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Compressed sensing and dictionary learning

Guangliang Chen and Deanna Needell

Abstract. Compressed sensing is a new field that arose as a response to
inefficient traditional signal acquisition schemes. Under the assumption that
the signal of interest is sparse, one wishes to take a small number of linear
samples and later utilize a reconstruction algorithm to accurately recover the
compressed signal. Typically, one assumes the signal is sparse itself or with
respect to some fixed orthonormal basis. However, in applications one instead

more often encounters signals sparse with respect to a tight frame which may
be far from orthonormal. In the first part of these notes, we will introduce the
compressed sensing problem as well as recent results extending the theory to
the case of sparsity in tight frames.

The second part of the notes focuses on dictionary learning which is also
a new field and closely related to compressive sensing. Briefly speaking, a
dictionary is a redundant system consisting of prototype signals that are used
to express other signals. Due to the redundancy, for any given signal, there
are many ways to represent it, but normally the sparsest representation is
preferred for simplicity and easy interpretability. A good analog is the English
language where the dictionary is the collection of all words (prototype signals)
and sentences (signals) are short and concise combinations of words. Here we
will introduce the problem of dictionary learning, its applications, and existing
solutions.
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Many signals of interest contain far less information than their ambient di-
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signal acquisition schemes sample the entire signal only to discard most of that
information during the compression process. This wasteful and costly acquisition
methodology leads one to ask whether there is an acquisition scheme in which the
compressed samples are obtained directly, without the need for time and resources
to observe the entire signal. Surprisingly, the answer is often yes.

Compressive signal processing (CSP) or compressed sensing (CS) is a new and
fast growing field which seeks to resolve this dilemma [Can06,Don06,BS07,
DSP]. Work in CSP demonstrates that for a certain class of signals, very few
compressive samples are necessary to accurately represent the signal. In fact, the
number of samples required is proportional to the amount of information one wishes
to acquire from the signal, and only weakly dependent on the signal’s ambient
dimension. These samples can be acquired directly from the signal via a linear
mapping, and thus the costly process of observing the entire signal is completely
eliminated.

Once a signal is acquired via this CSP technology, one needs an efficient al-
gorithm to recover the signal from the compressed samples. Fortunately, CSP
has also provided us with methods for recovery which guarantee tractable and
robust signal reconstruction. The CSP methodology continues to impact areas
ranging from imaging [WLD+06,LDP07,PPM], analog-to-information conver-
sion [TWD+06,KLW+06,ME11] and radar [BS07,HS09] to geophysical data
analysis [LH07,TSHM09] and computational biology [DSMB09,MSW+10].

An important aspect of the application of CSP to real-world scenarios is that
the sparsifying basis must be known. Often, they are carefully designed based on a
mathematical model of the expected kind of signal, with corresponding requirement
that they possess some desired theoretical property, such as the Restricted Isometry
Property [CT05,CT06]. Typical choices are random matrices with subgaussian
entries or random sign entries.

The dictionary learning problem is closely related to the CSP but arises in a dif-
ferent context, where the main goal is to find compact and meaningful signal repre-
sentations and correspondingly use them in signal and image processing tasks, such
as compression [BE08], denoising [BCM05,EA06,MSE], deblurring [HX13],
and super-revolution [PETM09].

Specifically, given signal data x1, . . . ,xn ∈ RL, we train a dictionary D =
[d1, . . . ,dm] ∈ R

m×L, which can be thought of as an overcomplete basis consisting
of elementary signals (called atoms). We then use the learned dictionary to repre-
sent a signal x ∈ RL by finding the coefficient vector γ that satisfies the equation
x = Dγ. When the dictionary forms a basis, there is exactly one solution and thus
every signal is uniquely represented as a linear combination of the dictionary atoms.
While mathematically this is very simple to operate, such a unique representation
has very limited expressiveness.

When D is an overcomplete system, the problem has more than one solution.
This gives us greater flexibility in choosing which coefficient to use for the signal,
and allows us to seek the most informative representation, often measured by some
cost function C(γ):

γ∗ = argminC(γ) subject to x = Dγ.

For example, if one chooses C(γ) = ‖γ‖0, which counts the number of nonzero
entries, the above program effectively searches for the sparsest solution, a problem
commonly referred to as sparse coding [MZ93,OF96,CDS98,BDE09].
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However, similarly to CSP, the choice of the dictionary D is crucial but it often
requires extensive effort to build it. Traditionally, the signal processing community
heavily depended on the Fourier and wavelet dictionaries, which perform quite
well for 1-dimensional signals. However, these dictionaries are not adequate for
representing more complex natural signal data, especially in higher dimensions, so
better dictionary structures were sought.

A variety of dictionaries have been developed in response to the rising need.
These dictionaries emerge from one of two sources – either a mathematical model
of the data [AR77,Mal89,Dau92,Bas80,Jan81,CD04,CDDY00], or a set of
realizations of the data [AEB05,AEB06,ZCP+09,MBPS09,MBPS10,CM10,
CM11b,ACM12]. Dictionaries of the first type are often referred to as analytic
dictionaries, because they are characterized by an analytic formulation and often
equipped with a fast implicit implementation. In contrast, dictionaries of the sec-
ond type deliver increased flexibility and possess the ability to adapt to specific
signal data, and for this reason they are called data-dependent dictionaries. In this
manuscript we focus on data-dependent dictionaries.

Organization. The rest of the lecture notes consists of four sections, the first
two of which are devoted to compressive sensing and the last two to dictionary
learning. In each part, we carefully present the background material, the problem
being considered, existing solutions and theory, and its connection to other fields
(including frames).

2. Background to Compressed signal processing

2.1. The CSP Model. In the model of CSP, the signal f in general is an
element of Cd. Linear measurements are taken of the form

yi = 〈φi,f〉 for i = 1, 2, . . .m,

where m � d. The vectors φi can be viewed as columns from an m× d matrix Φ,
which we call the sampling operator, and the measurement vector y is of the form
y = Φf . With m � d, Φ clearly has a nontrivial nullspace and thus the problem
of reconstructing f from y is ill-posed without further assumptions. The additional
assumption in CSP is that the signals of interest contain far less information than
the dimension d suggests. A means for quantifying this notion is called sparsity. We
say that a signal f ∈ C

d is s- sparse when it has at most s non-zero components:

(2.1) ‖f‖0 def
= | supp(f)| ≤ s � d,

where ‖ · ‖0 denotes the �0 quasi-norm. For 1 ≤ p < ∞, ‖ · ‖p denotes the usual
p-norm,

‖f‖p :=

(
d∑

i=1

|fi|p
)1/p

,

and ‖f‖∞ = max |fi|. In practice, signals are often encountered that are not
exactly sparse, but whose coefficients decay rapidly. Compressible signals are those
satisfying a power law decay:

(2.2) |f∗
k | ≤ Rk(−1/q),

where f∗ is a non-increasing rearrangement of f , R is some positive constant, and
0 < q < 1. Note that in particular, sparse signals are compressible and for small
values of q compressibility becomes essentially the same as sparsity. In any case,
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compressible signals are well approximated by sparse signals since the majority of
the energy in the signal is captured by a few components. If we denote by fs the
vector consisting of the s largest coefficients in magnitude of f , then we see that
for compressible signals f and fs are close,

‖f − fs‖2 ≤ Rs1/2−1/q and ‖f − fs‖1 ≤ Rs1−1/q.

Therefore when working with compressible signals we may capture the majority
of the information in the signal by taking advantage of sparsity.

One observes however that this definition (2.1) of sparsity requires that the
signal itself contain few non-zeros. This notion can be generalized by asking instead
that the signal f of interest be sparse with respect to some sparsifying basis. We fix
some orthonormal basis, written as the columns of the matrix D. Then formally,
we will again call a signal f s-sparse when

(2.3) f = Dx with ‖x‖0 ≤ s � d.

We call x the coefficient vector. We will say that f is compressible when its co-
efficient vector x satisfies the power law decay as in (2.2). Many signals in practice
are compressible in this sense. Natural signals such as images are often compressible
with respect to the identity or wavelet sparsifying basis [CT05,CRT06b,CW08].
Likewise, manmade signals such as those in radar, medical imaging, and commu-
nications applications are compressible with respect to the Fourier basis and other
sparsifying bases [BS07,Rom08]. Since D is an orthonormal system, we may
think of absorbing D into the sampling operator and attempting to estimate f by
estimating x. From this viewpoint we can assume f is sparse with respect to the
coordinate basis and acknowledge that results for this class of signals apply also to
the broader class which are sparse with respect to some fixed orthonormal basis.

2.2. Sampling Mechanisms. The sampling operator Φ is a linear map from
C

d to some lower dimensional space C
m. It is clear that to recover a sparse signal

f from its measurements y = Φf one at least needs that Φ is one-to-one on all
sparse vectors. Indeed, if this is the case then to recover f from y one simply solves
the minimization problem

(2.4) f̂ = argmin
g∈Cd

‖g‖0 subject to Φg = y.

Then since Φ does not map any two sparse vectors to the same image, it must

be that we recover our signal, f̂ = f . This minimization problem however, is
intractable and NP-Hard in general [Mut05, Sec. 9.2.2]. We thus consider slightly
stronger requirements on Φ. The first assumption one can make on the sampling
operator is that its columns are incoherent. For a matrix Φ with unit norm columns
{φi}, we define its coherence μ to be the largest correlation among the columns,

μ = max
i �=j

〈φi,φj〉 .

A sampling operator is incoherent when its coherence μ is sufficiently small. In-
coherent operators are thus those which are approximately orthonormal on sparse
vectors.

An alternative property which captures this idea was developed by Candès and
Tao and is called the Restricted Isometry Property (RIP) [CT05,CT06]. The RIP
implies incoherence and that the operator Φ approximately preserves the geometry
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of all sparse vectors. Formally, they define the restricted isometry constant δs to
be the smallest constant such that

(2.5) (1− δs)‖f‖22 ≤ ‖Φf‖22 ≤ (1 + δs)‖f‖22 for all s-sparse vectors f .

We say that the sampling operator Φ has the RIP of order s when δs is suf-
ficiently small, say δs ≤ 0.1. The important question is of course what type of
sampling operators have this property, and how large does the number m of sam-
ples have to be. Fortunately, the literature in CSP has shown that many classes
of matrices possess this property when the number of measurements m is nearly
linear in the sparsity s. Two of the most important examples are the following.

Subgaussian matrices. A random variable X is subgaussian if P(|X| >

t) ≤ Ce−ct2 for all t > 0 and some positive constants C, c. Thus subgaussian
random variables have tail distributions that are dominated by that of the standard
Gaussian random variable. Choosing C = c = 1, we trivially have that standard
Gaussian matrices (those whose entries are distributed as standard normal random
variables) are subgaussian. Choosing C = 1

e and c = 1, we see that Bernoulli
matrices (those whose entries are uniform ±1) are also subgaussian. More generally,
any bounded random variable is subgaussian. It has been shown that if Φ is an
m × d subgaussian matrix then with high probability 1√

m
Φ satisfies the RIP of

order s when m is on the order of s log d [MPTJ08,RV06].
Partial bounded orthogonal matrices. LetΨ be an orthogonal d×dmatrix

whose entries are bounded by C/
√
d for some constant C. A m×d partial bounded

orthogonal matrix is a matrix Φ formed by choosing m rows of such a matrix Ψ
uniformly at random. Since the d×d discrete Fourier transform matrix is orthogonal
with entries bounded by 1/

√
d, the m×d random partial Fourier matrix is a partial

bounded orthogonal matrix. Rudelson and Vershynin showed that such matrices
satisfy the RIP with high probability when the number of measurements m is on
the order of s log4 d [RV08].

Work continues to be done to demonstrate other types of random matrices
which satisfy the RIP so that this assumption is quite viable in many practical
applications (see e.g. [HN07,KW11,PRT11]). Matrices with structure such as
the partial Fourier are particularly important in applications since they can utilize
a fast-multiply.

2.3. Current Approaches to CSP. Since the problem (2.4) is computation-
ally infeasible, alternative methods are needed. In addition, the signal f is often
compressible rather than sparse, and the samples are often corrupted by noise so
that the measurement vector is actually y = Φf + e for some error vector e. An
ideal recovery method would thus possess the following properties.

