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What is nonnegative matrix factorization?

Non-negative matrix factorization

Variables

Variables Topics

soidog

siesn
siesM

Data matrix
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What is nonnegative matrix factorization?

Non-negative matrix factorization

Variables Topics Variables

soido].

siosn
siosM

Data matrix

This variable has a
high association
with this topic

This user has a
high association
with this topic
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What is nonnegative matrix factorization?

Movie Ratings Genres (?) Movie Ratings

slesn)
siesn

(¢) seuuan

Data matrix

“Titanic”

“Love Actually”

“Sleepless in Seattle
This user might

like romantic
comedies
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What is nonnegative matrix factorization?

Movie Ratings Genres (?) Movie Ratings
&
S c B
[ @ =
] @
@ g %
Data matrix -
“Titanic
“Perfect Storm”
This user might “Hunt for the Red October”
like movies
involving the

ocean (?)
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(Semi)supervised NMF

 Incorporates label information to NMF
« Y &R¢*" = |abel matrix for ¢ classes
- Find A, S, B €R¢*k by

i X —AS)|IZ2 +\ (Y = BS)|?
. —| e +XI( )17
Reconstruction Error Classification Error

Movies

sjeqe
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What is nonnegative matrix factorization?

> The goal of nonnegative matrix factorization (NMF) is to factorize a data matrix
X € RZ{" into a pair of low-rank nonnegative matrices W € R and H € R™" by
solving the following optimization problem

inf | X~ WHIE,

dxr rxn
WERZO s HER20

where ||A||z = Z,.J.Aﬁ- denotes the matrix Frobenius norm.
> Data ~ Dictionary X Coding

n r n

R
<
X
=
<«
=

Data Dictionary Coding
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Online NMF

 Considers data that is streaming in over time
» Learns a factorization that is best (in expectation)
« (Can be used for prediction in time series data

« Uses “windows” across time to update factors and then
predicts into a future window using one of the factors

X1 X3 X3 X4 Xs
W0~“—> W1~H—> W2~U—> W3<H—> W4—U—> Ws -
Hy H, Hs Hy Hs
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Non-negative Tensor Factorization (NTF)

oCan be extended to tensors in a (nontrivial but) analogous
way

> C:

On the Topic of Topic Modeling 27



Static NMF algorithms

Original
MF
=T » In NMF, each column of the data matrix has to
\ = LI ; st be represented as a non-negative linear
L Eg'. combination of dictionaries
pajsie e o de) .
o
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Static NMF algorithms

Original

=T » In NMF, each column of the data matrix has to
Tt be represented as a non-negative linear
combination of dictionaries

» Hence the dictionaries must be “positive parts”
of the columns of the data matrix
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Static NMF algorithms

Original
IMF .
=T » In NMF, each column of the data matrix has to
(IEH ER ; be represented as a non-negative linear
1 combination of dictionaries

» Hence the dictionaries must be “positive parts”
of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
(e.g., eyes, nodes, mouth)
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Static NMF algorithms

Original
b » In NMF, each column of the data matrix has to
) = s be represented as a non-negative linear
B combination of dictionaries

A \ m
"j"- ‘:L-- 1 Er;% - E » Hence the dictionaries must be “positive parts”
= = - of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
_ (e.g., eyes, nodes, mouth)
B ; = u > This is in contrast to principal component
- i analysis and vector quantization: Due to
cancellation between eigenvectors, each
‘eigenface’ does not have to be parts of face
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Static NMF algorithms

Original

5

Deanna Needell (UCLA)

» In NMF, each column of the data matrix has to
be represented as a non-negative linear
combination of dictionaries

> Hence the dictionaries must be “positive parts”
of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
(e.g., eyes, nodes, mouth)

» This is in contrast to principal component
analysis and vector quantization: Due to
cancellation between eigenvectors, each
‘eigenface’ does not have to be parts of face

» NMF was popularized by Lee and Seung in their
Nature paper in 1999
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Applications: Learning parts from images

10 by 10 learned dictionary patches Original Reconstructed Reconstructed
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10 x 10 are extracted from the original image, and 100 dictionary patches (left) are learned by
NMF. Original and reconstructed image using the learned dictionaries shown in the middle.
The last shows the reconstructed image of Pierre-Auguste Renoir's Two Sisters (1882)
(original image omitted) using the dictionary patches learned from Escher’'s Cycle in the left.
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Algorithms for online NMF and their convergence
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Static NMF algorithms

> In order to minimize || X — WH)||r, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Hy H H, Hs H,
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Static NMF algorithms

> In order to minimize || X — WH)||f, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Hy Hy H, Hs Hy

» One of the most popular static NMF algorithm is the Multiplicative Update by Lee
and Seung: Update all entries of H and W alternatively using the following update

W'X; [XH'];
Hy < Hy L Wy Wy
’ T IWTWX]; Y IXHHT];

Deanna Needell (UCLA) Online nonnegative matrix factorization for Markovian data



Static NMF algorithms

> In order to minimize || X — WH)||f, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Hy Hy H, Hs Hy

» One of the most popular static NMF algorithm is the Multiplicative Update by Lee
and Seung: Update all entries of H and W alternatively using the following update

W'X; [XH'];
Hy < Hy L Wy Wy
’ T IWTWX]; Y IXHHT];

» It is known that the error | X — WH]|% is non-increasing under the above update,
but there is no guarantee to converge to a stationary point.
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> If the data matrix X is randomly drawn from a sample space Q C ]R‘;XO" according
to a distribution 7, can we still learn the ‘best dictionaries’ that describe X in law?
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> If the data matrix X is randomly drawn from a sample space Q C ]R‘;XO" according
to a distribution 7, can we still learn the ‘best dictionaries’ that describe X in law?

