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The Data Deluge

How can we handle all this data?
@ Build hardware that can store and trasmit more data.

o We need the resources.
e There are fundamental limitiations to data storage.

@ Design more efficient compression methods.

o Enter the world of: Compressed Sensing (CS)

o CS gives us efficient compression techniques: “Compressed”

e More surprisingly, we can acquire the compression without ever
having to acquire the entire object!: "Sensing”

e CS has numerous applications (Radar, Error Correction,
Computational Biology (DNA Microarrays), Geophysical Data
Analysis, Data Mining, classification, Neuroscience, Imaging

)
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Why is compression possible?

256 x 256 “Boats” image
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Methods

Why is compression possible?

256 x 256 “Boats” image

Because most practical signals, such as images, contain much less
information than their dimension would suggest.
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e In the coordinate basis: ||f]lo < |supp(f)| <s < d
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Why is compression possible?

Assume f is s-sparse:
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@ In the coordinate basis: ||f|lo = |supp(f)| < s <« d

@ In some orthonormal basis: f = Dx where ||x|jp < s < d

Deanna Needell Robust image recovery via total-variation minimization



Motivation and Methods

Motivation
Methods

Why is compression possible?

Assume f is s-sparse:

e In the coordinate basis: ||f]lo < |supp(f)| <s < d

@ In some orthonormal basis: f = Dx where ||x||p < s < d
In practice, we encounter compressible signals.

Deanna Needell
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© Signal of interest f € RN*N
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Motivation and Methods Motivation

Methods

Mathematical Formulation

To compress a signal, we take a small number of measurements:
@ Signal of interest f € RN*N
@ Measurement operator A: RVXN — R™ (m <« N?)
© Measurements y = Af 4 €.

@ y is the compression of f!

© And then the measurements get corrupted with noise.
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Compression
@ D ' A
Coefficient Signal Compressed
Domain Domain Sensing

Domain
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Questions

@ What type of measurement operator A can we use?

@ How do we reconstruct the signal f from the compressed
measurements y?
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Review and Notation

tpnorms: ||zlp = (32, |21[°)"/?

Usual (Euclidean ¢>) distance: ||z|l» = (3; |z,-\2)1/2
{1 (Taxicab) distance: ||z[1 = (32;|zi])

The lr-ball: {z: ||z||2 < 1} (circle/sphere)

The ¢1-ball: {z:||z||; <1} (diamond/octahedron)

For signal f, f; (fB) is its best s-sparse representation (in
basis B)

f will denote the reconstruction of f

h = argmin, g(z) is the argument z which minimizes g(z)
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Assume A is one-to-one on all s-sparse signals. Assume there is no
noise. Reconstruct an s-sparse signal f by:

f =argmin||z|o suchthat Az =y.
z

Then we reconstruct f perfectly: fF=f.
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How should we reconstruct 7

Easy Theorem

Assume A is one-to-one on all s-sparse signals. Assume there is no
noise. Reconstruct an s-sparse signal f by:

f =argmin||z|o suchthat Az =y.
z

Then we reconstruct f perfectly: fF=f.

Cool, except this problem is NP-Hard!
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N
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Was that contrived?

(z: Az=y}

But in higher dimensions, for “sufficiently random” operators A,
this picture happens with extremely low probability!
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Okay, but what about noise?

Recall y = Af 4+ €.

{z:||Az-y|| <}
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where r bounds the noise term: [|£]]2 < r.
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Idea behind a method

From our geometric intuition, we can reconstruct the signal f from
its measurements y = Af + &:

@ If the measurement operator A is “well-behaved”
@ We can reconstruct our image f by solving

f =argmin||z|; suchthat [Az—yl|><r,
z

where r bounds the noise term: [|£]]2 < r.

© If f is sparse with respect to some orthonormal basis B,
meaning, f = Bx for sparse x,

f =argmin|[B71z||; suchthat |Az—yl|><r,
z

@ We call these methods the /1-minimization method, which are
easily solved by convex programming methods,
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How do we actually reconstruct the signal f from
measurements y?