Nonadaptive samples: The method should utilize sampling operators Φ
which do not depend on the signal f . Note that the operators satisfying
the RIP above possess the nonadaptivity property.

Optimal number of samples: The number m of samples required for re-
construction should be minimal.

Uniform Guarantees: One sampling operator should suffice for recovery
of all signals.

Robust Recovery: The method should be stable and robust to noise and
provide optimal error guarantees.
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Computational Complexity: The algorithm should be computationally
efficient.

There are currently two main approaches in CSP which provide methods for
sparse reconstruction with these ideal properties in mind. The first solves an opti-
mization problem and the second utilizes greedy algorithms to recover the signal.

2.3.1. Optimization based methods. Initial work in CSP [DH01,CT05,Don06,
CRT06b,Tro06] considered the convex relaxation of the NP-Hard problem (2.4).
The closest convex norm to the �0 quasi-norm is the �1-norm, and the geometry of
the �1-ball promotes sparsity. We therefore estimate a compressible signal f by the

minimizer f̂ to the following problem

(2.6) f̂ = argmin
g∈Cd

‖g‖1 subject to ‖Φg − y‖2 ≤ ε,

where ε bounds the norm of the noise: ‖e‖2 ≤ ε. This problem can be formulated
as a linear program and so standard methods in Linear Programming can be used
to solve it. Candès, Romberg and Tao showed that this �1-minimization problem
provides the following error guarantee.

Theorem 2.1 (Candès-Romberg-Tao [CRT06b]). Let Φ be a sampling op-
erator which satisfies the RIP. Then for any signal f and noisy measurements

y = Φf + e with ‖e‖2 ≤ ε, the solution f̂ to (2.6) satisfies

‖f̂ − f‖2 ≤ C

[
ε+

‖f − fs‖1√
s

]
,

where fs again denotes the vector of the s largest coefficients in magnitude of f .

This result says that the recovery error is at most proportional to the norm of
the noise in the samples and the tail of the signal. The error bound is optimal up
to the precise value of the constant C [CDD09]. Note that when the signal f is
exactly sparse and there is no noise in the samples that this result confirms that
the signal f is reconstructed exactly [CT05]. For a compressible signal as in (2.2),
this bound guarantees that

‖f̂ − f‖2 ≤ C[ε+Rs1/2−1/q].

Therefore, using Gaussian or Fourier samples, by solving a linear program we
can achieve an optimal error bound of this form with number of samples m approx-
imately s log d. This result thus provides uniform guarantees with optimal error
bounds using few nonadaptive samples. Although linear programming methods are
becoming more and more efficient, for some applications the computational cost of
this approach may still be burdensome. For that reason, greedy algorithms have
been proposed and may provide some advantages.

2.3.2. Greedy methods. Orthogonal Matching Pursuit (OMP) is an early greedy
algorithm for sparse reconstruction analyzed by Gilbert and Tropp [TG07]. Given
an exactly s-sparse signal f with noiseless samples y = Φf , OMP iteratively
identifies elements of the support of f . Once the support T is located, the signal is

reconstructed by f̂ = Φ†
Ty where ΦT denotes the restriction of Φ to the columns

indexed by T and Φ†
T denotes its pseudo-inverse. The critical observation which

allows OMP to succeed is that when Φ is Gaussian or more generally is incoherent,
Φ∗Φ is close to the identity. Thus u := Φ∗y = Φ∗Φf is in a loose sense close to
f , and so OMP estimates that the largest coefficient of u is in the true support of
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f . The contribution from that column is subtracted from the samples, and OMP
repeats this process. Gilbert and Tropp showed that OMP correctly recovers a fixed
sparse signal with high probability. Indeed, in [TG07] they proved the following.

Theorem 2.2 (OMP Signal Recovery [TG07]). Let Φ be an m×d (sub)Gaus-
sian measurement matrix with m ≥ Cs log d and let f be an s-sparse signal in
Rd. Then with high probability, OMP correctly reconstructs the signal f from its
measurements y = Φf .

Without modifications, OMP is not known to be robust to noise. Also, the
result provides non-uniform guarantees; for a given sampling operator and fixed
signal, OMP recovers the signal with high probability. In fact, a uniform guarantee
from OMP has been proved to be impossible [Rau08]. However, the strong advan-
tage of OMP over previous methods is its extremely low computational cost. Using
an efficient implementation reduces the overall cost of OMP to O(smd) in general,
and even faster when the sampling operator has a fast-multiply.

CoSaMP. Motivated by a breakthrough greedy algorithm analyzed with the
RIP [NV07b,NV07a], Needell and Tropp developed the greedy method Compres-
sive Sampling Matching Pursuit (CoSaMP) [NT08b,NT08a], which is similar in
spirit to OMP. This algorithm again has a similar structure to OMP. In each it-
eration, multiple components are selected to be in the support of the estimation.
Then the signal is estimated using this support and then pruned to maintain spar-
sity. A critical difference between CoSaMP and the other two matching pursuits is
that in CoSaMP elements of the support which are incorrectly identified may be
removed from the estimation in future iterations. Formally, the CoSaMP template
is described by the pseudocode below. Note that parameters within the algorithm
can of course be tuned for optimal performance.

Compressive Sampling Matching Pursuit (CoSaMP) [NT08b]

Input: Sampling operator Φ, sample vector y = Φf , sparsity level s

Output: s-sparse reconstructed vector f̂ = a
Procedure:

Initialize: Set a0 = 0, v = y, k = 0. Repeat the following steps
and increment k until the halting criterion is true.

Signal Proxy: Set u = Φ∗v, Ω = suppu2s and merge the
supports: T = Ω ∪ suppak−1.

Signal Estimation: Using least-squares, set b|T = Φ†
Ty and

b|T c = 0.
Prune: To obtain the next approximation, set ak = bs.
Sample Update: Update the current samples: v = y − Φak.

Several halting criteria are offered in [NT08b], the simplest of which is to halt
after 6s iterations. The authors prove the following guarantee for the CoSaMP
algorithm.

Theorem 2.3 (CoSaMP [NT08b]). Suppose that Φ is an m×d sampling ma-
trix satisfying the RIP. Let y = Φf + e be a vector of samples of an arbitrary
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signal, contaminated with noise. The algorithm CoSaMP produces an s-sparse ap-

proximation f̂ that satisfies

‖f̂ − f‖2 ≤ C

[
ε+

‖f − fs‖1√
s

]
,

where fs is a best (s)-sparse approximation to f . The running time is O(L ·
log(‖f‖2)), where L bounds the cost of a matrix–vector multiply with Φ or Φ∗.
Working storage is O(d).

CoSaMP utilizes minimal nonadaptive samples and provides uniform guaran-
tees with optimal error bounds. The computational cost is proportional to the cost
of applying the sampling operator and CoSaMP is therefore the first algorithm to
provide optimality at every critical aspect. In addition, under a Gaussian noise
model, CoSaMP and other greedy methods have guaranteed recovery error similar
to the best possible obtained when the support of the signal is known [GE12].

Other greedy methods like the iterative hard thresholding algorithm (IHT) can
also provide analogous guarantees [BD09]. IHT can be described by the simple
recursive iteration

xk = Hs(xk−1 +Φ(y −Φxk−1)),

where Hs is the thresholding operator which sets all but the largest (in magnitude)
s entries to zero, and x0 can be chosen as an arbitrary starting estimate. We focus
mainly on the CoSaMP greedy method and its adaptation to tight frames in these
notes, but see e.g. [BD09,Blu11,GNE+12] for similar adaptations of methods
like IHT.

2.3.3. Total variation methods. In numerous CSP applications, the signals of
interest are images. Natural images tend to be compressible with respect to some
orthonormal basis such as the wavelet basis. With this notion of sparsity, one can
use �1-minimization or a greedy method to recover the image from a small number
of measurements. The standard results in CSP then guarantee the reconstruction
error will be small, relative to the noise level and the compressibility of the signal.
However, the errors using this approach arise as artifacts from high frequency oscil-
lations, and their structure often appears displeasing to the eye, and makes image
analysis challenging. An alternative is to consider the sparsity of the signal with
respect to the image gradient, rather than some orthonormal basis. Minimizing the
�1-norm of the gradient leads to the well-known total variation program.

The key to the total variation problem is that because of the structure of natural
images, their gradients tend to be sparse. In other words, the matrix whose entries
are the distances between neighboring pixels of a natural image is a compressible
matrix. Concretely, we define the total variation (TV) of an image X as

‖X‖TV
def
=

∑
j,k

√
(Xj+1,k −Xj,k)2 + (Xj,k+1 −Xj,k)2 =

∑
j,k

|(∇X)j,k|,

where ∇X denotes the (discrete) gradient of the image. The gradient can then be
defined by writing

Xx : CN×N → C
(N−1)×N , (Xx)j,k = Xj+1,k −Xj,k(2.7)

Xy : CN×N → C
N×(N−1), (Xy)j,k = Xj,k+1 −Xj,k,(2.8)
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and then setting

(2.9)
[
∇X

]
j,k

def
=

⎧⎪⎪⎨⎪⎪⎩
(
(Xx)j,k, (Xy)j,k

)
, 1 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1(

0, (Xy)j,k
)
, j = N, 1 ≤ k ≤ N − 1(

(Xx)j,k, 0
)
, k = N, 1 ≤ j ≤ N − 1(

0, 0
)
, j = k = N.

Since images have a compressible gradient, we may consider minimizing with
respect to the TV-norm:

X̂ = argmin
M

‖M‖TV subject to ‖y −A(M )‖2 ≤ ε,

where y = A(X) + e are noisy measurements with bounded noise ‖e‖2 ≤ ε.
Instead of searching for a sparse image in the wavelet basis, the total varia-

tion problem searches for an image with a sparse gradient. This reduces the high
frequency oscillatory artifacts from the recovered image, as seen in Figure 1.

(a) (b) (c)

Figure 1 Images from [NW13]. (a) Original cameraman image, (b) its reconstruc-
tion from 20% random Fourier coefficients using total-variation minimization and (c)
�1-minimization of its Haar wavelet coefficients.

The benefits of using total variation norm minimization have been observed
extensively and the method is widely used in practice (see e.g. [CRT06b,CRT06a,
CR05, OSV03, CSZ06, LDP07, LDSP08, LW11, NTLC08, MYZC08],
[KTMJ08,Kee03]). Despite this, theoretical results showing robust recovery via
TV have only been obtained very recently. In [NW12,NW13], Needell and Ward
prove the first robust theoretical result for total variation minimization:

Theorem 2.4 (Needell and Ward [NW12,NW13]). From O(s log(N)) linear

RIP measurements with noise level ε, for any X ∈ C
N×N , the solution f̂ to the

TV minimization problem satisfies

‖X − X̂‖2 � log(N) ·
[‖∇[X]−∇[X]s‖1√

s
+ ε

]
Analogous to the bounds of �1-optimization, this result guarantees that the

recovery error is at most proportional to the noise in the samples and the “tail”
of the compressible gradient. The proof technique relies on the development of
an improved Sobolev inequality, and the error guarantees obtained are optimal
up to the logarithmic factor. The linear measurements can be obtained from a
RIP sampling operator, and have also been extended to higher dimensional arrays,
see [NW12,NW13] for details.
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2.4. Matrix recovery by CSP. In many applications, the signals of interest
are better represented by matrices than by vectors. Such a signal may still be sparse
in the sense described previously (2.1), in which case the theory above extends
naturally. Alternatively, a data matrix may possess some low-rank structure. Then
the question becomes, given measurements of such a low-rank data matrix, can one
recover the matrix? This problem gained popularity by the now famous NetFlix
problem in collaborative filtering [RS05,Sre04]. In this problem, the data matrix
consists of user ratings for movies. Since not every user rates every movie and not
every movie is rated by every user, only partial information about the true rating
data matrix is known. From these partial measurements one wishes to obtain the
true matrix containing the missing entries so that preferences can be inferred and
movie recommendations can be made to the users.

A similar problem arises in the triangulation from partial data. Here, one is
given some information about distances between objects in a network and wishes
to recover the (low-dimensional) geometry of the network [LLR95,SY07,Sch86,
Sin08]. This type of problem of course appears in many applications including
remote sensing, wireless communications, and global positioning.

