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Today...

Transparency, Fairness, and Efficiency in
Machine Learning

o Transparency:

o Linear algebraic tools to promote transparency (NMF, CUR)
o Understanding behavior in neural nets

o Fairness:
o linear systems with latent subgroups, fair-NMF

o Efficiency:
o tensorial dimension reduction with practical measurements
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My research at a glance
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My toolbelt at a glance

High dimensional Random Matrix
Probabilty Theory

Functional Geometry
Analysis & Analysis
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Towards transparency in ML
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Towards transparency in ML
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Towards transparency in ML

Accessorize to a Crime: Real and Stealthv Attacks on State-of-the-Art Face Recognition. Sharif et al
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Towards transparency in ML
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Eykholt et al. Robust Physical-World Attacks on Deep Learning Visual Classification.
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Towards transparency in ML

Getty Images, Siberian Art on Adobe Stock
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Towards transparency ... how to protect?

1) Training against adversaries: generate adversarial data that fools your network, then

train against
» Improves generalization but lacking robustness (new adversaries!)

2) Defensive distillation: use a second model “smoothed” in adversarial directions —
trained on the primary model’s output probabilities rather than thresholded decisions
»  Can be applied to any feed-forward neural network
»  Reduced prior attacks from 95% to 0.5% success
»  More robust against attacks, but fails current benchmarks [carlini-wagner]

Original Adversarial Original Adversarial
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Towards transparency in ML

Why do these models fail so “easily”?

»| Data is very sparse in very high dimensional space
- lots of room to “nudge” things around

» Models are often overconfident, especially in
space they have little to go on

> lan Goodfellow: ”many of the most important problems still
remain open, both in terms of theory and in terms of applications. We do
not yet know whether defending against adversarial examples is a
theoretically hopeless endeavor or if an optimal strategy would give the

defender an upper ground. On the applied side, no one has yet designed a
truly powerful defense algorithm that can resist a wide variety of

o
adversarial example attack algorithms.
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Towards transparency in ML

So how can we ever trust an output?

» If we could know “why” a model selects a
particular output, we not only further our
understanding of the method, but also begin to

develop trust (cautiously)

» There are other approaches that allow for this
type of transparency
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Non-negative matrix factorization

Variables Topics Variables

sias
siasn
soido|

Data matrix
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Non-negative matrix factorization

Variables Topics Variables

slasn
siasn
soido|

Data matrix e

This variable has a
high association
with this topic

This user has a
high association
with this topic
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Movie Ratings Genres (?) Movie Ratings

si9s

slas
(¢) seiuen

Data matrix

“Titanic”

“Love Actually”

“Sleepless in Seattle”
This user might

like romantic
comedies
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Non-negative matrix factorization

NMF .

BOWERN » In NMF, each column of the data matrix has to
Meef Tt be represented as a non-negative linear

!l combination of dictionaries

S ELLEE o , .

HEAFEaE » Hence the dictionaries must be “positive parts

of the columns of the data matrix

» When each column consists of a human face
image, NMF learns the parts of human face
(e.g., eyes, nodes, mouth)

}i 3 » This is in contrast to principal component
s . analysis and vector quantization: Due to

cancellation between eigenvectors, each
‘eigenface’ does not have to be parts of face

X
=y ™
S g~ ging = g

EX

» NMF was popularized by Lee and Seung in their

= Nature paper in 1999

Lee, D., Seung, H. Learning the parts of objects by non-negative matrix
factorization. Nature 401, 788—791 (1999). https://doi.org/10.1038/44565
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Non-negative matrix factorization

> The goal of nonnegative matrix factorization (NMF) is to factorize a data matrix
X € RZS" into a pair of low-rank nonnegative matrices W € R and H € R™" by
solving the following optimization problem

inf [ X— WH,

where ||A||7 = D Aj denotes the matrix Frobenius norm.