¢1-minimization [Candés-Romberg-Tao '05]

Let A satisfy the Restricted Isometry Property and suppose fis
the solution to the ¢1-minimization problem, from measurements

y = Af + € (with |¢]l2 <€),
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¢1-minimization [Candés-Romberg-Tao '05]

Let A satisfy the Restricted Isometry Property and suppose fis
the solution to the ¢1-minimization problem, from measurements
y = Af + & (with [[£]]2 < €). Then we can stably recover the signal

f:
I — %1

NG

If =Fll2 Se+
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Let A satisfy the Restricted Isometry Property and suppose fis
the solution to the ¢1-minimization problem, from measurements
y = Af + & (with [[£]]2 < €). Then we can stably recover the signal

f:
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NG

Thus, the reconstruction error is proportional to the noise level and
the tail of the compressible signal.

If =Fll2 Se+
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How do we actually reconstruct the signal f from
measurements y?

¢1-minimization [Candés-Romberg-Tao '05]

Let A satisfy the Restricted Isometry Property and suppose fis
the solution to the ¢1-minimization problem, from measurements
y = Af + & (with [[£]]2 < €). Then we can stably recover the signal

f:
I — %1

NG

Thus, the reconstruction error is proportional to the noise level and
the tail of the compressible signal. This error bound is optimal.

If =Fll2 Se+
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Restricted Isometry Property

o A satisfies the Restricted Isometry Property (RIP) when there
is 0 < c such that

(1= 0)fll2 < |Afl2 < (1 +0)[[f]l2 whenever ||f]lo <.
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o A satisfies the Restricted Isometry Property (RIP) when there
is 0 < c such that

(1= 0)fll2 < |Afl2 < (1 +0)[[f]l2 whenever ||f]lo <.

@ Gaussian or Bernoulli measurement matrices satisfy the RIP
with high probability when

m 2 slog N.
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Restricted Isometry Property

o A satisfies the Restricted Isometry Property (RIP) when there
is 0 < c such that

(1= 0)fll2 < |Afl2 < (1 +0)[[f]l2 whenever ||f]lo <.

@ Gaussian or Bernoulli measurement matrices satisfy the RIP
with high probability when

m 2 slog N.

@ Random Fourier and others with fast multiply have similar
property: m > slog* N.
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Imaging

Imaging via Compressed Sensing
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Imaging

Image sparsity

Recall, some images are sparse:
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Imaging Total Variation

Imaging via compressed sensing

Results in compressed sensing [CRT '06, etc.] imply:
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Imaging Total Variation

Imaging via compressed sensing

Results in compressed sensing [CRT '06, etc.] imply:
o if an image f € RV*N is s-sparse
@ if the measurement operator satisfies the RIP

@ then using traditional ¢1-minimization,

A
f—Fllp < —=IL
R R
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Imaging with CS
Total Variation

Imaging

Imaging via compressed sensing

Recall, some images are sparse with respect to some orthonormal
basis, like the Haar wavelet basis:

Hew NN

Figure: Haar basis functions
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Imaging via compressed sensing

Results in compressed sensing [CRT '06, etc.] imply:
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Results in compressed sensing [CRT '06, etc.] imply:
o if f € RV*N is s-sparse in an orthonormal basis B

@ if the measurement operator satisfies the RIP
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Imaging with CS

Imaging Total Variation

Imaging via compressed sensing

Results in compressed sensing [CRT '06, etc.] imply:
o if f € RV*N is s-sparse in an orthonormal basis B
@ if the measurement operator satisfies the RIP
@ then using /1-minimization with basis B,

N
I =l < | : LI

~
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Imaging Total Variation

Other notions of sparsity for images

256 x 256 “Boats" image
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Imaging with CS
Total Variation

Imaging

Natural images

Images are compressible in the discrete gradient.
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Imaging Total Variation

Natural images

Images are compressible in the discrete gradient.

O]

The discrete directional derivatives of an image f € RV*N are
fio : RNV — RN (60 = fike— fiovs
. NN Nx(N—1
fy RNV 5 RVVZD ()0 = fiu = fiu,
the discrete gradient or total variation operator is

VIf] = (£, 1)
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Imaging with CS
Total Variation

Imaging

Natural Notation

Images are compressible in discrete gradient.