> The online Non-negative Matrix Factorization (ONMF) problem concerns a
similar matrix factorization problem for a sequence of input matrices (x1)e>0.

X X X3 Xy Xs
" %P " %F " %F, " %F " %}_, "
H, H, Hs H, Hs
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> If the data matrix X is randomly drawn from a sample space Q C ]R‘;XO" according

to a distribution 7, can we still learn the ‘best dictionaries’ that describe X in law?

> The online Non-negative Matrix Factorization (ONMF) problem concerns a
similar matrix factorization problem for a sequence of input matrices (x1)e>0.

X1 Xz X3 Xy X5
" %P " {F " %F, " %F " %}_, "
Hy H, Hsy H, Hy
> Suppose (Xt)e>1 is an irreducible Markov chain on a sample space Q with unique
stationary measure 7. The goal of ONMF problem is to construct a sequence

(Wh, He)e>1 of dictionary W: € R™9 and a coding H; € RZy" such that (almost
surely)

IXe — WerrHel2 —  inf Exer [Hx— WH||,2E}

WERIX ", HERrXn
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Naive ONMF algorithm minimizing empirical loss

> Fix A > 0 and define the following the quadratic loss function

(X W) = inf [IX = WHIE+ AlIHlL,

Define the expected loss and empirical loss functions

W) = Exeel (X WYL, (W) = D2 40X, W)
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Naive ONMF algorithm minimizing empirical loss

> Fix A > 0 and define the following the quadratic loss function

(X W) = inf [IX = WHIE+ AlIHlL,

Define the expected loss and empirical loss functions

W) = Exeel (X WYL, (W) = D2 40X, W)

» By Markov chain ergodic theorem, for each dictionary W, the empirical loss (W)
converges almost surely to the expected loss f{ W):

Jim f(W)=AW) as.
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Naive ONMF algorithm minimizing empirical loss

> Fix A > 0 and define the following the quadratic loss function

(X W)= inf |IX— WHIE+ X|H|s,
HERI‘X"
Define the expected loss and empirical loss functions

W) = Exeel (X WYL, (W) = D2 40X, W)

» By Markov chain ergodic theorem, for each dictionary W, the empirical loss (W)
converges almost surely to the expected loss f{ W):

lim f,(W)=AfW) as.

t—oo
> A naive solution to ONMF based on block optimization scheme:
Hy = argmin,, o1 X — We—1H||E + || H||1
W, = argminyyec fi( W),

. H Rr)(n
Upon arrival of X;: R

where C C R¥*" is the set of admissible dictionaries.
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Naive ONMF algorithm minimizing empirical loss

> Fix A > 0 and define the following the quadratic loss function

(X W)= inf |IX— WHIE+ X|H|s,
HERI‘X"
Define the expected loss and empirical loss functions

W) = Exeel (X WYL, (W) = D2 40X, W)

» By Markov chain ergodic theorem, for each dictionary W, the empirical loss (W)
converges almost surely to the expected loss f{ W):

lim f,(W)=AfW) as.

t—oo
> A naive solution to ONMF based on block optimization scheme:
Hy = argmin,, o1 X — We—1H||E + || H||1
W, = argminyyec fi( W),

. H Rr)(n
Upon arrival of X;: R

where C C R¥*" is the set of admissible dictionaries.
> This requires to store all previous matrices and solve many optimization instances.
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Asymptotic solution minimizing surrogate loss function

> Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.
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Asymptotic solution minimizing surrogate loss function

» Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.

> The idea is to solve the following approximate problem

H, = argminHER;xoont — Wit H|2 4 M| H|1

Upon arrival of X;: 0
Wi = argmin . f(W),

where %(W) is a convex upper bounding surrogate for (W) defined by

N 1<
r(W) =1 D (I1Xs — WH;|[Z+ Al Hsll1)-
s=1
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Asymptotic solution minimizing surrogate loss function

» Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.

> The idea is to solve the following approximate problem

H, = argminHeR;XOnHXt — Wit H|2 4 M| H|1

Upon arrival of X;: 0
Wi = argmin . f(W),

where %(W) is a convex upper bounding surrogate for (W) defined by

N 1<
r(W) =1 D (I1Xs — WH;|[Z+ Al Hsll1)-
s=1

> Namely, we recycle the previously found coding Hi,--- , Hy and use them as
approximate solutions of the sub-problems. Hence, there is only a single
optimization for W, in the above relaxed problem
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Asymptotic solution minimizing surrogate loss function

» Mairal, Bach, Ponce, and Sapiro gave an influential solution to the ONMF problem
with a rigorous derivation of almost sure convergence of the empirical loss over
time for i.i.d. data matrices.

> The idea is to solve the following approximate problem

Hy = argmin,,_ran || Xe — Weet H||2 + || H])1
Upon arrival of X;: HGRZE
W, = argminy, . fi(W),

where %(W) is a convex upper bounding surrogate for (W) defined by

N 1<
r(W) =1 D (I1Xs — WH;|[Z+ Al Hsll1)-
s=1

> Namely, we recycle the previously found coding Hi,--- , Hy and use them as
approximate solutions of the sub-problems. Hence, there is only a single
optimization for W, in the above relaxed problem

> But we still need to store the entire history Xi, -+, X and Hi,--- |, H. Do we?
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Asymptotic solution minimizing surrogate loss function

> In fact, the approximate ONMF problem is equivalent to
H, = argminHER;xonHXt — Wit H||2 4+ M| H||1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)
: T
W = Argmin e e cpoxs (tr(WA:WT) — 2tr(WBy)) ,

Upon arrival of X;:

where Ao and By are zero matrices of size r X r and r X d, respectively.