» Data ~ Dictionary X Coding

n r n
< > <> < >
A A ’
X H H I r
d X = @ w )
\Z \4
Data Dictionary Coding

oCan be extended to tensors in a (nontrivial but) analogous
way
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Regularizers

» L1-regularizer for sparse topics/encodings |IHIl,

. A
» Divergences: D(A|B) = Z (Az’j log B_J — Ay + Bij)
6J *J
> Classification loss: argmin [ X — WH[% + o|[M©® (Y — CH)|;
W=0H=0,C=0 \ }

|
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Non-negative matrix factorization

> In order to minimize || X — WH]||r, one can use block coordinate descent, by
iteratively fixing W or H and minimizing the error w.r.t. the other factor

X X X X X
Wy —> W, W; —> W W, > Ws
\ 4 \ 4 \ 4 \ 4
H, H; H, H; H,

» One of the most popular static NMF algorithm is the Multiplicative Update by Lee
and Seung: Update all entries of H and W alternatively using the following update

[XH];

) (W' X]; ) :
Hi <+ H Wi M/'J[XHHT];J-'

IWTWX];’
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NMF-based models

* Neural NMF with back propagation (heuristics +
applications)

* Non-negative Tensor Factorization (NTF) for multi-
modal data (some theoretical guarantees + applications)

* Online NMF for time series data (theoretical
guarantees + applications)

- Guided NMF for topic seeding (applications)

 Stratified NMF for heterogeneous data (some theory +
applications)

21
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MyLymeData

oLyme disease a vector-borne disease typically transmitted by
tick or insect bite or blood-blood contact

o Symptoms often mimic those of others, e.g. MS / ALS /
Parkinsons / FMA ... and can become chronic

oCDC estimates 300,000 new diagnoses each year
oLikely a grandiose underestimate

oPoorly understood, poorly funded, poorly diagnosed, poorly
treated

.i'.' MyLymeData
® -

A PROJECT OF LY
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MyLymeData

NMF hNMF Our Backprop

Fatigue - Nerve pain -

Facial nerve (Bell's) palsy -

Heart-related symptoms ||
Muscle aches -

Nerve pain

Psychiatric

Red skin rash

Facial nerve (Bell's) palsy
Severe headaches/neck sliffness
Shooting pains that interfere with sleep
Lightheadedness

Other Symptoms

Large joint pain

Fainting, shortness of breath
Evidence of tick bite

Early Flu-like symptoms
Early Other Symptoms
Gastrointestinal symptoms
Sleep impairment

Twitching

Memory loss

Cognitive impairment
Headache

Joint pain

Flu-like symptoms

Faligue

Bulls-eye rash

None of the above symptoms

Bulls-eye rash

Other Symptoms

Evidence of tick bite

Red skin rash

Early Other Symptoms
Shooting pains that interfere with sleep
Lightheadedness

Large joint pain

None of the above symptoms
Early Flu-like symptoms
Fainting, shortness of breath
Gastrointestinal symptoms
Headache

Joint pain

Muscle aches

Severe headaches/neck stiffness
Flu-like symptoms

Nerve pain

Psychiatric

Heart-related symptoms
Memory loss

Twitching

Sleep impairment

Cognitive impairment

=
=

Psychiatric [

Muscle aches |

Heart-related symptoms
Headache

Joint pain

Flu-like symptoms

Fatigue

Bulls-eye rash

Memory loss

Twitching

Sleep impairment

Cognitive impairment

Red skin rash

Facial nerve (Bell's) palsy
Severe headaches/neck stiffness
Shooting pains that interfere with sleep
Lightheadedness

Other Symptoms

Large joint pain

Fainting, shortness of breath
Early Flu-like symptoms
Evidence of tick bite

Early Other Symptoms
Gastrointestinal symptoms
None of the above symptoms

The hidden topics here may provide insight on how symptoms manifest themselves

"Feature selection from lyme disease patient survey using machine learning"
by J. Vendrow, J. Haddock, D. Needell, L. Johnson.
Algorithms, vol. 13, num. 12, pp. 334, 2020.
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California Innocence Project

Topic 1 Topic 2 Topic 3 Topic4 Topic 5 Topic 6 Topic 7

trial dna witness said help would que
evidence blood police told need like por
attorney  apartment suspect got please thank gracias
jury fact trial get know send yO
defendant items description  would  innocence innocence eston
testimony victim interview went crime questionnaire  swedes
judge profile also going years screening su
never done said car convicted concern es
sentence could gave never prove dear para
years detective detective asked hello address mucha

Table (5) The Top 10 topic keywords learned by the first layer of Bottom-up HNMF on the initial letters
from both categories

CALIFORNIA

INNOCENCE
PR O JECT

"Analysis of Legal Documents via Non-negative Matrix Factorization Methods
by R. Budahazy, L. Cheng, Y. Huang, A. Johnson, P. Li, J. Vendrow, Z. Wu, D.
Molitor, E. Rebrova, D. Needell.