Deanna Needell Robust image recovery via total-variation minimization



Imaging with CS
Total Variation

Imaging

Natural Notation

Images are compressible in discrete gradient.

e “Phantom”: ||V[f]|lo = .03N?
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Imaging with CS
Total Variation

Imaging

Natural Notation

Images are compressible in discrete gradient.

e “Phantom”: ||V[f]|lo = .03N?
e "Boats": [|V[f] — V|[f]s||2 decays quickly in s
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Imaging with CS
Total Variation

Imaging

Total Variation Image Recovery
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Imaging with CS

Imaging Total Variation

Comparison of two compressed sensing reconstruction
algorithms

Haar-minimization (L;-Haar)

Fraar = argminy |H(Z)|1 subject to [|[AZ —y|z<e
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Imaging with CS

Imaging Total Variation

Comparison of two compressed sensing reconstruction
algorithms

Haar-minimization (L;-Haar)

Fraar = argminy |H(Z)|1 subject to [|[AZ —y|z<e

Total Variation minimization (TV)

frv = argminy |V[Z]|l1 subject to [|AZ — y||2 < &, where

|Z|lTv = |V[Z]|]1 is the total-variation norm.
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Imaging Total Variation

Comparison of two compressed sensing reconstruction
algorithms

Haar-minimization (L;-Haar)

Fraar = argminy |H(Z)|1 subject to [|[AZ —y|z<e

Total Variation minimization (TV)

frv = argminy |V[Z]|l1 subject to [|AZ — y||2 < &, where

|Z|lTv = |V[Z]|]1 is the total-variation norm.

The mapping Z — V[Z] is not orthonormal, stable image recovery
via (TV) is not mathematically justified!
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Imaging Ao
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Imaging via compressed sensing

(c¢) Li-Haar

Figure: Reconstruction using m = .2N?
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Imaging Total Variation

Imaging via compressed sensing

Figure: Reconstruction using m = .2N? measurements
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Imaging Ao
ging Total Variation

Imaging via compressed sensing

(a) Original

(b) TV (c) Li-Haar

Figure: Reconstruction using m = .2N? measurements
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Imaging via compressed sensing

(b) TV (c) Li-Haar
Figure: Reconstruction using m = .2N? measurements

Deanna Needell Robust image recovery via total-variation minimization



Wi
Imaging 3 B
ging Total Variation
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(b) TV (c) L1—H;ar

Figure: Reconstruction using m = .2N? measurements
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Imaging

Total Variation

Imaging via compressed sensing

InView (Austin TX)

% INVIEW
“single-pixel”
Compressive

sensing
SWIR
Camera

(1024x768) -
InView

SWIR
Result

* Target: black and white
print-out

* lllumination: SWIR source
(no visual source)

Figure: SWIR Reconstruction using m = .5N? measurements
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Imaging with CS

Imaging Total Variation

Pediatric MRI

(a—d) i n tropi contrast-enhanced T1-weighted MR images in 8-year-old boy
(a, ¢) Standard and (b, d) compressed sensing reconstruction images. (c, d) Zoomed images show improved
delineation of the pancreatic duct (vertical arrow), bowel (horizontal arrow), and gallbladder wall (arrowhead),
and equivalent definition of portal vein (black arrow) with L1 SPIR-IT reconstruction,

(Caffey Award : Faster Pediatric MRI Via Compressed Sensing - Shreyas Vasanawala et.al. (Stanford University))
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Imaging with CS

Imaging Total Variation

Empirical — Theoretical?

Empirically, it has been well known that

fry = argmin||Z||7y subject to [[AZ —y|2<e,  (TV)

provides quality, stable image recovery.

Deanna Needell Robust image recovery via total-variation minimization



Imaging with CS

Imaging Total Variation

Empirical — Theoretical?

Empirically, it has been well known that

fry = argmin||Z||7y subject to [[AZ —y|2<e,  (TV)

provides quality, stable image recovery.

No provable stability guarantees.
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First results on stability of TV
New Results

Stable signal recovery using total-variation minimization

Theorem (N-Ward '12)

From m > slog(N) linear RIP measurements, for any f € CN*N,
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Stable signal recovery using total-variation minimization

Theorem (N-Ward '12)

From m > slog(N) linear RIP measurements, for any f € CN*N,

f=argmin||Z|7v  such that ||A(Z) —y|2 <e,
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First results on stability of TV
New Results

Stable signal recovery using total-variation minimization

Theorem (N-Ward '12)

From m > slog(N) linear RIP measurements, for any f € CN*N,

f=argmin||Z|7v  such that ||A(Z) —y|2 <e,
satisfies

If = Fll7v < IVIF] = V[f]sll + V/se (gradient error)
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First results on stability of TV
New Results

Stable signal recovery using total-variation minimization

Theorem (N-Ward '12)

From m > slog(N) linear RIP measurements, for any f € CN*N,
f=argmin||Z|7v  such that ||A(Z) —y|2 <e,

satisfies

If = Fll7v < IVIF] = V[f]sll + V/se (gradient error)

and

[IVIF] = VIfls]la
NG +

If = Fll2 < log(N) € (signal error)
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First results on stability of TV
New Results