Formally speaking, in all of these problems we are given measurements y =
A(X) and wish to recover the low-rank data matrixX. In general the measurement
operator is of the form A : Rn×n → Rm and acts on a matrix X by

(2.10) (A(X))i = 〈Ai,X〉

where Ai are n× n matrices and 〈·, ·〉 denotes the usual matrix inner product:

〈A,B〉 def
= trace(A∗B).

Analogous to the program (2.4), one considers solving

X̂ = argmin
M

rank(M ) such that A(M ) = y.

However, as in the case of (L0), the problem (2.4) is not computationally feasi-
ble in general. We thus consider instead its relaxation, which minimizes the �1-norm
of its singular values.

(2.11) X̂ = argmin
M

‖M‖∗ such that A(M ) = y.

Here ‖ · ‖∗ denotes the nuclear norm which is defined by

‖X‖∗ = trace(
√
X∗X)) = ‖σ(X)‖1,

where σ(X) is the vector of singular values of X.
This program (2.11) can be cast as a semidefinite program and is thus numer-

ically feasible. Work in CSP has shown [NRWY10,RFP07,OH10,CP09] that
m ≥ Cnr measurements suffice to recover any n× n rank-r matrix via (2.11).

2.4.1. Matrix Decomposition. In addition to the recovery of a low-rank struc-
ture, one may also simultaneously wish to recover a sparse component of a data
matrix. That is, given a data matrix X, one seeks to identify a low-rank com-
ponent L and a sparse component S such that X = L + S. For example, in
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a surveillance video one may wish to decompose the foreground from the back-
ground to detect moving targets. This problem has received much attention re-
cently and can be interpreted as a robust version of principal component anal-
ysis [CSPW11,EJCW09]. The applications of this problem are numerous and
include video surveillance, facial recognition, collaborative filtering and many more.

A particular challenge of this application is in the well-posedness of the decom-
position problem. For example, if the sparse component also has some low-rank
structure or the low-rank component is sparse, the problem does not have a unique
solution. Thus some assumptions are placed on the structure of both components.
Current results assume that the low-rank component L satisfies an incoherence con-
dition (see Section 1.3 of [EJCW09]) which guarantees that its singular vectors
are sufficiently spread and that the sparsity pattern in the sparse component S is
selected uniformly at random.

The proposed method for solving this decomposition problem is Principal Com-
ponent Pursuit [EJCW09,ZLW+10] which solves the following convex optimiza-
tion problem

(2.12) (L̂, Ŝ) = argmin
L,S

‖L‖∗ + λ‖S‖1 subject to L+ S = X.

Under the assumption that the low-rank component L has spread singular
vectors and that the sparsity pattern of S is uniformly random, Candès et.al. show
that with high probability the n×n decomposition L+S can be exactly recovered
when the rank r of L is proportional to n/ log(n) and the sparsity s of S is a
constant fraction of the entries, s ≤ cn2. This astonishing result demonstrates
that the low-rank component of a data matrix can be identified even when a fixed
fraction of the entries in the matrix are corrupted – and that these errors can have
arbitrarily large magnitudes!

It is clear that some assumptions must be made on the individual components
in the decomposition for the problem to even be well-posed. However, in many
applications it may not be practical to impose such randomness in the sparsity
pattern of the sparse component. We discuss this further below.

3. Compressed sensing with tight frames

In the usual CSP framework, the signal f is assumed to be sparse as in (2.3)
or compressible with respect to some orthonormal basis. As mentioned, there are
numerous applications in which the signal of interest falls into this class of signals.
However, more often than not, sparsity is expressed not in terms of an orthonormal
basis but in terms of an overcomplete dictionary. In this setting, the signal f = Dx
where x is sparse or compressible and D is an arbitrary set of column vectors which
we refer to as a dictionary or frame. The dictionary need not be orthonormal or even
incoherent and often it will be overcomplete, meaning it has far more columns than
rows. There are numerous applications that use signals sparse in this sense, many
of which are of importance to ONR. Some examples of dictionaries we encounter
in practice in this setting are the following.

Oversampled DFT: Signals which are sparse with respect to the discrete
Fourier matrix (DFT) are precisely those which are superpositions of si-
nusoids with frequencies in the lattice of those in the DFT. In practice,
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it is of course rare to encounter such signals. Therefore one often con-
siders the oversampled DFT in which the sampled frequencies are taken
over even smaller fixed intervals, small intervals of varying lengths, or even
randomly selected intervals. This creates an overcomplete frame that may
have high coherence.

Gabor frames: Radar, sonar and other imaging systems aim to recover
pulse trains whose atoms have a time-frequency structure [FS98]. Be-
cause of this structure, Gabor frames are widely used [Mal99]. Gabor
frames are not incoherent and often very overcomplete.

Curvelet frames: Curvelets provide a multiscale decomposition of images,
and have geometric features that distinguish them from other bases like
wavelets. The curvelet transform can be viewed as a multiscale pyramid
with many directions at each length scale, and needle-shaped elements at
fine scales [CD04,CDDY00]. Although the transform has many proper-
ties of an orthonormal basis, it is overcomplete, and neighboring columns
have high coherence.

Wavelet Frames: The undecimated wavelet transform (UWT) is a wavelet
transform with a translation invariance property that the discrete wavelet
transform (DWT) does not possess [Dut89]. The UWT is missing the
downsamplers and upsamplers in the DWT but upsamples the filter coef-
ficients by a factor of 2k at the (k−1)st level. This of course makes it very
overcomplete. The Unitary Extension Principle of Ron and Shen [RS97]
enables constructions of tight wavelet frames for L2(Rd) which may also
be very overcomplete. The overcompleteness has been found to be helpful
in image processing [SED04].

Concatenations: In many applications a signal may not be sparse with
respect to a single orthonormal basis, but may be a composition of sparse
signals from multiple orthonormal bases. For example, a linear combina-
tion of spikes and sines is sparse with respect to the concatenation of the
identity and the Fourier basis. In imaging applications one may wish to
take advantage of the geometry of multiple sparsifying bases such as a
combination of curvelets, wavelets, and brushlets. The concatenation of
these bases is overcomplete and may be highly coherent.

Such redundant dictionaries are now used widespread in signal processing and
data analysis. Often, there may simply be no good sparsifying orthonormal ba-
sis such as in the applications utilizing Gabor and Curvelet frames. In addition,
researchers acknowledge and take advantage of the flexibility provided by overcom-
plete frames. In general linear inverse problems such as deconvolution, tomography,
and signal denoising, it has been observed that using overcomplete dictionaries sig-
nificantly reduces artifacts and mean squared error [SED04,SFM07]. Since CSP
problems are special types of inverse problems it is not surprising that redundant
frames are equally helpful in this setting.

3.1. The �1-analysis approach. Since in this generalized setting the sparsity
is in the coefficient vector x rather than the signal f , it no longer makes sense
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to minimize the �1-norm of the signal itself. The intuition behind the �1-analysis
method is that for many dictionaries D, D∗f will have rapidly decaying coefficients
and thus it becomes natural to minimize the �1-norm of this vector. Therefore for a
signal f = Dx and noisy samples y = Φf + e, the �1-analysis problem constructs

an estimate f̂ to f as the solution to the following minimization problem:

f̂ = argmin
g∈Cd

‖D∗g‖1 subject to ‖Φg − y‖2 ≤ ε,

where as before ε ≥ ‖e‖2 is a bound on the noise level.
Recently, Candès et.al. provide error bounds for �1-analysis [CENR10]. This

result holds when the dictionary D is a tight frame, meaning DD∗ equals the
identity. All the dictionaries mentioned above are examples of tight frames. In de-
veloping theory in this setting, an important issue that had to be addressed was the
assumption on the sampling operator Φ. Since sparsity in this setting is captured
in the coefficient vector rather than the signal, the following natural extension of
the RIP was developed. For a given dictionary D, the sampling operator Φ satisfies
the D-RIP of order s when

(1− δs)‖Dx‖22 ≤ ‖ΦDx‖22 ≤ (1 + δs)‖Dx‖22 for all s-sparse vectors x

for some small δs, say δs ≤ 0.08. Here sparsity in x is with respect to the coordi-
nate basis. D-RIP, therefore, asks that the sampling operator Φ be approximately
orthonormal on all signals f which are sparse with respect to D. Using a standard
covering argument it is straightforward to show that for a dictionary D with d
columns that subgaussian sampling operators satisfy the D-RIP with high proba-
bility when the number m of samples is again on the order of s log d [CENR10].
Moreover, if Φ satisfies the standard RIP, then multiplying the columns by random
signs yields a matrix which satisfies the D-RIP [CENR10,KW11]. Often, how-
ever, it may not be possible to apply random column signs to the sampling matrix.
In MRI for example, one is forced to take Fourier measurements and cannot pre-
process the data. Recent work by Krahmer et.al. [KNW15] shows that one can
instead use variable density sampling to remove the need for these column signs.
In this case, one constructs for example a randomly sub-sampled Fourier matrix by
selecting the rows from the standard DFT according to some specified distribution.
This shows that the same class of operators used in standard CSP can also be used
in CSP with overcomplete dictionaries.

Under this assumption, the error in the estimation provided by �1-analysis is
bounded by the noise level and the energy in the tail of D∗f :

Theorem 3.1 (�1-analysis Recovery [CENR10]). Let D be an arbitrary tight
frame and suppose the sampling operator Φ satisfies the D-RIP of order s. Then

the solution f̂ to the �1-analysis problem satisfies

‖f̂ − f‖2 ≤ C

[
ε+

‖D∗f − (D∗f)s‖1√
s

]
,

where (D∗f)s denotes the largest s entries in magnitude of D∗f .

This result states that �1-analysis provides robust recovery for signals f whose
coefficients D∗f decay rapidly. Observe that when the dictionary D is the identity,
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this recovers precisely the error bound for standard �1-minimization. Without fur-
ther assumptions or modifications, this result is optimal. The bound is the natural
bound one expects since the program minimizes a sparsity promoting norm over
the image of D∗; if D∗f does not have decaying coefficients, there is no reason f
should be close to the minimizer.

Another recent result by Gribonval et.al. analyzes this problem using a model of
cosparsity, which captures the sparsity in D∗f [NDEG11]. Their results currently
only hold in the noiseless setting, and it is not known what classes of matrices satisfy
the requirements they impose on the sampling operator. This alternative model
deserves further analysis and future work in this direction may provide further
insights.

In most of the applications discussed, namely those using curvelets, Gabor
frames, and the UWT, the coefficients of D∗f decay rapidly. Thus for these ap-
plications, �1-analysis provides strong recovery guarantees. When the dictionary is
a concatenation of bases, D∗f will not necessarily have decaying coefficients. For
example, when D consists of the identity and the Fourier bases, D∗f can be a very
flat signal even when f has a sparse representation in D.

Although the D-RIP is a natural extension of the standard RIP, recent work
suggests that a more generalized theory may be advantageous [CP10]. This frame-
work considers sampling operators whose columns are independent random vectors
from an arbitrary probability distribution. Candès and Plan show that when the
distribution satisfies a simple incoherence and isotropic property that
�1-minimization robustly recovers signals sparse in the standard sense. A particu-
larly useful consequence of this approach is a logarithmic reduction in the number
of random Fourier samples required for reconstruction. We propose an extension
of this analysis to the setting of overcomplete dictionaries which will reduce the
number of samples needed and provide a framework for new sampling strategies as
well.

3.2. Greedy methods. Current analysis of CSP with overcomplete dictio-
naries is quite limited, and what little analysis there is has focused mainly on
optimization based algorithms for recovery. Recently however, Davenport et.al.
analyzed a variant of the CoSaMP method [DW11,DNW13] summarized by the
following algorithm. We use the notation SD(u, s) to denote the support of the best
s-sparse representation of u with respect to the dictionary D, R(DT ) to denote
the range of the subdictionary DT , and PD(b, s) to denote the signal closest to b
which has an s-sparse representation in D.

CoSaMP with arbitrary dictionaries

Input: Sampling operator Φ, dictionary D, sample vector y = Φf , sparsity
level s
Procedure:

Initialize: Set f̂ = 0, v = y. Repeat the following:
Signal Proxy: Set u = Φ∗v, Ω = SD(u, 2s) and merge supports:

T = Ω ∪ SD(f̂ , 2s)
Signal Estimation: Set b = argminz ‖y −Φz‖2 s.t. z ∈ R(DT )

Prune: To obtain the next approximation, set f̂ = PD(b, s).

