the measurement matbisatisfies
the Restricted Isometry Condition with

parameter$2n, v/2 — 1).

« Then thelL; method recovers any-sparse vector.
(Candes-Tao)

« What kinds of matrices satisfy the RIC?

 Random Gaussian, Bernoulli, and partial Fourier
matrices, withV ~ n polylogd.

Greedy Signal Recovery and Uniform Uncertainty Principles — p.8/24



Greedy Algorithms; OMP

« Orthogonal Matching Pursuit (Tropp-Gilbert)
finds the support of the-sparse signal
progressively.
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Greedy Algorithms; OMP

« Orthogonal Matching Pursuit (Tropp-Gilbert)
finds the support of the-sparse signal
progressively.

e OnceS = supp(v) is found correctly, we can
recover the signalt = v asv = (®g) 'z
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Greedy Algorithms: OMP ctd.

« At each iteration, OMP finds the largest
component of, = ®*z and subtracts off that
component’s contribution.
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Greedy Algorithms: OMP ctd.

« At each iteration, OMP finds the largest

component of, = ®*z and subtracts off that
component’s contribution.

» For every fixedr-sparsey € R?, and anV x d
Gaussian measurement mattiixOMP recovers
v with high probabillity, providedV ~ nlogd.
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Comparing the approaches

* L7 has uniform guarantees.
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Comparing the approaches

» [, has uniform guarantees.
« OMP has no such known uniform guarantees.
« L, 1s based on linear programming.

« OMP is quitefast, both theoretically and
experimentally.
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Comparing the approaches

» This gap between the approaches leads us to our
new algorithm, Regularized Orthogonal
Matching Pursuit.
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« ROMP has polynomial running time.
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Comparing the approaches

» This gap between the approaches leads us to our
new algorithm, Regularized Orthogonal
Matching Pursuit.

« ROMP has polynomial running time.
 ROMP provides uniform guarantees.

Greedy Signal Recovery and Uniform Uncertainty Principles — p.12/24



ROMP

» INPUT: Measurement vectar € RV and sparsity
leveln
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ROMP

» INPUT: Measurement vectar € RV and sparsity
leveln

e OUTPUT: Index setl C {1,...,d}
» Initialize: Setl = (), r = x. Repeat untit = 0:
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ROMP

» INPUT: Measurement vectar € RV and sparsity
leveln

e OUTPUT: Index setl C {1,...,d}
» Initialize: Setl = (), r = x. Repeat untit = 0:

« ldentify: Choose a sef of then biggest
coordinates in magnitude af= o*r.
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ROMP ctd.

* Regularize: Among all subsel C J with
comparable coordinates:

u(@)| < 2Ju(g)] foralls, j < Jy,

chooseJ, with the maximal energyu| s, ||o.
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ROMP ctd.

* Regularize: Among all subsel C J with
comparable coordinates:

u(@)| < 2Ju(g)] foralls, j < Jy,

chooseJ, with the maximal energyu| s, ||o.

- Update: the index sef. «— I U Jy, and the
residual:

y = argmin ||x — $z||o; r=ux— dy.
zeR!
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Main Theorem

* Theorem: Stablility under measurement
perturbations.
Assume a measurement matdpsatisfies the
Restricted Isometry Condition with parameters

(4n, .01/4/logn).
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» Letv be amn-sparse vector ifR*.

Greedy Signal Recovery and Uniform Uncertainty Principles — p.15/24



Main Theorem

* Theorem: Stablility under measurement
perturbations.

Assume a measurement matdysatisfies the
Restricted Isometry Condition with parameters

(4n,.01/+/logn).
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Main Theorem

* Theorem: Stablility under measurement
perturbations.
Assume a measurement matdpsatisfies the
Restricted Isometry Condition with parameters

(4n,.01/+/logn).
» Letv be amn-sparse vector ifR*.
« Consider corrupted = dv + e.
 Then ROMP produces a good approximationto

lv = 0ll2 < Cy/log nlel]s.
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Corollary

« Stability of ROMP under signal perturbations.
Assume a measurement matdnsatisfies the
Restricted Isometry Condition with parameters

(8n,.01/4/logn).
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Corollary

« Stability of ROMP under signal perturbations.
Assume a measurement matdnsatisfies the
Restricted Isometry Condition with parameters

(8n,.01/4/logn).
- Letwv be an arbitrary vector ifR?.
« Consider corruptedt = dv + e.

 Then ROMP produces a good approximation to
Vo -

o = vaulle < O'v/Iogn jle 4 ””;g“”l).
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Remarks

* In the noiseless cage = 0), note that the
theorem guarantees exact reconstruction.
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Remarks

» In the noiseless cage = 0), note that the
theorem guarantees exact reconstruction.

* The runtime Is polynomial: In the case of
unstructured matrices, the runtimed$dNn).

» The theorem givesniform guarantees of sparse
recovery.

« ROMP succeeds with no prior knowledge about
the error vectoe.
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Empirical Results
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Figure 1: Sparse flat signals with Gaussian matrix.
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Empirical Results ctd.
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Figure 2: Sparse flat signals, Gaussian.
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Empirical Results ctd.
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Figure 3: Number of Iterations.
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Empirical Results ctd.

Normalized Recovery Error from ROMP on Perturbed Measurements , d=256
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Figure 4: Error to noise rati%"ﬂ_ﬂ.
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Empirical Results ctd.

Normalized Recovery Error from ROMP on Perturbed Signals , d=256
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Figure 5: Error to noise ratlm_vn”l/ﬁ.
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Future Work

* N-Tropp-Vershynin developing Compressive
Sampling Matching Pursuit (CoSaMP)
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« Selecte)(n) coordinates at each iteration but
adds a signal estimation step using least squares
Then prunes this estimation to make sparse.
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Future Work

* N-Tropp-Vershynin developing Compressive
Sampling Matching Pursuit (CoSaMP)

« Selecte)(n) coordinates at each iteration but
adds a signal estimation step using least squares
Then prunes this estimation to make sparse.

« Same uniform guarantees as ROMP, but removes
the /logn term In the requirement far
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Thank you!

* Questions?
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