Deanna Needell (UCLA) Online nonnegative matrix factorization for Markovian data



Asymptotic solution minimizing surrogate loss function

> In fact, the approximate ONMF problem is equivalent to
H, = argminHER;xonHXt — Wit H||2 4+ M| H||1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)
: T
W = Argmin e e cpoxs (tr(WA:WT) — 2tr(WBy)) ,

Upon arrival of X;:

where Ao and By are zero matrices of size r X r and r X d, respectively.

> So we only need to store two summary matrices A; € RZ and B; € R™4
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Asymptotic solution minimizing surrogate loss function

> In fact, the approximate ONMF problem is equivalent to

H, = argminHER;xonHXt — Wit H||2 4+ M| H||1

Ar = t7H((t — 1) A1 + H:H])

B: =t }((t— 1)Bi_1 + H:X{)

W;: = argmin tr(WAWT) — 2tr( WBt)) ,

Upon arrival of X;:

dxr
weccrL; (

where Ao and By are zero matrices of size r X r and r X d, respectively.
> So we only need to store two summary matrices A; € RZ and B; € R™4

» Computing W; also requires solving only a single optimization instance
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Convergence under i.i.d. assumption

H, = argminHeR;xonHXt — Wit H||2 4+ M| H|1

Ar = t7H((t — 1) A1 + H:H])

B: =t }((t— 1)Bi_1 + H:X{)

(tr(WAWT) — 2tr(WBy)) ,

Upon arrival of X;:

W = argmanngRd;i)r

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Mairal, Bach, Ponce, and Sapiro '10)

Suppose (Xi)e=o are i.i.d. with common distribution 7. Let (W;_1, H¢)¢>1 be the
optimal solution to the above ONMF algorithm.
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Convergence under i.i.d. assumption

H, = argminHeR;xonHXt — Wit H||2 4+ M| H|1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)

W;: = argmin (tr( WAWT) — 2tr( WBt)) ,

Upon arrival of X;:

dxr
WGCQ]RZO

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Mairal, Bach, Ponce, and Sapiro '10)

Suppose (Xi)e=o are i.i.d. with common distribution 7. Let (W;_1, H¢)¢>1 be the
optimal solution to the above ONMF algorithm.

(i) (A(Wh))es1 and (F(W:))i>1 converge to the same constant almost surely.
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Convergence under i.i.d. assumption

Hy = argminy, o[ Xe — Wi—1H||% + M||H||1
Ar = t7H((t — 1) A1 + H:H])
B: =t }((t— 1)Bi_1 + H:X{)

W;: = argmin (tr( WAWT) — 2tr( WBt)) ,

rxn
HERZ

Upon arrival of X;:

dxr
WGCQ]RZO

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Mairal, Bach, Ponce, and Sapiro '10)

Suppose (Xi)e=o are i.i.d. with common distribution 7. Let (W;_1, H¢)¢>1 be the
optimal solution to the above ONMF algorithm.

(i) (A(Wh))es1 and (F(W:))i>1 converge to the same constant almost surely.

(ii) limsup,_, . [[VAW:)|lop = 0 almost surely.
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Convergence under Markovian dependence

0
Ar = t7H((t — 1) A1 + H:H])
Bt = t_l((t_ 1)Bt—1 + HtX;r)
(tr(WAWT) — 2tr(WBy)) ,

He = argmin,,_qo| Xe — We—1 H||% + || H||1
Upon arrival of X;:

W = argmmwechd;Or

f; = empirical loss, f= surrogate loss, f= expected loss
Theorem (Balzano, Lyu, Needell '19+)
Suppose (Xi)e=o0 is an irreducible MC on a finite state space with unique stationary

distribution . Let (W;—1, Ht)¢>1 be a solution to the above ONMF algorithm. Then
the following hold.

(i) 1imesoo E[fi(W)] = limeosoo E[R(WA)] < o0
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Convergence under Markovian dependence

Hy = argmin,, o, | Xe — Weei H||% + M| H]J1
Ar = t7H((t — 1) A1 + H:H])
Bt = t_l((t_ 1)Bt—1 + HtX;r)

(tr(WAWT) — 2tr(WB,))

X
HERZY
Upon arrival of X;:

W = argmmwechd;Or

f; = empirical loss, f = surrogate loss, f= expected loss

Theorem (Balzano, Lyu, Needell '19+)

Suppose (Xi)e=o0 is an irreducible MC on a finite state space with unique stationary
distribution . Let (W;—1, Ht)¢>1 be a solution to the above ONMF algorithm. Then
the following hold.

(i) lime oo E[f(We)] = limes oo E[R(WL)] < co.
(ii) A(W:) — R(Ws) — 0 as t — oo almost surely.
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Convergence under Markovian dependence

0
Ar = t7H((t — 1) A1 + H:H])
Bt = t_l((t_ 1)Bt—1 + HtX;r)
(tr(WAWT) — 2tr(WBy)) ,

He = argmin,,_qo| Xe — We—1 H||% + || H||1
Upon arrival of X;:

W = argmmwechd;Or

f; = empirical loss, f= surrogate loss, f= expected loss
Theorem (Balzano, Lyu, Needell '19+)
Suppose (Xi)e=o0 is an irreducible MC on a finite state space with unique stationary

distribution . Let (W;—1, Ht)¢>1 be a solution to the above ONMF algorithm. Then
the following hold.

(i) lime oo E[f(We)] = limes oo E[R(WL)] < co.
(ii) A(W:) — R(Ws) — 0 as t — oo almost surely.