Sample Update: Update the current samples: v = y − Φf̂ .

Output: s-sparse reconstructed vector f̂



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPRESSED SENSING AND DICTIONARY LEARNING 215

Figure 2 From [CENR10]. Recovery in both the time (below) and frequency
(above) domains by �1-analysis after one reweighted iteration. Blue denotes the
recovered signal, green the actual signal, and red the difference between the two.
The RMSE is less than a third of that in Figure 2

It was recently proved that this version of CoSaMP provides robust recovery
of sparse signals with respect to D when the sampling operator satisfies the D-
RIP [DNW13]. Similar results have been obtained using the co-sparse model
[GNE+12] and Iterative Hard Thresholding (IHT) [Blu11].

The major drawback to these results is that the projection operators PD

and SD cannot in general be implemented efficiently. Indeed, Giryes and Needell
[GN13] relax the assumptions of these operators from Davenport et al. but still
require the following.

Definition 3.2. A pair of procedures Sζk and S̃ζ̃k implies a pair of near-

optimal projections PSζk(·) and PS̃ζ̃k(·)
with constants Ck and C̃k if for any z ∈ Rd,

|Sζk(z)| ≤ ζk, with ζ ≥ 1,
∣∣∣S̃ζ̃k(z)

∣∣∣ ≤ ζ̃k, with ζ̃ ≥ 1, and

‖z− PSζk(z)z‖22 ≤ Ck‖z− PS∗
k(z)

z‖22 as well as ‖PS̃ζ̃k(z)
z‖22 ≥ C̃k‖PS∗

k(z)
z‖22,(3.1)

where PS∗
k
denotes the optimal projection:

S∗
k(z) = argmin

|T |≤k

‖z− PT z‖22.

Under the assumption that one has access to such near-optimal projections,
signal recovery can be obtained by the following result.
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Figure 3 From [DNW13]. Percentage of signal recovery for CoSaMP variants and
standard methods. Left: Sparse coefficients are clustered together. Right: Sparse
coefficients are well separated.

Theorem 3.3 (Signal Space CoSaMP [GN13]). Let M satisfy the D-RIP (3.1)

with a constant δ(3ζ+1)k (ζ ≥ 1). Suppose that Sζk and S̃2ζk are a pair of near

optimal projections (as in Definition 3.2) with constants Ck and C̃2k. Apply SS-
CoSaMP (with a = 2) and let xt denote the approximation after t iterations. If
δ(3ζ+1)k < ε2

Ck,C̃2k,γ
and

(1 + Ck)

(
1− C̃2k

(1 + γ)2

)
< 1,(3.2)

then after a constant number of iterations t∗ it holds that

‖xt∗ − x‖2 ≤ η0‖e‖2,(3.3)

where γ is an arbitrary constant, and η0 is a constant depending on δ(3ζ+1)k, Ck,

C̃2k and γ. The constant εCk,C̃2k,γ
is greater than zero if and only if (3.2) holds.

Unfortunately, it is unknown whether there exist efficient approximate-
projections for general redundant frames that satisfy Definition 3.2. Empirically,
however, traditional CSP methods like OMP, CoSaMP, or �1-minimization often
provide accurate recovery [DW11,DNW13,GNE+12]. We also find that the
method used to solve the projection may have a significant impact. For example,
Figure 3 (left) shows the percentage of correctly recovered signals (as a function of
the number of measurements m) with a 256×4(256) oversampled Fourier dictionary
in which CoSaMP with projection approximated by CoSaMP clearly outperforms
the other CoSaMP methods as well as the standard methods.

On the other hand, if one employs the co-sparse or “analysis-sparse” model, a
need for such projections can be eliminated. Rather than assuming the signal is
sparse in the overcomplete frame D (that is, f = Dx for sparse x, the analysis-
sparse model assumes that the analysis coefficients D∗f are sparse (or approxi-
mately sparse). Foucart, for example, shows that under the analysis-sparse model
hard thresholding algorithms provide the same guarantees as �1-minimization with-
out the need for approximate projections [F15]. Of course, these two models of
sparsity can be quite different for frames of interst, and the practicality of either
may vary from application to application.
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4. Dictionary Learning: An introduction

In the CS framework, the dictionary D is often chosen as a random matrix
satisfying the Restricted Isometry Property (e.g., Subgaussian or partial bounded
orthogonal matrices), or designed based on intuitive expectations of the signal of
interest (such as the oversampled DFT, Gabor frames, wavelets, and curvelets). The
resulting dictionary is thus not directly related to the observed signals. However,
in reality, the observed data often do not obey those model assumptions, so that
pre-designed dictionaries would not work well. Accordingly, it is important to
consider dictionaries which adapt to the observed data, often called data-dependent
dictionaries. Starting this section, we talk about how to learn such dictionaries
directly from data and apply them to image processing tasks.

Notation. We often use boldface lowercase Roman letters to represent vectors
(for example x,y, e) and boldface uppercase Roman letters for matrices (e.g.,A,D).
For any such vector (e.g. x), we use the plain version of the letter plus a subscript
(i.e., xi) to refer to the specific entry of the vector. Meanwhile, for some vectors
and matrices that are interpreted as coefficients, we will use Greek letters to denote
them. In these cases, we use lowercase letters with subscripts to represent vectors
(e.g., γi) and uppercase letters for matrices (e.g. Γ). For a matrix A, we write Aij

to denote its (i, j) entry; we use A(:, j) to denote the jth column of A and A(i, :)
its ith row. For any 0 < p < ∞, the p-norm of a vector x ∈ R

L is defined as

‖x‖p =

(
L∑

i=1

|xi|p
)1/p

.

If p = 0, then ‖x‖0 counts the number of its nonzero entries:

‖x‖0 = #{i | xi �= 0}.

The Frobenius norm of a matrix A is

‖A‖F =

√∑
i,j

A2
ij ,

and its �1,1 norm is

‖A‖1,1 =
∑
j

‖A(:, j)‖1

If A is a square matrix, then its trace is defined as

trace(A) =
∑
i

Aii.

4.1. The Dictionary Learning Problem. Suppose we are given a finite set
of training signals in RL, for example,

√
L×

√
L pixel images or

√
L×

√
L patches

taken from a large digital image. We want to to learn a collection of atomic signals
called atoms, directly from the given signals so that they can be represented as, or
closely approximated by, linear combinations of few atoms. A good analog of this
problem is the construction of the English dictionary from many sentences or the
recovery of the periodic table of chemical elements from a large variety of materials.

Specifically, given the training data x1, . . . ,xn ∈ RL, and positive integers m, s,
we wish to find an L×m matrix D and s-sparse vectors γ1, . . . , γn ∈ Rm such that
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Dγi is “close” to xi for all i. Using the �2 norm to quantify the error, we formulate
the following dictionary learning problem:

(4.1) min
D,γ1,...,γn

n∑
i=1

‖xi −Dγi‖22 such that ‖γi‖0 ≤ s, for all i.

Here, D = [d1, . . . ,dm] ∈ RL×m is called the dictionary, and its columns represent
atoms. The vector γi ∈ Rm, with at most s nonzero entries, contains the coefficients
needed by the columns of D to linearly represent xi. To make the choices of D
and γi unique, we constrain the columns of D to be on the unit sphere in RL, i.e.,
‖di‖2 = 1. The dictionary size m is allowed to exceed the ambient dimension L
in order to exploit redundancy. In contrast, the sparsity parameter often satisfies
s � L.

In the special case where each γi is enforced to be 1-sparse (i.e., s = 1) with
the only nonzero entry being 1, the problem in (4.1) aims to use the most similar
atom to represent each signal. This corresponds to the Kmeans clustering prob-
lem [Mac67], where the training data are divided into n disjoint subsets, each
surrounding a unique atom as its center, such that points in each subset are closer
to the corresponding center than to other centers. Here, we mention a recent paper
by Awasthi et al. [ABC+15] which provides global recovery guarantees for an SDP
relaxation of the Kmeans optimization problem.

Let us look at an example. Suppose we extract all 8×8 patches from a 512×512
digital image and consider them as our signal data. Here, the signal dimension
L = 64, but the number of signals is very large (n ≈ 5122). A typical choice of
the dictionary size is m = 256, which is four times as large as the signal dimension
L so that D is overcomplete. Lastly, s is often set to some positive integer not
more than 10. Performing dictionary learning in this setting is thus equivalent
to finding 256 elementary image patches so that each original patch can be most
closely approximated by a linear combination of at most 10 elementary patches.

Note that in (4.1) we used the square loss function to quantify the representa-
tion error

�(xi,D) = ‖xi −Dγi‖22,
but this can be replaced by any other loss function, for example �1. The dictio-
nary is considered “good” at representing the signals if the total loss is “small”.
Furthermore, the fewer columns D has, the more efficient it is.

If we let X = [x1, . . . ,xn] and Γ = [γ1, . . . , γn] be two matrices representing
respectively the signals and the coefficients in columns, then the dictionary learning
problem in (4.1) can be readily rewritten as a matrix factorization problem

(4.2) min
D,Γ

‖X−DΓ‖2F such that ‖γi‖0 ≤ k, for all i.

Here, the matrix D is required to have unit-norm columns while Γ must be column-
sparse.

In some cases we are not given the signal sparsity s but a precision requirement
ε on the approximation error for individual signals. We then reformulate the above
problem as follows:

(4.3) min
D,γ1,...,γn

n∑
i=1

‖γi‖0 such that ‖xi −Dγi‖2 ≤ ε, for all i
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Here, the objective function can be thought of the total cost for representing the
signals with respect to a dictionary.

The two formulations of the dictionary learning problem in (4.1) and (4.3) can
be unified into a single problem without mentioning s or ε:

(4.4) min
D,Γ

n∑
i=1

‖xi −Dγi‖22 + λ‖γi‖0.

Here, λ is a regularization parameter whose role is to balance between representa-
tion error and cost (i.e., sparsity). That is, large values of λ force the �0 penalty
term to be small, leading to very sparse representations. On the other hand, smaller
values of λ place a smaller weight on sparsity and correspondingly enforce the pro-
gram to significantly reduce the total error.

Unfortunately, the combinatorial nature of the �0 penalty requires an exhaustive
search for the support set of each coefficient vector γi, making none of the problems
(4.1)-(4.4) practically tractable (in fact, they are all NP-hard). One often replaces
it by the �1 penalty (which is the closest convex norm) and considers instead

(4.5) min
D,γ1,...,γn

n∑
i=1

‖xi −Dγi‖22 + λ‖γi‖1,

or its matrix version

(4.6) min
D,Γ

‖X−DΓ‖2F + λ‖Γ‖1,1,

hoping that the new problem still preserves, at least approximately, the solution of
the original problem. The problem in (4.6) is now convex in each of the variables
D,Γ, but not jointly convex. It is thus often solved by fixing one of D and Γ and
updating the other in an alternating fashion. From now on, we will focus on (4.5)
and its matrix version (4.6) due to its tractability and unifying nature.

4.2. Connections to several other fields. Dictionary learning (DL) is
closely related to the following fields.

4.2.1. Compressive sensing (CS). In DL both the dictionary and sparse coef-
ficients are simultaneously learned from the training data. When the dictionary
D is fixed, the optimization problem in (4.5) is over the coefficients γ1, . . . , γn, in
which case the n terms in the sum of (4.5) can be decoupled, leading to n similar
problems:

(4.7) min
γ

‖xi −Dγ‖22 + λ‖γ‖1.

This is exactly the sparse coding problem, studied extensively in the CS frame-
work [BDE09]. Indeed, the CS research has shown that the relaxation to the ‖γ‖1
penalty (from ‖γ‖0) preserves the sparse solution, at least when D satisfies the
RIP condition [CRT06b]. Additionally, there are efficient pursuit algorithms for
solving this problem, such as the OMP [TG07], Basis Pursuit [CRT06b], and
CoSamp [NT08b,NT08a]. Thus, one may solve this problem by using any of
these pursuit algorithms, which are described in the first part of the lecture notes.