SIAM Undergraduate Research Online, vol. 15, 2022.
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To matricize or not to matricize

0.05 0.10 0.15 0.I2() 0.|25 0.0 0.2 0.4 OEG
~ get, need, know: 1 . .
cases, confirmed cases, deaths: 2 . people, chlnq, healtg: %
S stay home, stay safe, home stay: 3 eating meat, stop eating, god:
social distancing, practice social, social media: 4 .. hoax, trump, new hoax: 3
china, corlnmktamst, rrcniade Chll'na: g social dlstanhc;mg, toﬂay, bil_leves: 151
ockdown, day, police: china, wuhan, chinese:
trump, president trump, response: 7 lockdown, social distancing, people: 6
tested ppfé%}/:. r%raur:;epsgg el S@Sﬁ;;ﬁ; g lockdown, easter, soagl |stanc<j:|ng: g
ke ) e, ¢ died: trump, cdc, president:
o wuhan, hospital, patients: 10 : esape :
= new, new cages, nFe)w york: 11 29 l leke peﬁpe, Ch;rge’ lng!agf’i. 9
health, public health, health care: 12 3 I wenliang, chinese doctor, died: 10
pandemic, global pandemic, pandﬁmlic response: ﬁ [ d tffhcmlfl WUhat;L cﬁses. %%
us, help us, let us: ea Oll, sars, breaking:
first caf]e, blll'ee:j[(in ,pc%nfir{(ned: %g pandemic, grump, stay home: 13
eath toll, deaths, breaking: pandemic, cases, new: 14
like, looks like, would like: 17 ~ cases, south korea, new cases: 15
outbreak, hong kOHﬁ, due: 18 washington state, first death, breaking: 16
) world, around world, world health: 19 stay home. please. stay safe: 17
chinese, government, chinese government: 20 Kong kdn% Strike gorder: 18
%9':1';6\(1; %ﬁﬁﬁ)&%{k}z>:ﬂ%ﬁ§&§\&%%¢) cruise ship, passengers, japan: 19
NN NSNS NSNS N SN NN N south korea, cases, total: 20
Date

AR50 0 Y PAX DO DA ABD D
NG S S
ISR A RR A

Date

Fig. 8: The normalized mean topic representation of tweets per

day learned via NMF with rank 20. . ) )
Fig. 10: The normalized factor matrix of NCPD on the tweets

dataset with rank 20.

"Detecting Short-lasting Topics Using Nonnegative Tensor Decomposition"
by L. Kassab, A. Kryshchenko, H. Lyu, D. Molitor, D. Needell, E. Rebrova.
Submitted, 2023.
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To matricize or not to matricize

LDA NMF NCPD ONCPD
(1) | would, like, one would, like, think space, would, like space, would, nasa
(2) | edu, use, window drive, sale, offer 00, sale, drive 00, sale, drive
(3) | space, launch, nasa space, shuttle, nasa games, game, year games, year, game
(4) | new, sale, please 00, 20, 50 god, believe, religion god, wrong, people
(5) | 00, 50, 20 mac, hm, msu window, widget, application | window, widget, application

0.25 0.50 0.75

0.25 0.50 li.F) 0.00 0.25 0.50 (l.l.» l.(llli

a s WON -
s W N
(& I N T N

NO2XAPPPHA NODXRAPPPRPDA
Time Time

Fig. 1: The learned topics and prevalence of each extracted topic from the semi-synthetic 20 Newsgroups dataset are shown.
The columns of each heatmap indicate the distribution over the extracted topics for each time slice. The top 3 keywords
corresponding to each topic of the models are provided.

"Detecting Short-lasting Topics Using Nonnegative Tensor Decomposition"
by L. Kassab, A. Kryshchenko, H. Lyu, D. Molitor, D. Needell, E. Rebrova.
Submitted, 2023.
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(O)NMF for Image co-segmentation

"Interpretability of Automatic Infectious Disease Classification Analysis with Concept Discovery"

by E. Sizikova, J. Vendrow, X. Cao, R. Grotheer, J. Haddock, L. Kassab, A. Kryshchenko, T. Merkh, R. W.
M. A. Madushani, K. Moise, A. Ulichney, H. V. Vo, C. Wang, M. Coffee, K. Leonard, D. Needell.
Submitted, 2022.
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ONMF for image reconstruction

1)

1=

Fig. 7: Image Compression Via ONME. (Top) uncompressed
image of Leonid Afremov’s famous painting “Rain’s Rus-
le”” (Middle) 25 of the 100 learned dictionary elements,
reshaped from their vectorized form to color image patch
form. (Bottom): Painting compressed using a dictionary of 100
vectorized 20 x 20 color image patches obtained from 30 data
samples of ONMEF, each consisting of 1000 randomly selected
sample patches. We used an overlap length of 15 in the patch
averaging for the construction of the compressed image.