(iii) limsup,_, . [|[VAW:)|lop = O almost surely.
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Applications of ONMF
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MyLymeData

oLyme disease a vector-borne disease typically transmitted by
tick or insect bite or blood-blood contact

o Symptoms often mimic those of others, e.g. MS / ALS /
Parkinsons / FMA ... and can become chronic

oCDC estimates 300,000 new diagnoses each year
oLikely a grandiose underestimate

o Poorly understood, poorly funded, poorly diagnosed, poorly
treated

. MyLymeData

On the Topic of Topic Modeling AMS Hawaii OJECT OF LYMEDISEASE.ORG



Mathematics

MyLymeData

* MyLymeData launched Nov 2015 - ~14,000 patients

reqgistered
Type of data # questions Examples
Demographic 23 sex, age, birth country
Tick bite info 19 presence of EM rash, knowledge of bite, location, tick test results
Diagnostic info 34 # mis-diagnoses, time until diagnosis, # specialists
Early symptoms 11 rash, flu, neurologic, joint issues
Basic symptoms 13 (similar), with severity
Extended symptoms 54 (similar), with severity
Lab tests 21 CDC 2-tier, Western Blot, various blood markers
Co-infections 8 Babesia, Bartonella, Mycoplasma, Rickettsia
Treatment 129 effectiveness, type/style of antibiotics, duration, other treatments
Quality of life 54 sleep, ability to work, physical activity, improvements

Table 1: Patient supplied survey data description

. MyL_ymeData

On the Topic of Topic Modeling AMS Hawaii LYMEDISE ORG



Mathematics

Comparisons on Lyme data

NMF hNMF Our Backprop

Nerve pain -
Psychiatric -

Heart-related symptoms -

Muscle aches -

Fatigue -

Facial nerve (Bell's) palsy -

Nerve pain Bulls-eye rash - Muscle aches \ ‘
Psychiatric Other Symptoms - Heart-related symptoms ‘
Red skin rash - Evidence of tick bite [1 Headache -
Facial nerve (Bell's) palsy Red skin rash Joint pain -
Severe headaches/neck stiffness Early Other Symptoms Flu-like symptoms
Shooting pains that interfere with sleep Shooting pains that interfere with sleep - Fatigue
Lightheadedness Lightheadedness - Bulls-eye rash +—
Other Symptoms Large joint pain - Memory loss -
Large joint pain None of the above symptoms Twitching -
Fainting, shortness of breath Early Flu-like symptoms Sleep impairment -

Evidence of tick bite

Early Flu-like symptoms
Early Other Symptoms
Gastrointestinal symptoms

Fainting, shortness of breath
Gastrointestinal symptoms
Headache

Joint pain

N

Cognitive impairment

Red skin rash

Facial nerve (Bell's) palsy
Severe headaches/neck stiffness

Sleep impairment - Muscle aches Shooting pains that interfere with sleep
Twitching - Severe headaches/neck stiffness Lightheadedness

Memory loss - Flu-like symptoms Other Symptoms
Cognitive impairment Nerve pain Large joint pain
Headache - Psychiatric Fainting, shortness of breath

Joint pain - Heart-related symptoms Early Flu-like symptoms

Flu-like symptoms - Memory loss Evidence of tick bite
Fatigue - Twitching Early Other Symptoms

Bulls-eye rash
None of the above symptoms

Sleep impairment
Cogpnitive impairment

Gastrointestinal symptoms
None of the above symptoms

The hidden topics here may provide insight on how symptoms manifest themselves

On the Topic of Topic Modeling



Mathematics

More Lyme data results

* Run our backpropagation separately on unwell and well datasets,
then compare

 Notice the topics are verydifferent!

Bull's eye rash -

Joint pain

Fatigue

Flu-like symptoms
Headache

Evidence of tick bite
Other

None of the above
Gastrointestinal symptoms
Heart-related symptoms
Psychiatric

Nerve pain

Muscle aches

Sleep impairment
Memory loss

Twitching

Cognitive impairment

On the Topic of Topic Modeling

Unwell Patients

Well Patients

Evidence of tick bite

Bull's eyefash -

Flu-like symptoms

Twitching

Sleep impairment
Memory loss

Nerve pain

Muscle aches
Heart-related symptoms
Psychiatric

Cognitive impairment
Headache

Joint pain

None of the above

Gastrointestinal symptoms



Applications of ONMF

Learning features from MCMC trajectories - Network Dictionary Learning

Mark Twain - Adventures of Huckleberry Finn

Network dictionary patches Original Word Adjacency Matrix Reconstructed Word Adjacency Matrix

0 o

el = Tl Ll
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Figure: (Left) 45 learned 3 by 3 network dictionary patches from Glauber chain sampling from
the Word Adjacency Matrix of "Mark Twain - Adventures of Huckleberry Finn". Black=1 and
white = 0 with gray scale. (Middle) Heat map of the original Word Adjacency Matrix where
blue = 0 and yellow = 1 (Right) the reconsrtuction.
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Applications of ONMF

CYCLE by M.C. Escher UCLA Facebook Network CALTECH Facebook Network
o

100 8

200 4

300

400

500

600

700

a  Image Dictionary b Network Dictionary c Network Dictionary

Figure: [6] (a) 25 latent shapes learned from an image by NMF. (b,c) 25 latent motifs for
k = 21-node connected subgraphs learned from UCLA and CALTECH.
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Applications of ONMF