Although both CS and DL contain the same coding problem (4.7), the interpre-
tations of the variables in (4.7) are markedly different. In the CS setting the matrix
D serves as the sensing matrix whose rows are carefully picked to linearly interact
with the unknown signal γ, and x represents the vector of compressed measure-
ments. The main goal of solving (4.7) is to recover both the support set and entries
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of the sparse signal γ. In contrast, in the DL framework the emphasis is placed
on the columns of D which are regarded as prototype signals and used to linearly
represent the training signals of the same dimension. Accordingly, x should not be
regarded as the measurement vector, but just a training signal. Moreover, the vec-
tor γ no longer represents the sparse signal to be recovered, but indicates the sparse
linear representation of the training signal x with respect to the dictionary D.

4.2.2. Frame theory. Frame design has been a very active research field for
decades, and it lies at the intersection of many subjects, theoretical or applied, such
as pure mathematics, harmonic analysis, compressive sensing, dictionary learning,
and signal processing. Specifically, a frame for a finite dimensional Hilbert space
(i.e., RL) is a spanning set {ek} for the space, without requiring linear independence
among them, that satisfies the following frame condition [CK]: There exist two fixed
constants B ≥ A > 0 such that for every x ∈ RL,

A‖x‖22 ≤
∑
k

|〈x, ek〉|2 ≤ B‖x‖22.

The central problem in frame theory is signal representation and reconstruction by
using the frame {ek} and its dual {ẽk}:

x =
∑
k

〈x, ẽk〉ek =
∑
k

〈x, ek〉ẽk.

The concept of frames occurred much earlier than that of dictionaries, repre-
senting an important intermediate step from orthogonal bases modeling to sparse
and redundant modeling. Like dictionaries, frames are overcomplete systems of
signals that can represent other signals. Because of the redundancy every vector
x ∈ RL has infinitely many representations, and this great flexibility is what makes
both of them (frames and dictionaries) so useful in many applications: By repre-
senting a signal in many different ways, we are better able to sustain losses and
noise while still having accurate and robust reconstructions.

Though both frames and dictionaries depend on the same notion of redundancy,
they use it in different ways. The vectors in a frame must satisfy a frame condition
which enables rigorous analysis of the system and guarantees many attractive the-
oretical properties. For example, though no longer an orthogonal basis, the linear
coefficients can still be obtained through dot products between the (dual) frame and
the signal. In contrast, dictionaries, especially data-dependent ones, do not require
such a condition for its elements, but introduce a new notion of sparsity for the
representation coefficients. That is, it places a small upper bound on the number
of its elements that can be used for representing any given signal, so as to promote
simple and interpretable representations. While the sparsity concept is quite easy
to understand, its discrete nature makes it extremely difficult to analyze and of-
ten one can only consider a convex relaxation of it. Accordingly, comparing with
frames, there is much less theory for dictionaries. Despite the theoretical challenge,
dictionaries have proven to improve over frames in many applications, because of
its greater flexibility and better ability to adapt to real data. Furthermore, the
elements of a dictionary represent prototype signals and thus have a more clear
physical interpretation.

4.2.3. Subspace clustering. Subspace clustering extends the classic Principle
Component Analysis (PCA) to deal with hybrid linear data. The PCA is a lin-
ear transform which adapts to signals sampled from a Gaussian distribution, by
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fitting a low-dimensional subspace to the data with the lowest L2 approximation
error [Jol02]. Subspace clustering is a natural extension of PCA by using more
than one subspace. Specifically, given a set of signals x1, . . . ,xn in R

L which are
sampled from a mixture of unknown number of subspaces with unknown dimen-
sions, the goal of subspace clustering is to estimate the parameters of the model
planes and their bases, and then cluster data according to the identified planes. It
has been a very hot topic since the beginning of this century. We refer the reader
to [Vid11] for a tutorial on this field and for an introduction to state-of-the art
algorithms such as SCC [CL09a,CL09b].

From a DL perspective, the overall collection of the subspace bases forms a dic-
tionary, and every given signal is expressed as a linear combination of several basis
vectors, depending on the subspace it belongs to. In other words, the dictionary
here consists of a few subdictionaries, each one reserved for a particular group of
signals, and the different subdictionaries are not allowed to be mixed to form other
kinds of linear representations. Clearly, such a dictionary is a lot more restrictive.
Though sparsity is still enforced here, redundancy is not exploited because the dic-
tionary is small for low dimensional subspaces. Finally, the subspace bases, which
must be linearly independent, may not have the interpretation of atomic signals.

In (4.2)-(4.4), the signals all have at most s non-zeros in its representation. In
other words, the size of the support set of each coefficient is no bigger than s. More
importantly, there is no restriction on which combination of atoms can be used for
representing a signal. Thus, there are a total of

(
m
s

)
+

(
m
s−1

)
+ · · · +

(
m
1

)
=

(
m+1
s

)
possibilities for a support, where m is the dictionary size. Each such support
defines a unique subspace of dimension (at most) s in RL, and the overall signal
model is therefore a union of a large number of subspaces, to one of which each
signal is believed to belong. Consequently, this model is a relaxation of the mixture
of subspaces model mentioned above, and the representations here are thus more
flexible and efficient.

4.3. Applications to image processing tasks. Sparse and redundant dic-
tionaries offer a new way for modeling complex image content, by representing
images as linear combinations of few atomic images chosen from a large redundant
collection (i.e., dictionary). Because of the many advantages associated with dictio-
naries, dictionary-based methods tend to improve over traditional image processing
algorithms, leading to state-of-the-art results in practice. Below we briefly survey
some of the most common imaging applications and their solution by dictionary
learning. To gain a deeper and more thorough understanding of the field, we refer
the reader to [EFM10], which is also our main reference for writing this part.

4.3.1. Introduction. Consider a clean image or a patch taken from it, I, of
size

√
L ×

√
L, where

√
L is a positive integer. Typically,

√
L = 512 (for full

digital images), or
√
L = 8 (when operating on patches taken from a full image).

We vectorize the image I to obtain t ∈ RL, by following some fixed order (e.g.,
lexicographical order). Normally we do not observe the clean image t, but rather
a noisy measurement of it (see Fig. 4):

x = t+ e.

Here, e represents an (unknown) additive noise contaminating the image. Naturally,
given x, we would like to recover the true image t, at least as closely as possible.
This is the image denoising problem [BCM05,EA06,MSE].
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Figure 4 A clean image and its noisy version (by adding zero-mean Gaussian noise
with standard deviation σ = 25). We assume that only the noisy image is given to
us, and we wish to recover the clean image.

Assuming that the noise e has bounded norm (‖e‖2 ≤ δ), the true image t
and its noisy realization x are within a distance of δ from each other. In theory, if
we know the value of δ, then we may search the δ-ball centered at x for the clean
image t. However, we cannot use the concept of cleanness directly. In addition,
this space is prohibitively large for performing any practical task. So we need to
choose a model for the clean image t and correspondingly focus on a smaller class
of images. The “best” image in that class is then used as an estimator for the clean
image t:

t̂ = argmin
y

C(y) subject to ‖x− y‖2 ≤ δ.

In the above, C(·) represents a cost function, often naturally associated with the
selected model, such that smaller cost means better estimation.

For example, if we let C(y) = ‖Ly‖22, where L is a Laplacian matrix represent-
ing the operation of applying the Laplacian filter to the image y, then the cost is
the deviation of t from spatial smoothness. In other words, the class of spatially
smooth images that lie in the δ-ball around t is considered and the most spatially
smooth image is selected to estimate t. A second example is C(y) = ‖Wy‖1, where
W is a matrix representing the orthogonal wavelet transform, and the �1 norm mea-
sures the sparsity of the wavelet coefficients. This corresponds to wavelet denoising,
which combines spatial smoothness (of a lower order) and a robust measure in the
cost function. There are also many other choices of C(y), e.g., the total variation
measure [ROF92].

Recently, inspired by sparse and redundant modeling, the sparsity of the co-
efficient of y with respect to an overcomplete dictionary D is adopted as the cost
function:

min ‖γ‖1 subject to ‖x−Dγ‖2 ≤ δ.

Here, D represents a global dictionary, learned in advance from many image exam-
ples of the same size. In this case, the dictionary learning and sparse coding parts
are actually decoupled from each other, and one thus solves them separately. The
minimizer γ̂ of the sparse coding problem corresponds to the “simplest” image with
respect to the global dictionary D, and the clean image estimate is t̂ = Dγ̂.

In practice, instead of working on the full image and using many similar ex-
amples, one often extracts the patches pi, at a fixed size, of the noisy image x as
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training signals. We then learn a (patch) dictionary D, along with coefficients γ̂i,
directly from those patches:

min
D,{γi}

∑
i

‖γi‖1 subject to ‖pi −Dγi‖2 ≤ δ for all i.

The denoised patches are given by Dγ̂i, from which we reconstruct the clean im-
age. Such a patch-based approach has two immediate advantages: First, the signal
dimension becomes much smaller, which greatly mitigates the computational bur-
den. Secondly, since the dictionary is self-learned, there is no need to use other
exemplary images. Fig. 5 displays both a dictionary trained on patches of size 8×8
taken from the noisy image in Fig. 4 and the corresponding denoised image.

Figure 5 Trained dictionary (left) and corresponding denoised result (right), using
the K-SVD algorithm [AEB05,AEB06].

More generally, we assume that we observe a noisy degraded version of x:

x = Ht+ e

where H is a linear operator representing some kind of degradation of the signal,
such as

• a blur,
• the masking of some pixels,
• the downsampling, and
• a random set of projections.

Our goal is still to recover the true image t from its noisy observation x. The
corresponding problems are respectively referred to as

• image deblurring [HX13],
• image inpainting [MSE],
• image super-resolution [PETM09], and
• compressive sensing.

When H is taken to be the identity operator, then the problem reduces to im-
age denoising. These problems are all special types of inverse problems in image
processing.

Similarly, if we adopt the �1 cost function and learn a dictionary D elsewhere
from many image examples, we may then consider the following problem:

min ‖γ‖1 subject to ‖x−HDγ‖2 ≤ δ.
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Here, we assume H is known to us. We solve it by regarding HD as a whole. The
minimizer γ̂ of the above problem then gives the clean image estimate t̂ = Dγ̂. We
refer the reader to the above references (corresponding to the specific applications)
for more details as well as experimental results.

5. Dictionary Learning: Algorithms

Since the beginning of this century, many algorithms have been proposed for
solving the dictionary learning problem, most of which use the formulation (4.6)
and have an iterative fashion. That is, by fixing one of the matrices D and Γ,
they consider the optimization over the other variable and strive to find the best
update for it; such an alternating procedure is repeated until convergence. In
the following, we review three state-of-the-art dictionary learning algorithms, K-
SVD [AEB05,AEB06], Geometric Multi-Resolution Analysis (GRMA) [CM10,
CM11b,ACM12], and Online Dictionary Learning (ODL) [MBPS09,MBPS10],
which have very different flavors and adequately represent their own categories. The
review will also enable the reader to learn the different rationals and ideas used in
the data-dependent dictionary learning research. For a more complete survey on
dictionary learning approaches, we refer the reader to [RBE10].

5.1. K-SVD. The K-SVD algorithm is an iterative algorithm, developed by
Elad et al. [AEB05,AEB06], that minimizes the expression in (4.1), or its matrix
form (4.2). It consists of two stages, similarly to the Kmeans algorithm [Mac67].

First, at any iteration, the dictionary D is held fixed and the best coefficient
matrix Γ is seeked. In this case, the n terms in the sum of (4.1) can be decoupled,
leading to n similar problems:

(5.1) min
γi

‖xi −Dγi‖22 subject to ‖γi‖0 ≤ s,

where i is taken to be from 1 to n. This is exactly the sparse coding problem,
being solved n times. Therefore, any of the pursuit algorithms (such as OMP and
CoSamp) that are mentioned in the first half of this paper may be used at this
stage.

At the second stage of the same iteration, K-SVD then fixes the new coefficient
matrix Γ and searches for a better dictionaryD relative to the coefficients. However,
unlike some of the approaches described in [RBE10] which update the whole matrix
D by treating it as a single variable, the K-SVD algorithm updates one column at
a time, fixing the other columns of D. Meanwhile, as a byproduct, new coefficient
corresponding to the updated column is also obtained. Such adoptions have at
least two important advantages. First, as we shall see, the process of updating only
one column of D at a time is a simple problem with a straightforward solution
based on the singular value decomposition (SVD). Second, allowing a change in the
coefficient values while updating the dictionary columns accelerates convergence,
since the subsequent column updates will be based on the more relevant coefficients.