Stable signal recovery using total-variation minimization

Theorem (N-Ward '12)

From m > slog(N) linear RIP measurements, for any f € CN*N,
f=argmin||Z|7v  such that ||A(Z) —y|2 <e,

satisfies

If = Fll7v < IVIF] = V[f]sll + V/se (gradient error)

and

IVIA = Vsl
NG +

This error guarantee is optimal up to the log(/N) factor
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If = Fll2 < log(N) € (signal error)




First results on stability of TV
New Results

Stable signal recovery using total-variation minimization

Method of proof:

© First prove stable gradient recovery
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First results on stability of TV
New Results

Stable signal recovery using total-variation minimization

Method of proof:

© First prove stable gradient recovery

@ Translate stable gradient recovery to stable signal recovery
using a (nontrivial) Sobolev inequality which shows that Haar
coefficients of functions of bounded variation are in weak-/¢1

space.
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New Results

Open questions

@ Remove the log factor?
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First results on stability of TV
New Results

Open questions

@ Remove the log factor?

@ The relationship between Haar compressibiity and total
variation norm doesn’t hold in one-dimension. What about

stable (1D) signal recovery?
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First results on stability of TV
New Results

Open questions

@ Remove the log factor?

@ The relationship between Haar compressibiity and total
variation norm doesn’t hold in one-dimension. What about
stable (1D) signal recovery?

© [Patel, Maleh, Gilbert, Chellappa '11] Images are even sparser
in individual directional derivatives f,, f,. If we minimize
separately over directional derivatives, can we still prove stable
recovery?
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First results on stability of TV
New Results

Open questions

@ Remove the log factor?

@ The relationship between Haar compressibiity and total
variation norm doesn’t hold in one-dimension. What about
stable (1D) signal recovery?

© [Patel, Maleh, Gilbert, Chellappa '11] Images are even sparser
in individual directional derivatives f,, f,. If we minimize
separately over directional derivatives, can we still prove stable
recovery?

© Extend results to higher dimensions...movies? [In preparation.|
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First results on stability of TV
New Results

Movies are very sparse!

@ Movies are very sparse in all three dimensions
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@ Movies are very sparse in all three dimensions

@ Silicon Retina (Institute of Neuroinformatics) is the design of
a camera that mimics retinas
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Movies are very sparse!

@ Movies are very sparse in all three dimensions

@ Silicon Retina (Institute of Neuroinformatics) is the design of
a camera that mimics retinas

e Explanation of how the brain and eye communicate?
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New Results

Movies are very sparse!

@ Movies are very sparse in all three dimensions
@ Silicon Retina (Institute of Neuroinformatics) is the design of
a camera that mimics retinas
e Explanation of how the brain and eye communicate?

o Really cool video cameras! (lower cost, lower power
consumption, portable, continuous processing, real-time data

acquisition)
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First results on stability of TV
New Results

Movies are very sparse!

@ Movies are very sparse in all three dimensions

@ Silicon Retina (Institute of Neuroinformatics) is the design of
a camera that mimics retinas

e Explanation of how the brain and eye communicate?

o Really cool video cameras! (lower cost, lower power
consumption, portable, continuous processing, real-time data
acquisition)

o Dynamic Vision Sensor (DVS) from Silicon Retina, Institute of
Neuroinformatics
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New Results

Fast vision in bad lighting

Figure: (“RoboGoalie”, Silicon Retina, Institute of Neuroinformatics)
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robogoalie.swf
Media File (application/x-shockwave-flash)


First results on stability of TV
New Results

Fluid Particle Tracking Velocimetry

Figure: (“PTV", Silicon Retina, Institute of Neuroinformatics)
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fluid.swf
Media File (application/x-shockwave-flash)
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New Results

Mobile Robotics

Figure: (“Robotic Driver”, Silicon Retina, Institute of Neuroinformatics)
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driving.swf
Media File (application/x-shockwave-flash)
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New Results

Sleep disorder research

Figure: (“Sleeping Mouse”, Silicon Retina, Institute of Neuroinformatics)
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mousesleeping.swf
Media File (application/x-shockwave-flash)


First results on stability of TV
New Results

Thank you!

E-mail:
@ dneedell@cmc.edu

Web:

@ www.cmc.edu/pages/faculty/DNeedell
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