ONMF for image reconstructio

Deanna Needell (UCLA)

n
[
n
|

BEBER!
EEN®R

Fig. 7: Image Compression Via ONMF. (Top) uncompressed
image of Leonid Afremov’s famous painting “Rain’s Rus-
tle.” (Middle) 25 of the 100 learned dictionary elements,
reshaped from their vectorized form to color image patch
form. (Bottom): Painting compressed using a dictionary of 100
vectorized 20 x 20 color image patches obtained from 30 data
samples of ONMEF, each consisting of 1000 randomly selected
sample patches. We used an overlap length of 15 in the patch
averaging for the construction of the compressed image.
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Applications of ONMF

ONMF for color restoration

= NEY

Fig. 8: Color Restoration. (First) Original image of grass
and sand. (Second) Conversion of first image using mat-
lab’s default (linear) color to grayscale conversion function,
rgb2gray. (Third) Restored color image, obtained by apply-
ing our method to the second (grayscale) image using the
dictionary below. (Fourth) The first row displays the grass
dictionary, the second row displays the sand dictionary. Each
dictionary contains five 10 x 10 color image patches. These
were trained on our ONMF with 20 batches of 1000 randomly
selected sample patches each. We used maximal patch overlap
in the restoration process.
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More applications

(O)NMF for image co-segmentation

(a) Cow (b) Dog (¢) Car (d) Bicycle
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Applications of ONMF

ONMF for video reconstruction

i |

Fig. 4: Candle Video Dictionaries. The first dictionary consists
of four elements and was trained by an alternating least
squares-based, offline NMF, the second dictionary below was
trained using ONMF, where each time frame of the video
represented a new data point.

Deanna Needell (UCLA)

. 5: Candle video and learned dictionary at various time
frames (time goes from top to bottom). The left column
corresponds to the actual video frame. The remaining four
columns each correspond to a particular dictionary element.
The six correspond to different time frames, 1, 5, 7, 15, 35,
and 75

Online nonnegative matrix factorization for Markovian data



Applications of ONMF

ONMF for video denoising

Aol 4qMeld 4

Fig. 6: Learning time evolution dictionary from a video frame using NMF. The first and last 75 frames of the video are from a
candle video and white noise, respectively, as shown below. By an approximate factorization of shape [time X space] = [time
x 5] [5 x space], we learn 150 x 5 dictionary matrix, whose columns give an approximate basis for the time evolution of each
pixel of the video frame. The learned time evolution dictionaries detect the planeted ‘phase transition’ between frames 75 and
76.
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Applications of ONMF

ONMF as a pattern detection and prediction tool — COVID19

Confirmed Death Recovered
0.23 0.14 0.10 0.07 0.23 0.14 0.10 0.07
0.06 0.05 0.04 .3 0.06 0.05 0.04 0.03
b .
ﬁ == —+— Korea, South
----- ~»— China
0.03 0.02 0.02 0.02
= S — US
— ltaly
7 —— Germany

0.02_0.02 0.02 002 S0z 0.02_ 0.02_ 0.02 — Spain

B — | N
o= e e
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
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| . ‘V’ﬁz

L = By 3
001 001 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 o0.01

Fig. 2. 24 Joint dictionary atoms of 6-day evolution patterns of new daily cases (confirmed/death/recovered) in six countries (S. Korea,
China, US, Italy, Germany, and France). Each dictionary atom is a 6 * 6 * 3 = 108 di ional vector corresponding to time * country *
case type. The corresponding importance metric is shown below each atom. 50 atoms are learned and the figure shows top 24 with the
highest importance metric.
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Applications of ONMF

ONMF as a pattern detection and prediction tool — COVID19

Prediction of COVID-19 daily new confirmed cases Joint dictionary of 6-day evolution
400
Korea, S. 5000 China s [
—e— Original —e— Original
200 —-- Prediction | 5500 =i+ Prediction
B T o
us 4000 taly
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H'” us
0 0 taly
Germany
4000 Germany 5000 Spain spain
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Fig. 3. Joint dictionary learning and prediction for the time-series of new daily cases (confirmed/death/recovered) in six countries (S. Korea,
China, US, Italy, Germany, and France). After joint dictionary atoms are learned by minibatch learning, they are further adapted to the
time-series data by concurrent online learning and predictions. (Right) Joint dictionary atoms of 6-day evolution patterns of new confirmed
cases. The corresponding importance metric is shown below each atom. (Left) Plot of the original and predicted daily new confirmed cases
of the six countries. The errorbar in the red plot shows standard deviation of 1000 trials.
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Applications of ONMF

ONMF as a pattern detection and prediction tool — COVID19

Prediction of COVID-19 daily new deaths Joint dictionary of 6-day evolution
4 Korea, S China ) !
—e~ Original ”"ll}H”HH 100 —e— Original /
24 = Prediction 50 =i+ Prediction 0.23 0.14 0.10 0.07
———_
0 . 0
5 I|'H| = 0.06 0.05 0.04
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0
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90° 0% 10972097 100 0% 0® 20° 00" 10971097 200 0% 0°
907 0% 908 0% 0P 407" 99 497 90 g0 405 @07 g0F 99

0.01 001 001 001

Fig. 4. Joint dictionary learning and prediction for the time-series of new daily cases (confirmed/death/recovered) in six countries (S. Korea,
China, US, Italy, Germany, and France). After dictionary atoms representing fundamental joint time-series patterns are obtained by minibatch
learning, they are further adapted to the time-series data by online learning while making predictions. (Right) Joint dictionary atoms of 6-day
evolution patterns of new death cases. The corresponding importance metric is shown below each atom. (Left) The plot of the original and
predicted daily new death cases of the six countries. The error bar in the red plot shows the standard deviation of 1000 trials.
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Applications of ONMF