5.1.1. Detailed description of the KSVD algorithm. Let us present such ideas
more carefully. Assume that at some iteration both Γ and all columns of D except
one dk are fixed. The goal is to update dk and γ(k) simultaneously so as to reduce
the overall representation error. Denote by γ(i) the ith row of Γ for all i (note the
the ith column of Γ is denoted by γi). Then, by writing out the individual rank-1
matrices in the product DΓ and regrouping terms, we obtain from the objective
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function in (4.2) the following

‖X−DΓ‖2F =

∥∥∥∥∥∥X−
∑
j

djγ
(j)

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥∥
⎛⎝X−

∑
j �=k

djγ
(j)

⎞⎠− dkγ
(k)

∥∥∥∥∥∥
2

F

.(5.2)

Denoting

Ek = X−
∑
j �=k

djγ
(j),(5.3)

which stores the errors for all the training data when the kth atom is omitted, the
optimization problem in (4.2) becomes

min
dk,γ(k)

∥∥∥Ek − dkγ
(k)

∥∥∥2
F
.(5.4)

Note that in the above equation the matrix Ek is considered fixed. The problem
thus tries to find the closest rank-1 approximation to Ek, expressing each of its
columns as a constant multiple of dk. A seemingly natural solution would be to
perform a rank-1 SVD of Ek to update both dk and γ(k). However, this disregards
any sparsity structure that γ(k) presents1 and the SVD will very likely fill all its
entries to minimize the objective function. Collectively, when all atoms along with
their coefficients are sequentially updated, such a method would destroy the overall
sparsity pattern of the coefficient matrix Γ. As a result, the convergence of the
algorithm will be significantly impaired.

It is thus important to preserve the support of γ(k), when solving the above
problem, to ensure convergence. The K-SVD algorithm introduces the following
simple solution to address the issue. Let the support set of γ(k) be denoted by

Ωk = {i | γ(k)(i) �= 0},
and its reduced version by

γ
(k)
Ω = γ(k)(Ωk) =

(
γ(k)(i)

)
i∈Ωk

.

We also restrict our attention to the same subset of columns of Ek:

EΩ
k = Ek(:,Ωk).

Using such notation, we may rewrite the above problem as

min
dk,γ

(k)
Ω

∥∥∥EΩ
k − dkγ

(k)
Ω

∥∥∥2
F
,(5.5)

in which γ
(k)
Ω now has a full support. Since the sparsity constraint has been removed,

this problem bears a simple and straightforward solution, computable from rank-1
SVD. Specifically, if the SVD of EΩ

k is given by

EΩ
k = UΣV T

where U, V are orthonormal and Σ is diagonal, then the solution of the above
problem is

d̃k = U(:, 1), γ
(k)
Ω = Σ11V (:, 1).

1Recall that γ(k) is the kth row of the coefficient matrix Γ which has sparse columns. So it
is very likely that each row of Γ also contains many zeros and thus has a (nearly) sparse pattern.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

226 GUANGLIANG CHEN AND DEANNA NEEDELL

One immediate benefit of such a solution is that the new atom d̃k remains normal-
ized.

We now summarize the steps of K-SVD in Algorithm 1.

Algorithm 1 Pseudocode for the K-SVD Algorithm

Input: Training data X = {x1, . . . ,xn}, sparsity parameter s, initial dictionary
D(0)

Output: Dictionary D, sparse coefficients Γ
Steps:
1: Initialization: J ← 1 (iteration index)
2: WHILE stopping criterion not met

• Sparse coding stage: For each data point xi, i = 1, . . . , n, solve

min
γi

‖xi −D(J−1)γi‖22 subject to ‖γi‖0 ≤ s,

using any pursuit algorithm (e.g. OMP). Denote the resultant coeffi-
cient matrix by Γ.

• Dictionary update stage: For each dictionary atom di of
D(J−1), i = 1, . . . , n,

– Identify the support set Ωi of γ
(i), the ith row of the current

matrix Γ.
– Compute

Ei = X−
∑
j �=i

djγ
(j),

and restrict it to the subset Ωi of columns of Ei to form EΩ
i .

– Apply rank-1 SVD to EΩ
i to update di and γ

(i)
Ω simultane-

ously

• J ← J + 1

ENDWHILE
3: Return D,Γ

5.1.2. A few remarks about K-SVD. We make the following comments on K-
SVD.

• The K-SVD algorithm has many advantages. For example, it is simple
to implement, fast to run, and converges (assuming the pursuit algorithm
used for sparse coding is accurate). It has been successfully applied to
many imaging applications (e.g., [EA06]).

• However, the success of K-SVD depends on the choice of the initial dic-
tionary. In other words, though it converges, it might be trapped in a
suboptimal solution. Its performance also depends on the pursuit algo-
rithm used. For example, convergence of K-SVD is guaranteed only if the
pursuit algorithm solves the sparse coding problems accurately.

• The K-SVD algorithm closely resembles the Kmeans algorithm, and can
be viewed as a natural extension of it. This explains why K-SVD shares
the same advantages and drawbacks with Kmeans, like those mentioned
above.
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• The dictionary built by K-SVD is completely unstructured, making sparse
representation of any new signal (relative to the trained dictionary) a
nontrivial task, which requires to use one of the pursuit algorithms.

5.2. Geometric Multi-Resolution Analysis (GMRA). The GMRA
[CM10,CM11b,ACM12] is a wavelet-like algorithm based on a geometric mul-
tiresolution analysis of the data. It builds data-dependent dictionaries that are
structured and multiscale. When the data is sampled from a manifold, there are
theoretical guarantees for both the size of the dictionary and the sparsity of the
coefficients.

Specifically, let (M, ρ, μ) be a metric measure space with μ a Borel probability
measure, ρ a metric function, and M ⊆ RD a set. For example, (M, ρ, μ) can
be a smooth compact Riemannian manifold of dimension d isometrically embed-
ded in RD, endowed with the natural volume measure. The GMRA construction
consists of three steps. First, it performs a nested geometric decomposition of the
set M into dyadic cubes at a total of J scales, arranged in a tree. Second, it
obtains an affine approximation in each cube, generating a sequence of piecewise
linear sets {Mj}1≤j≤J approximating M. Lastly, it constructs low-dimensional
affine difference operators that efficiently encode the differences between Mj and
Mj+1, producing a hierarchically organized dictionary that is adapted to the data.
Associated to this dictionary, there exist efficient geometric wavelet transforms, an
advantage not commonly seen in the current dictionary learning algorithms.

5.2.1. Multiscale Geometric Decomposition. For any x ∈ M and r > 0, we use
Br(x) to denote the ball in the set M of radius r centered at x. We start by a
spatial multiscale decomposition of M into dyadic cubes, {Cj,k}k∈Γj ,j∈Z, which are
open sets in M such that

(i) for every j ∈ Z, μ(M\∪k∈Γj
Cj,k) = 0;

(ii) for j′ ≥ j either Cj′,k′ ⊆ Cj,k or μ(Cj,k ∩ Cj′,k′) = 0;
(iii) for any j < j′ and k′ ∈ Γj′ , there exists a unique k ∈ Γj such that

Cj′,k′ ⊆ Cj,k;
(iv) each Cj,k contains a point cj,k, called center of Cj,k, such that

Bc1·2−j (cj,k) ⊆ Cj,k ⊆ Bmin{c2·2−j ,diam(M)}(cj,k) ,

for fixed constants c1, c2 depending on intrinsic geometric properties of M. In
particular, we have μ(Cj,k) ∼ 2−dj ;

(v) the boundary of each Cj,k is piecewise smooth.
The properties above imply that there is a natural tree structure T associated

to the family of dyadic cubes: for any (j, k), we let

children(j, k) = {k′ ∈ Γj+1 : Cj+1,k′ ⊆ Cj,k} .
Note that Cj,k is the disjoint union of its children. For every x ∈ M, with abuse
of notation we let (j,x) be the unique k ∈ Γj such that x ∈ Cj,k.

5.2.2. Multiscale Singular Value Decomposition (MSVD). We start with some
geometric objects that are associated to the dyadic cubes. For each Cj,k we define
the mean

(5.6) cj,k := Eμ[x|x ∈ Cj,x] =
1

μ(Cj,k)

∫
Cj,k

x dμ(x),

and the covariance operator restricted to Cj,k,

(5.7) covj,k = Eμ[(x− cj,k)(x− cj,k)
∗|x ∈ Cj,k].
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Figure 6 Construction of GMRA.

Let τ0 be some method that chooses local dimensions dj,k at the dyadic cubes
Cj,k. For example, when the data is sampled from a manifold of dimension d, τ0
assigns dj,k = d for all (j, k). In the setting of nonmanifold data, τ0 can instead picks
dj,k so that certain (absolute/relative) error criterion is met. We then compute the
rank-dj,k Singular Value Decomposition (SVD) of the above covariance matrix

(5.8) covj,k ≈ Φj,kΣj,kΦ
∗
j,k,

and define the approximate local tangent space

(5.9) Vj,k := Vj,k + cj,k, Vj,k = 〈Φj,k〉 ,
where 〈Φj,k〉 denotes the span of the columns of Φj,k. Let Pj,k be the associated
affine projection onto Vj,k: for any x ∈ Cj,k,

(5.10) Pj,k(x) := Pj,k · (x− cj,k) + cj,k, Pj,k = Φj,kΦ
∗
j,k,

and define a coarse approximation of M at scale j,

(5.11) Mj := ∪k∈Γj
Pj,k(Cj,k).

When M is a manifold and dj,k = d, Mj → M in the Hausdorff distance, as
J → +∞.

5.2.3. Construction of Geometric Wavelets. We introduce our wavelet encoding
of the difference between Mj and Mj+1, for j ≥ 0. Fix a point x ∈ Cj+1,k′ ⊂
Cj,k. There are two ways to define its approximation at scale j, denoted by xj or
equivalently by PMj

(x):

(5.12) xj := Pj,k(x);

and

(5.13) xj := Pj,k(xj+1), for j < J ; and xJ = PJ,x(x).

Clearly, the first definition is the direct projection of the point x onto the approx-
imate local tangent subspace Vj,k (thus it is the closest approximation to x from
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Vj,k in the least-squares sense). In contrast, the second definition is the successive
projection of x onto the sequence of tangent spaces VJ,x, . . . ,Vj,x.

Regardless of which definition, we will see that the difference xj+1 − xj is a
high-dimensional vector inRD, however it may be decomposed into a sum of vectors
in certain well-chosen low-dimensional spaces, shared across multiple points, in a
multiscale fashion.

For reasons that will become obvious later, we define the geometric wavelet
subspaces and translations as

Wj+1,k′ := (I−Pj,k)Vj+1,k′ ;(5.14)

wj+1,k′ := (I−Pj,k)(cj+1,k′ − cj,k),(5.15)

and let Ψj+1,k′ be an orthonormal basis for Wj+1,k′ which we call a geometric
wavelet basis (see Fig. 6).

We proceed using the two definitions of xj separately. First, with (5.12), we
have for j ≤ J − 1

QMj+1
(x) := xj+1 − xj

= xj+1 − Pj,k(xj+1) + Pj,k(xj+1)− Pj,k(x)

= (I−Pj,k)(xj+1 − cj,k) +Pj,k(xj+1 − x).(5.16)

Since xj+1 − cj,k = xj+1 − cj+1,k′ + cj+1,k′ − cj,k and xj+1 − cj+1,k′ ∈ Vj+1,k′ , we
obtain from (5.16), (5.14), (5.15)

QMj+1
(x) = Ψj+1,k′Ψ∗

j+1,k′(xj+1 − cj+1,k′) +wj+1,k′

− Φj,kΦ
∗
j,k(x− xj+1).(5.17)

Note that the last term x − xj+1 can be closely approximated by xJ − xj+1 =∑J−1
l=j+1QMl+1

(x) as the finest scale J → +∞, under general conditions. This
equation splits the difference xj+1 − xj into a component in Wj+1,k′ , a translation
term that only depends on the cube (j, k) (and not on individual points), and a
projection onto Vj,k of a sum of differences xl+1 − xl at finer scales.