ONMF as a pattern detection and prediction tool — COVID19
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Prediction of COVID-19 daily new recovered cases
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Fig. 5. Joint dictionary learning and prediction for the time-series of new daily cases (confirmed/death/recovered) in six countries (S. Korea,
China, US, Italy, Germany, and France). After joint dictionary atoms are learned by minibatch learning, they are further adapted to the
time-series by online learning while making predictions. (Right) Joint dictionary atoms of 6-day evolution patterns of new recovered cases.
The corresponding importance metric is shown below each atom. (Left) The plot of the original and predicted daily new recovered cases of
the six countries. The errorbar in the red plot shows the standard deviation of 1000 trials.
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Applications of ONMF

Extension to Online NN Tensor Factorization (ONTF)

HENE SPEE
[Ilm EIIEE

FIGURE 3. Learning 24 CP-dictionary patches by Online CPDL: (a) original (top left) and reconstructed
images (top right from (b), bottom left from (c), and bottom right from (d)), (b) dictionary learned by
Online CPDL, (c) dictionary learned by vectorizing the spatial modes and applying Online CPDL to re-
sulting tensor then reshaping, (d) dictionary learned using online CPDL on fully vectorized image patch
data.
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Mathematics

More applications

ONMF on EEG node correlations (UCI EEG Alcoholism data, 64 electrodes)
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Mathematics

More applications

ONMF on EEG data (node correlations)
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(Pearson) (ONMF)
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UC LA Mathematics

More applications

ONMF on EEG data (node correlations)

(Pearson w/ gradient) (ONMF w/ gradient) (ONMF w/o gradient,
r=16)

On the Topic of Topic Modeling



Applications of ONMF

ONTF to learn activation patterns in mouse cortex

Temporal activation

- Fee i

FIGURE 4. Learning 20 CP-dictionary patches from video frames on brain activity across the mouse cortex.
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Applications of ONMF

ONTF to learn weather patterns
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FIGURE 5. Display of one atom from three different dictionaries of 25 atoms which were obtained from
Online CPDL on weather data: (a) no reshaping, (b) data which was reshaped to 36 x (24 x 4), and (c)
data which was reshaped to (36 x 24) x 4.
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Learning features from MCMC trajectories - Ising model

> The two dimensional Ising model (1920) is one of the most well-known spin
systems in the physics literature, which models ferromagnetism.

Flgure MCMC simulation of Ismg model on 200 by 200 square lattice at temperature T = 0.5
(left), T=2.26 (middle), and T =5 (right).
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Learning features from MCMC trajectories - Ising model

> The two dimensional Ising model (1920) is one of the most well-known spin
systems in the physics literature, which models ferromagnetism.

> For each temperature parameter T > 0, Define a probability distribution 7 on the
set {—1, 1}Zz of spin configurations by

mr(X) x exp (—}er(i)x(j)> .

i~j

Figure: MCMC simulation of Ismg model on 200 by 200 square lattice at temperature T = 0.5
(left), T=2.26 (middle), and T =5 (right).
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Learning features from MCMC trajectories - Ising model

Reconstructed spin configuration

Dictionary patches of size 20 An Ising spin configuration
learned from MCMC trajectory sampled at temperature T = 0.5 using learned dictionary patches

e’
%

AR NON A™

4
i =
X 7 €O

Figure: (Left) 100 learned dictionary patches from a MCMC Gibbs sampler for the Ising model
on 200 x 200 square lattice at a subcritical temperature (T = 0.5). (Middle) A sampled spin
configuration at T = 0.5. (Right) Reconstruction of the original spin configuration in the
middle using the dictionary patches on the left.
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Learning features from MCMC trajectories - Ising model

Dictionary patches of size 20 An Ising spin configuration Reconstructed spin configuration

learned from MCMC trajectory sampled at temperature T = 2.26 using learned dictionary patches

Figure: (Left) 100 learned dictionary patches from a MCMC Gibbs sampler for the Ising model
on 200 x 200 square lattice near the critical temperature (T = 2.26). (Middle) A sampled spin
configuration at T = 2.26. (Right) Reconstruction of the original spin configuration in the
middle using the dictionary patches on the left.
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Learning features from MCMC trajectories - Ising model

Dictionary patches of size 20 An Ising spin configuration Reconstructed spin configuration

learned from MCMC trajectory sampled at temperature T = 5 using learned dictionary patches

Figure: (Left) 100 learned dictionary patches from a MCMC Gibbs sampler for the Ising model
on 200 x 200 square lattice at a supercritical temperature (T = 5). (Middle) A sampled spin
configuration at T = 5. (Right) Reconstruction of the original spin configuration in the middle
using the dictionary patches on the left.
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Further research directions

> ONMF for variable number of dictionaries (added optimization dimension)
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Further research directions

> ONMF for variable number of dictionaries (added optimization dimension)

> ONMF for non-stationary data matrices (what do we want to learn in this case?)

Hanbaek Lyu and Deanna Needell (UCLA) Online nonnegative matrix/tensor factorization for Markovian data



Further research directions

> ONMF for variable number of dictionaries (added optimization dimension)
> ONMF for non-stationary data matrices (what do we want to learn in this case?)

» Dynamic topic modeling using ONMF
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Further research directions

v

ONMEF for variable number of dictionaries (added optimization dimension)

v

ONMEF for non-stationary data matrices (what do we want to learn in this case?)
» Dynamic topic modeling using ONMF

> Extension to online Tensor Factorization (no convergence result known even for the
i.i.d. case)
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Thanks!
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5. Proof of convergence
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Notations

> Fix A > 0 and define the following the quadratic loss function

XW) = infIX— WHIE+ X[ H,

Define the expected loss and empirical loss functions

W) = BrlXC W], (W) = | DX W)
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Notations

> Fix A > 0 and define the following the quadratic loss function

XW) = infIX— WHIE+ X[ H,

Define the expected loss and empirical loss functions

W) = BrlXC W], (W) = | DX W)

> ONMF algorithm:

H, = argminHeR;xonHXt — Wit H|2 4 M| H|1

Upon arrival of X;: 0
W, = argmin . (W),

where

A 1<
(W) = < D (I1Xs — WH|[Z + A Hslf1)-
s=1
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Notations

> Fix A > 0 and define the following the quadratic loss function

XW) = infIX— WHIE+ X[ H,

Define the expected loss and empirical loss functions

W) = BrlXC W], (W) = | DX W)

> ONMF algorithm:

H, = argminHeR;xonHXt — Wit H|2 4 M| H|1

Upon arrival of X;: 0
W, = argmin . (W),

where

A 1<
(W) = < D (I1Xs — WH|[Z + A Hslf1)-
s=1

» WTS: W, converges to the set of critical points of the expected loss f
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Proposition

Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the
followings hold almost surely:

() Forr(Werr) — B(We) < &5 (6(Xes1, Wi) — (W),

(i) 0< &5 (E(Wt) - ft(wt)) < A (U Kevr, W) — R(Wa)) + (We) — Fepr(Wepa).

t+1

> Recall that % > f. for all > 0.
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Proposition

Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the
followings hold almost surely'

(i) Fra(Wen) — R(We) < 7 (U(Xep1, We) — R(WR)).
(i) 0< (?t(wt) - ft(wt)) < L (UXern, Wh) — (W) + F(WE) — Foa(We).

> Recall that %, > £, for all t > 0.
> Also note that Tt (Wh) = -1 (tft(Wt) (Ko, Wt))
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Proposition

Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the
followings hold almost surely'

(i) Fra(Wen) — R(We) < 7 (U(Xep1, We) — R(WR)).
(i) 0< (E(Wt) - ft(wt)) < L (UXern, Wh) — (W) + F(WE) — Foa(We).

> Recall that %, > £, for all t > 0.
> Also note that Tt (Wh) = -1 (tft(Wt) (Ko, Wt))

>

F1(Wept) — R(WE) = Fopr (Wepn) — Fepn(We) + Ry (We) — R(We)

fi(We) — K Wt)]

n A 1
= |frr1(Wep1) — le(Wt)] + P (U(Xey1, We) — f(Wh)) + [ t11

< g7 (X, We) — £(WA))

This shows (i). Using the second equality above and the fact that
frr1(Wetr) < fipr (W), this also shows (ii).
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Proposition

Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the
followings hold almost surely:

(i) Frr(Wesr) — Fi(We) < 1 (U(Xep1, We) — R(WA)).

(i) 0< 5 (RWh) = A(WA)) < o (UXesa, W) — R(WA)) + F(We) = Fova (W),

t+1 t+1

Sketch of main argument:
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Proposition
Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the

followings hold almost surely'
(i) Forr(Werr) = (W) < 2 (€(Xeva, We) — £ WR)).

(i) 0. o2y (ROWO) = AW0)) < oy (0sa, W) — (WR)) + (WA = Fora (W),

Sketch of main argument:
> By bounding the sum of == (¢(Xe+1, We) — f(W:)) in expectation, (i) will show

that E[f(W,)] converges.

t+1
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Proposition

Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the
followings hold almost surely'

() Forr(Wepr) — B(We) < 25 (0(Xera, W) — (W),

(i) 0. o2y (ROWO) = AW0)) < oy (0sa, W) — (WR)) + (WA = Fora (W),

Sketch of main argument:
> By bounding the sum of == (¢(Xe+1, We) — f(W:)) in expectation, (i) will show
that E[f(W,)] converges.

» Then (i) will show that A(W;) — fi(W:) — 0 as t — co.

t+1
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Proposition

Let (W;—1, Ht)e>1 be a solution to the ONMF algorithm. Then for each t > 0, the
followings hold almost surely'

() Forr(Wepr) — B(We) < 25 (0(Xera, W) — (W),

(i) 0. o2y (ROWO) = AW0)) < oy (0sa, W) — (WR)) + (WA = Fora (W),

Sketch of main argument:

> By bounding the sum of == (¢(Xe+1, We) — f(W:)) in expectation, (i) will show
that E[f(W,)] converges.

» Then (i) will show that A(W;) — fi(W:) — 0 as t — co.

> Since f; < % and every limit point of the sequence (W;)¢o is a critical point of Fo
this will show that every limit point of (W;):>¢ is also a critical point of £.

t+1
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Key estimate in the i.i.d. case

> Suppose data matrices X; are i.i.d. and let F; denote the information up to time t.
Then

E |0(Xei1, We) — f(We)

ft} = Exen[£(X, Wo)] — (W) (1)

= W) — fi(We) < [If = felloo (2)
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Key estimate in the i.i.d. case

> Suppose data matrices X; are i.i.d. and let F; denote the information up to time t.
Then

E |0(Xei1, We) — f(We)

ff} — Exon[0(X, We)] — A(W2) (1)
W) — (W) < [IF— fil @)

> AW) — f(W) = 0 by SLLN
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Key estimate in the i.i.d. case

> Suppose data matrices X; are i.i.d. and let F; denote the information up to time t.
Then

E [£(Xes1, We) — (W)

ff} = Exen [0(X, WA)] — fi( W) (1)
= AWe) — A(WH) < [[F— fillo ®)

> AW)— f(W) — 0 by SLLN
> ||f— fi]loo— O Glivenko-Cantelli Thm. (W & Compact set)
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Key estimate in the i.i.d. case

> Suppose data matrices X; are i.i.d. and let F; denote the information up to time t.
Then