Second, with (5.13), we may obtain a simpler representation of the difference

QMj+1
(x) = xj+1 − (Pj,k(xj+1 − cj,k) + cj,k)

= (I−Pj,k)(xj+1 − cj+1,k′ + cj+1,k′ − cj,k)

= Ψj+1,k′Ψ∗
j+1,k′(xj+1 − cj+1,k′) +wj+1,k′ .(5.18)

The term x − xj+1 no longer appears in this equation and the difference depends
only on a component in Wj+1,k′ and a translation term.

Comparing (5.17) and (5.18) we see that the main advantage of the construc-
tion in (5.17) is that the approximations xj have clear-cut interpretations as the
best least-squares approximations. However, it is at the expense of the size of
the dictionary which must contain the scaling functions Φj,k. The construction in
(5.18), leading to a smaller dictionary, is particularly useful when one does not care
about the intermediate approximations, for example, in data compression tasks.

It is also worth mentioning that the definition of wavelet subspaces and trans-
lations (see (5.14), (5.15)) is independent of that of the xj . We present their con-
struction in Alg. 2. Moreover, regardless of the definition of the approximations,
we have the following two-scale relationship (by definition of QMj+1

)

(5.19) PMj+1
(x) = PMj

(x) +QMj+1
(x),
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Algorithm 2 Pseudocode for the construction of geometric wavelets

Input: X: a set of n samples from M ⊂ RD;
τ0: some method for choosing local dimensions;
ε: a precision parameter

Output: A tree T of dyadic cubes {Cj,k}, with local means {cj,k} and SVD bases
{Φj,k}, as well as a family of geometric wavelets {Ψj,k}, {wj,k}

Steps:
1: Construct a tree T of dyadic cubes {Cj,k} with centers {cj,k}.
2: J ← finest scale with the ε-approximation property.
3: Let covJ,k = |CJ,k|−1

∑
x∈CJ,k

(x−cJ,k)(x−cJ,k)
∗, for all k ∈ ΓJ , and compute

SVD(covJ,k) ≈ ΦJ,kΣJ,kΦ
∗
J,k (where the rank of ΦJ,k is determined by τ0).

4: FOR j = J − 1 down to 0

FOR k ∈ Γj

• Compute covj,k and Φj,k as above
• For each k′ ∈ children(j, k), construct the wavelet basis
Ψj+1,k′ and translation wj+1,k′ using (5.14) and (5.15)

ENDFOR

ENDFOR
5: Return Ψ0,k := Φ0,k and w0,k := c0,k for k ∈ Γ0.

and it may be iterated across scales:

(5.20) x = PMj
(x) +

J−1∑
l=j

QMl+1
(x) + (x− PMJ

(x)).

The above equations allow to efficiently decompose each step along low dimensional
subspaces, leading to efficient encoding of the data. We have therefore constructed
a multiscale family of projection operators PMj

(one for each node Cj,k) onto ap-
proximate local tangent planes and detail projection operators QMj+1

(one for each
edge) encoding the differences, collectively referred to as a GMRA structure. The

cost of encoding the GMRA structure is at most O(dDε−
d
2 ) (when also encoding the

scaling functions {Φj,k}), and the time complexity of the algorithm is O(Dn log(n))
[ACM12].

Finally, we mention that various other variations, optimizations, and general-
izations of the construction, such as orthogonalization, splitting, pruning, out-of-
sample extension, etc., can be found in [ACM12]. Due to space considerations, we
omit their details here.

5.2.4. Associated Geometric Wavelet Transforms (GWT). Given a GMRA
structure, we may compute a Discrete Forward GWT for a point x ∈ M that
maps it to a sequence of wavelet coefficient vectors:

(5.21) qx = (qJ,x,qJ−1,x, . . . ,q1,x,q0,x) ∈ Rd+
∑J

j=1 dw
j,x

where qj,x := Ψ∗
j,x(xj − cj,x), and dwj,x := rank(Ψj,x). Note that, in the case

of a d-dimensional manifold and for a fixed precision ε > 0, qx has a maximum
possible length (1 + 1

2 log2
1
ε )d, which is independent of D and nearly optimal in

d [CM10]. On the other hand, we may easily reconstruct the point x using the



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

COMPRESSED SENSING AND DICTIONARY LEARNING 231

{qj,x} =FGWT(GMRA, x)

// Input: GMRA structure, x ∈ M
// Output: Wavelet coefficients {qj,x}
for j = J down to 0

xj = Φj,xΦ
∗
j,x(x− cj,x) + cj,x

qj,x = Ψ∗
j,x(xj − cj,x)

end

{qj,x} =FGWT(GMRA, x)

// Input: GMRA structure, x ∈ M
// Output: Wavelet coefficients {qj,x}
for j = J down to 0

qj,x = Ψ∗
j,x(x− cj,x)

x = x− (Ψj,xqj,x +wj,x)

end

x =IGWT(GMRA,{qj,x})

// Input: GMRA structure, wavelet co-
efficients {qj,x}
// Output: Reconstruction x

QMJ (x) = ΨJ,xqJ,x +wJ,x

for j = J − 1 down to 1

QMj (x) = Ψj,xqj,x + wj,x −
Pj−1,x

∑
�>j QM�(x)

end
x = Ψ0,xq0,x +w0,x +

∑
j>0 QMj (x)

x =IGWT(GMRA,{qj,x})

// Input: GMRA structure, wavelet co-
efficients {qj,x}
// Output: Reconstruction x

for j = J down to 0

QMj (x) = Ψj,xqj,x +wj,x

end
x =

∑
0≤j≤J QMj (x)

Figure 7 Pseudocodes for the Forward (top row) and Inverse (bottom row) GWTs
corresponding to different wavelet constructions (5.17) (left column) and (5.18) (right
column)

GMRA structure and the wavelet coefficients, by a Discrete Inverse GWT. See
Fig. 7 for the pseudocodes of both transforms.

5.2.5. A toy example. We consider a 2-dimensional SwissRoll manifold in R50

and sample 2000 points from it without adding any noise. We apply the GMRA
to this synthetic data set to illustrate how the GMRA works in general. The
corresponding results are shown in Fig. 8.

5.2.6. A few remarks about GMRA. We make the following comments.

• The GMRA algorithm presents an appealing framework for construct-
ing data-dependent dictionaries using a geometric multiresolution analy-
sis. Unlike the K-SVD dictionaries, the GMRA outputs dictionaries that
are structured and hierarchically organized. Moreover, the different sub-
groups of such a dictionary correspond to different scales and have clear
interpretations as detail operators.

• It has many other advantages, for example the construction is based on
many local SVD and thus is fast to execute. In addition, there are the-
oretical guarantees on the size of the dictionary and the sparsity of the
representation, at least when the data follows a manifold model. It is
also associated with fast transforms, making the sparse coding compo-
nent extremely simple and fast, which is typically unavailable for other
algorithms.

• The GMRA algorithm naturally extends the wavelet transform for 1-
dimensional signals to efficient multiscale transforms for higher dimen-
sional data. The nonlinear space M replaces the classical function spaces,
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Figure 8 Illustration of the GMRA (with the projection defined in (5.13)) on a data
set of 2000 points sampled from a 2-dimensional SwissRoll manifold in R

50. Top
left: sampled data; top middle: the tree of dyadic cubes obtained by the METIS
algorithm [KK99]; top right: matrix of wavelet coefficients. The x-axis indexes the
points (arranged according to the tree), and the y axis indexes the scales from coarse
(top) to fine (bottom). Note that each block corresponds to a different dyadic cube.
Bottom left: (average) magnitude of wavelet coefficients versus scale; bottom middle:
approximation error of the projection (5.13) to the data as a function of scale; bottom
right: deviation of the projection (5.13) from the best possible one (5.12) at each scale
(also in log10 scale). The last plot shows that the projection (5.13) deviates from
(5.12) at a rate of 4 and in particular, the two almost coincide with each other at
fine scales.

the piecewise affine approximation at each scale substitutes the linear pro-
jection on scaling function spaces, and the difference operators play the
role of the linear wavelet projections. But it is also quite different in many
crucial aspects. It is nonlinear, as its adapts to the nonlinear manifolds
modeling the data space, but every scale-to-scale step is linear. Transla-
tions or dilations do not play any role here, while they are often considered
crucial in classical wavelet constructions.

5.3. Online dictionary learning (ODL). The ODL algorithm, developed
by Mairal et al. [MBPS09,MBPS10], is an online algorithm that is designed
to handle extremely large data sets. It starts by assuming a generative model
xt ∼ p(x), where p(x) represents a probability density function governing the data
distribution.2 At each time t = 1, 2, . . . , it draws a new sample xt from the dis-
tribution and uses it to refine the dictionary Dt−1 obtained at time t − 1. This
procedure is repeated until a stopping criterion has been met (for example, t has
reached an upper bound T , or the dictionary Dt no longer changes noticeably).

2For real data sets one does not know the underlying probability distribution; in this case,
the uniform discrete measure can be used. This is equivalent to first randomly permuting the data
points and then sequentially processing them, one at a time.
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5.3.1. Detailed description of the ODL algorithm. To present the specific ideas,
we consider iteration t when a new sample xt arrives. By this time, the first t− 1
samples x1, . . . ,xt−1 have already been drawn from the distribution and used to
train a dictionary Dt−1. Of course, if t = 1, then D0 represents an initial guess of
the dictionary provided by the user to start with. We now would like to use xt to
update the dictionary Dt−1 to Dt. This is achieved in two steps: First, we find the
sparse coefficient of xt relative to Dt−1 by solving the sparse coding problem

γt = argmin
γ

1

2
‖xt −Dt−1γ‖2 + λ‖γ‖1

where λ is the user-specified tuning parameter, fixed throughout all iterations. We
have repeatedly encountered this problem and recall that it can be easily solved
by any of those pursuit algorithms mentioned in the CS framework. Next, we fix
the coefficient γt obtained above, together with the previous ones γ1, . . . , γt−1, and
minimize the same objective function, this time with respect to the dictionary D
(constrained to have at most unit-norm columns), hoping to find a new dictionary
Dt that is better suited to all coefficients γi, 1 ≤ i ≤ t:

Dt = argmin
D

1

2t

t∑
i=1

‖xi −Dγi‖2 + λ‖γi‖1.

In this step, since the γi are fixed, we may remove the second term from the
objective function and consider instead

Dt = argmin
D

t∑
i=1

‖xi −Dγi‖2.

To see how the square-loss objective is minimized, we rewrite it using matrix nota-
tion:

t∑
i=1

‖xi −Dγi‖2 =

t∑
i=1

trace
(
(xi −Dγi)(xi −Dγi)

T
)

=

t∑
i=1

trace
(
xix

T
i − xiγ

T
i D

T −Dγix
T
i +Dγiγ

T
i D

T
)

=
t∑

i=1

(
trace

(
xix

T
i

)
− 2 trace

(
xiγ

T
i D

T
)
+ trace

(
DTDγiγ

T
i

))
= trace

(
t∑

i=1

xix
T
i

)
− 2 trace

(
DT

t∑
i=1

xiγ
T
i

)

+ trace

(
DTD

t∑
i=1

γiγ
T
i

)
Letting

At =
t∑

i=1

γiγ
T
i ∈ R

m×m, Bt =
t∑

i=1

xiγ
T
i ∈ R

L×m

and discarding the first term that does not depend on D, we arrive at the final form

Dt = argmin
D

trace(DTDAt)− 2 trace(DTBt)
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This problem can be solved by block coordinate descent, using Dt−1 as an ini-
tial dictionary. Specifically, we hold all except the kth column dk of D = Dt−1

fixed and consider the resulting optimization problem, which is only over dk. Us-
ing straightforward multivariable calculus, we obtain the gradient of the objective
function as follows:

2(DAt(:, k)−Bt(:, k)).

Setting it equal to zero and solving the corresponding equation yields a unique
critical point

1

(At)kk
(Bt(:, k)−

∑
j �=k

dj (At)jk) = dk − 1

(At)kk
(DAt(:, k)−Bt(:, k)) .

The Hessian matrix of the objective function, (At)kk I, is strictly positive definite
(because At also is), implying that the critical point is a global minimizer. Thus,
we update dk by setting

dk ← dk − 1

(At)kk
(DAt(:, k)−Bt(:, k)) ,

in order to reduce the objective function as much as possible (if ‖dk‖2 > 1, we then
need to normalize it to unit norm). We sequentially update all the columns of D by
varying k, always including the updated columns in D for updating the remaining
columns, in order to accelerate convergence. We repeat this procedure until the
objective function no longer decreases and denote the corresponding dictionary
by Dt.

We now summarize the steps of ODL in Algorithm 3. We refer the reader
to [MBPS09,MBPS10] for convergence analysis and performance evaluations.

5.3.2. A few remarks about the ODL algorithm.

• ODL and K-SVD are similar in several ways: (1) Both involve solving the
sparse coding problem (4.7) many times (once per signal, per iteration).
(2) The columns of D are updated sequentially in both algorithms, which
speeds up convergence. (3) Both require an initial guess of the dictionary,
which affects convergence.

• Both ODL and GMRA assume a generative model for the data, so they
both aim to build dictionaries for some probability distribution, not just
for a particular data set. In contrast, K-SVD only aims to achieve the
minimal empirical cost on the training data.

• The ODL is also quite different from K-SVD and GMRA, in the sense that
the latter two are batch methods which must access the whole training
set in order to learn the dictionary. In contrast, the ODL uses one sample
at a time, without needing to store or access the entire data set. This
advantage makes ODL particularly suitable for working with very large
data sets, which might have millions of samples, and with dynamic train-
ing data changing over time, such as video sequences. Additionally, since
it does not need to store the entire data set, it has a low memory con-
sumption and lower computational cost than classical batch algorithms.

5.4. Future directions in dictionary learning. Despite all the impressive
achievements by sparse and redundant modeling, many questions remain to be
answered and there are a large number of future research directions. We list only
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Algorithm 3 Pseudocode for the Online Dictionary Learning (ODL) Algorithm

Input: Density p(x), tuning parameter λ, initial dictionary D0, and number of
iterations T

Output: Final dictionary DT

Steps:
1: Initialization: Set A0 ← 0 and B0 ← 0
2: FOR t = 1 : T

• Sampling: Draw a new sample xt from p(x)
• Sparse coding: Find the sparse coefficient of xt relative to Dt−1 by
solving

γt = argmin
γ

‖xt −Dt−1γ‖22 + λ‖γ‖1.

using any pursuit algorithm (e.g., OMP).
• Recording: Update At and Bt to include xt and γt:

At ← At−1 + γtγ
T
t , Bt ← Bt−1 + xtγ

T
t

• Dictionary update: Update the columns dk of Dt−1 sequentially,
using

dk ← dk − 1

(At)kk
(DAt(:, k)−Bt(:, k)) .

If ‖dk‖2 > 1, then normalize it to have unit norm. Repeat this pro-
cedure until convergence.

ENDFOR
3: Return Dt

a few below, while referring the reader to [Ela12] for a detailed discussion on this
topic.

• Theoretical justification of dictionary learning algorithms. So
far most of the dictionary learning algorithms are essentially empirical
methods (e.g., K-SVD [AEB05,AEB06]). Little is known about their
stability, especially in the presence of noise. Furthermore, it is unclear
which conditions would guarantee the algorithm to succeed. Finally, new
measures of dictionary quality (not just worst-case conditions) need to be
developed in order to study the goodness of the learned dictionary.

• Introducing structure to dictionaries. Currently, most learned dic-
tionaries (such as the K-SVD dictionary) are completely unstructured.
Finding the sparse representation of a signal relative to such a dictionary
is a nontrivial task. This causes a great computational burden when deal-
ing with large data sets. It is thus desirable to impose structures to the
dictionary atoms to simplify the sparse coding task. It is noteworthy to
mention that the GMRA dictionary represents an advancement in this di-
rection, as it organizes its atoms into a tree which makes the coding part
extremely simple and fast. It will be interesting to explore other ways to
construct structured dictionaries.

• Developing next generation models. Sparse and redundant modeling
represents the current state of the art, having evolved from transforms and
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union-of-subspaces models. Inevitably such a model will be replaced by
newer, more powerful models, just like its predecessors. It will be exciting
to see any new research devoted in this direction.
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York, 2013. Theory and applications; Edited by Peter G. Casazza and Gitta Kutyniok.
MR2964005

[CL09a] Guangliang Chen and Gilad Lerman, Foundations of a multi-way spectral clustering
framework for hybrid linear modeling, Found. Comput. Math. 9 (2009), no. 5, 517–
558, DOI 10.1007/s10208-009-9043-7. MR2534403 (2010k:62299)

[CL09b] G. Chen and G. Lerman. Spectral curvature clustering (SCC). Int. J. Comput. Vision,
81(3):317–330, 2009.

[CM10] G. Chen and M. Maggioni. Multiscale geometric wavelets for the analysis of point
clouds. In Proc. of the 44th Annual Conference on Information Sciences and Systems
(CISS), Princeton, NJ, March 2010.

[CM11a] G. Chen and M. Maggioni. Multiscale geometric and spectral analysis of plane arrange-
ments. In IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[CM11b] G. Chen and M. Maggioni. Multiscale geometric dictionaries for point-cloud data.
In Proc. of the 9th International Conference on Sampling Theory and Applications
(SampTA), Singapore, May 2011.

[CMW92] Ronald R. Coifman, Yves Meyer, and Victor Wickerhauser, Wavelet analysis and
signal processing, Wavelets and their applications, Jones and Bartlett, Boston, MA,
1992, pp. 153–178. MR1187341

[CP09] Emmanuel J. Candès and Yaniv Plan, Tight oracle inequalities for low-rank matrix
recovery from a minimal number of noisy random measurements, IEEE Trans. Inform.
Theory 57 (2011), no. 4, 2342–2359, DOI 10.1109/TIT.2011.2111771. MR2809094

[CP10] Emmanuel J. Candès and Yaniv Plan, A probabilistic and RIPless theory of com-

pressed sensing, IEEE Trans. Inform. Theory 57 (2011), no. 11, 7235–7254, DOI
10.1109/TIT.2011.2161794. MR2883653

[CR05] E. Candès and J. Romberg. Signal recovery from random projections. In Proc. SPIE
Conference on Computational Imaging III, volume 5674, pages 76–86. SPIE, 2005.

[CRT06a] Emmanuel J. Candès, Justin Romberg, and Terence Tao, Robust uncertainty princi-
ples: exact signal reconstruction from highly incomplete frequency information, IEEE
Trans. Inform. Theory 52 (2006), no. 2, 489–509, DOI 10.1109/TIT.2005.862083.
MR2236170 (2007e:94020)

[CRT06b] Emmanuel J. Candès, Justin K. Romberg, and Terence Tao, Stable signal recovery
from incomplete and inaccurate measurements, Comm. Pure Appl. Math. 59 (2006),
no. 8, 1207–1223, DOI 10.1002/cpa.20124. MR2230846 (2007f:94007)

[CSZ06] Tony F. Chan, Jianhong Shen, and Hao-Min Zhou, Total variation wavelet inpainting,
J. Math. Imaging Vision 25 (2006), no. 1, 107–125, DOI 10.1007/s10851-006-5257-3.
MR2254441 (2007g:94006)

[CT05] Emmanuel J. Candes and Terence Tao, Decoding by linear programming, IEEE
Trans. Inform. Theory 51 (2005), no. 12, 4203–4215, DOI 10.1109/TIT.2005.858979.
MR2243152 (2007b:94313)

[CT06] Emmanuel J. Candes and Terence Tao, Near-optimal signal recovery from random
projections: universal encoding strategies?, IEEE Trans. Inform. Theory 52 (2006),
no. 12, 5406–5425, DOI 10.1109/TIT.2006.885507. MR2300700 (2008c:94009)

[CW08] E. J. Candès and M. Wakin. An introduction to compressive sampling. IEEE Signal
Proc. Mag., 25(2):21–30, 2008.

[Dau92] Ingrid Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conference Series
in Applied Mathematics, vol. 61, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1992. MR1162107 (93e:42045)

[DH01] David L. Donoho and Xiaoming Huo, Uncertainty principles and ideal atomic
decomposition, IEEE Trans. Inform. Theory 47 (2001), no. 7, 2845–2862, DOI
10.1109/18.959265. MR1872845 (2002k:94012)

http://www.ams.org/mathscinet-getitem?mr=1639094
http://www.ams.org/mathscinet-getitem?mr=1639094
http://www.ams.org/mathscinet-getitem?mr=2795875
http://www.ams.org/mathscinet-getitem?mr=2795875
http://www.ams.org/mathscinet-getitem?mr=2964005
http://www.ams.org/mathscinet-getitem?mr=2534403
http://www.ams.org/mathscinet-getitem?mr=2534403
http://www.ams.org/mathscinet-getitem?mr=1187341
http://www.ams.org/mathscinet-getitem?mr=2809094
http://www.ams.org/mathscinet-getitem?mr=2883653
http://www.ams.org/mathscinet-getitem?mr=2236170
http://www.ams.org/mathscinet-getitem?mr=2236170
http://www.ams.org/mathscinet-getitem?mr=2230846
http://www.ams.org/mathscinet-getitem?mr=2230846
http://www.ams.org/mathscinet-getitem?mr=2254441
http://www.ams.org/mathscinet-getitem?mr=2254441
http://www.ams.org/mathscinet-getitem?mr=2243152
http://www.ams.org/mathscinet-getitem?mr=2243152
http://www.ams.org/mathscinet-getitem?mr=2300700
http://www.ams.org/mathscinet-getitem?mr=2300700
http://www.ams.org/mathscinet-getitem?mr=1162107
http://www.ams.org/mathscinet-getitem?mr=1162107
http://www.ams.org/mathscinet-getitem?mr=1872845
http://www.ams.org/mathscinet-getitem?mr=1872845


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

238 GUANGLIANG CHEN AND DEANNA NEEDELL

[DNW13] Mark A. Davenport, Deanna Needell, and Michael B. Wakin, Signal space CoSaMP for
sparse recovery with redundant dictionaries, IEEE Trans. Inform. Theory 59 (2013),
no. 10, 6820–6829, DOI 10.1109/TIT.2013.2273491. MR3106865

[Don06] David L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory 52 (2006), no. 4,
1289–1306, DOI 10.1109/TIT.2006.871582. MR2241189 (2007e:94013)

[DSMB09] W. Dai, M. Sheikh, O. Milenkovic, and R. Baraniuk. Compressive sensing DNA mi-
croarrays. EURASIP journal on bioinformatics and systems biology, pages 1–12, 2009.

[DSP] Compressive sampling webpage. http://dsp.rice.edu/cs.
[Dut89] Wavelets, Inverse Problems and Theoretical Imaging, Springer-Verlag, Berlin, 1989.

Time-frequency methods and phase space; Edited by J. M. Combes, A. Grossmann
and Ph. Tchamitchian. MR1010895 (90g:42062)

[DW11] Mark A. Davenport and Michael B. Wakin, Compressive sensing of analog signals
using discrete prolate spheroidal sequences, Appl. Comput. Harmon. Anal. 33 (2012),
no. 3, 438–472, DOI 10.1016/j.acha.2012.02.005. MR2950138

[EA06] Michael Elad and Michal Aharon, Image denoising via sparse and redundant repre-
sentations over learned dictionaries, IEEE Trans. Image Process. 15 (2006), no. 12,
3736–3745, DOI 10.1109/TIP.2006.881969. MR2498043

[EFM10] M. Elad, M. Figueiredo, and Y. Ma. On the role of sparse and redundant representa-
tions in image processing. Proceedings of the IEEE - Special Issue on Applications of
Sparse Representation and Compressive Sensing, 98(6):972–982, 2010.

[EJCW09] Y. M. E. J. Candès, X. Li and J. Wright. Robust Principal Component Analysis?
Journal of ACM, 58(1):1–37, 2009.

[Ela12] M. Elad. Sparse and redundant representation modeling–what next? IEEE Signal
Processing Letters, 19(12):922–928, 2012.

[FS98] Gabor analysis and algorithms, Applied and Numerical Harmonic Analysis,
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