E [£(Xes1, We) — (W)

ff} = Exen [0(X, WA)] — fi( W) (1)
= AWe) — A(WH) < [[F— fillo ®)

> AW)— f(W) — 0 by SLLN
> ||f— fi]loo— O Glivenko-Cantelli Thm. (W & Compact set)
» E[t"/?||f— f||s] = O(1) by uniform functional CLT
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Key estimate in the i.i.d. case

> Suppose data matrices X; are i.i.d. and let F; denote the information up to time t.
Then

E [£(Xes1, We) — (W)

ff} = Exen[6(X, W] — R(We) (1)

= W) — fi(We) < [If = felloo (2)

v

AW) — (W) — 0 by SLLN
||[f— fi]|co— O Glivenko-Cantelli Thm. (W € Compact set)

E[t"/?||f — f||s] = O(1) by uniform functional CLT
> Averaging over F, this gives
"
) |

E [(]E {E(Xm, ‘:Vj_)l_ (W)

v

v

IN

t P [ f — fil|oc] (3)

= 0o(t*?). (4)
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Key estimate in the Markovian case

> If (Xt)e=0 is Markovian, then E[¢(Xe 1, W) | F] could be very different from
W) = Exwr [((X, W)].
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Key estimate in the Markovian case

> If (Xt)e=0 is Markovian, then E[¢(Xe 1, W) | F] could be very different from
AW) = Exwx[€(X, W)].

> Instead, condition on a distant past F;_y and see how much the chain mixes to
the stationary distribution during [t — N, t].
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Key estimate in the Markovian case

> If (Xt)e=0 is Markovian, then E[¢(Xe 1, W) | F] could be very different from
AW) = Ex~x[6(X, W)].

> Instead, condition on a distant past F;_y and see how much the chain mixes to
the stationary distribution during [t — N, t].

E {4(xt+1, W) ‘J—'t_N} =D U, W) P (x,x)

x' €

= > U, W) + Y U WP (x,x) = w(x'))

x'€Q x'eQ
<D W) (X)) + 20, W) oo [P (x, ) = 7w
x'eQ

= W) + 2], W)ool| P (%, ) = 7l 7.
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Key estimate in the Markovian case

Proposition

Suppose (A1)-(A2) and (M2). Fix W e C. Then for eacht>0 and 0 < N < t,
conditional on the information F;_n up to time t — N,

]E [e(xm, W) — (W) \f} < 1AW) — fin(W)| (5)

+ Ntww + 1, W) (©)
+ 208, Wl supl P ) = wlrve (7)
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Lemma

Suppose (A1)-(A2) and (M1) hold.
(i) Let (a:)e=0 be a sequence of non-decreasing non-negative integers such that

ar = o(t). Then there exists absolute constants Ci, G, C3 > 0 such that for all
sufficiently large t > 0,

E HE {E(Xtﬂ, W) — (W)

< o

t+1 ST e

-

] G G

C
4 =2 sup|| P (x, ) — 7| 7v-
t xeQ
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Lemma

Suppose (A1)-(A2) and (M1) hold.

(i) Let (a:)e=0 be a sequence of non-decreasing non-negative integers such that
ar = o(t). Then there exists absolute constants Ci, G, C3 > 0 such that for all
sufficiently large t > 0,

E HE {E(Xtﬂ, W) — (W)

< = 2
11 + —at

-2 R

-

] G G

C
4 =2 sup|| P (x, ) — 7| 7v-
t xeQ

(ii) Further assume that (M2) holds. Then we have

> (& [fes(wen) - om]) <3

t=0

E |:£(Xf+17 W;) — fi(Wh)

t+1 ”<oo
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Proof of Thm 1

N N + -
> Since Y (E [ﬂ+1(Wt+1) — fi( Wt)D < o0, E[fy(W;)] converges.
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Proof of Thm 1

N N + -
> Since Y (E [f}+1(Wt+1) — fi( Wt)D < o0, E[fy(W;)] converges.

> By the earlier inequalities and estimates,

N R(W) — (W) | = E[R(WL)] — E[R(W)]
E [Z t—i—l] =2 1

t=0 t=0

i E[f Xt 1, Wt)] - ft( Wt)]
=3 (Bfa(Wern)] - Ef(Wo)])
< 00.
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Proof of Thm 1

N N + -
> Since Y (E [f}+1(Wt+1) — fi( Wt)D < o0, E[fy(W;)] converges.

> By the earlier inequalities and estimates,

N R(W) — (W) | = E[R(WL)] — E[R(W)]
E [Z t—i—l] =2 1

t=0 t=0

i E[Z Xt 1, Wt)] - ft( Wt)]
=3 (Bfa(Wern)] - Ef(Wo)])
< 00.

> Hence > 77, W < 00 a.s. This implies f;(W;) — fi(W:) — 0 a.s. as t — oc.

Hanbaek Lyu and Deanna Needell (UCLA) Online nonnegative matrix/tensor factorization for Markovian data



Proof of Thm 1

N N + -
> Since Y (E [f}+1(Wt+1) — fi( Wt)D < o0, E[fy(W;)] converges.

> By the earlier inequalities and estimates,

N R(W) — (W) | = E[R(WL)] — E[R(W)]
E [Z t—i—l] =2 1

t=0 t=0

i E[Z Xt 1, Wt)] - ft( Wt)]
=3 (Bfa(Wern)] - Ef(Wo)])
< 00.

> Hence > 77, W < 00 a.s. This implies f;(W;) — fi(W:) — 0 a.s. as t — oc.

> Since f; > f; and Aft(Wt) — f(W:) — 0 a.s., argue that W; has to converge to the
set of critical points of f= limi_ f:.
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