"Online Nonnegative CP-dictionary Learning for Markovian Data"
by C. Strohmeier, H. Lyu, D. Needell.
Journal of Machine Learning Research, vol. 23, num. 148, pp. 1-50, 2022.
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ONTF to learn activation patterns in mouse cortex

Spatial activation atom # 14 Spatial activation Temporal activation

‘ |||||

FIGURE 4. Learning 20 CP-dictionary patches from video frames on brain activity across the mouse cortex.

2950

39S 7

50 100 150 200 250 300 350 400

"Online Nonnegative CP-dictionary Learning for Markovian Data"

by C. Strohmeier, H. Lyu, D. Needell.
Journal of Machine Learning Research, vol. 23, num. 148, pp. 1-50, 2022.
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Guided NMF for topic seeding

Table 1. Topic keywords learned for a rank 4 Guided
NMF on the 20 Newsgroups dataset with the seed words
pitch, medical, and space. We see that a clear topic forms
from each keyword matching one desired newsgroup

class.
Topic 1 Topic2  Topic3 Topic4
pitch medical space people
expected tests nasa know
curveball disease shuttle  think
stiffness diseases launch time
loosen prejudices sci use
shoulder  services lunar new
shea graduates orbit see
rotation health earth say
game patients station us
giants available  mission god

J. Vendrow, J. Haddock, E. Rebrova and D. Needell, "On a Guided Nonnegative
Matrix Factorization," /ICASSP 2021 - 2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 2021, pp.
3265-32369, doi: 10.1109/ICASSP39728.2021.9413656.
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Stratified NMF for stratified (differently sourced) data

variables features variables

V(i) JJ

T
features

A(i) ~ W(i)

samples
samples

G T G G G G G
-+

"Stratified NMF for Heterogeneous Data"
J. Chapman, Y. Yaniv, D. Needell.

Proc. 55th Asilomar Conf. on Signals, Systems and Computers, Pacific
Grove, CA, 2023.
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Stratified NMF for stratified (differently sourced) data

Stratum 2

\————f

Strata Features Dictionary Features

-

"Stratified NMF for Heterogeneous Data"

J. Chapman, Y. Yaniv, D. Needell.

Proc. 55th Asilomar Conf. on Signals, Systems and Computers, Pacific
Grove, CA, 2023.
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Towards transparency Iin neural
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Towards understanding in ML

Benign Tempered Catastrophic

IS,

® trainset
true f*

~—— predicted f

Mallinar, N., Simon, J. B., Abedsoltan, A., Pandit, P., Belkin, M., & Nakkiran,
P. (2022). Benign, tempered, or catastrophic: A taxonomy of overfitting. arXiv
preprint arXiv:2207.06569.
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Towards understanding in ML

Ridged Gaussian Kernel Ridgeless Laplacian Kernel Ridgeless Gaussian Kernel

100 (Benign) - (Tempered) (Catastrophic)
A B (
1074
10715 -1 ——
101 { g————— ,
% ;-/-,, N'*_"_‘.:r-_-’::::_—_ 1()() .
=
—
g 102 3
= 102, 10%4
1073 100
. - - ' 103 +— - - . . — " '
10! 10? 10° 101 10! 102 107 10* 10} 10? 10° 101
Train Samples Train Samples Train Samples
— d=5  ----- d=10 == d=15

Kernel regression can exhibit all three (with proper choice of ridge
parameter and kernel)

Mallinar, N., Simon, J. B., Abedsoltan, A., Pandit, P., Belkin, M., & Nakkiran,

P. (2022). Benign, tempered, or catastrophic: A taxonomy of overfitting. arXiv
preprint arXiv:2207.06569.



Deanna Needell, Mathematics

Classical bias—variance (simplicity—sensitivity) tradeoff

less complex
(more bias, less variance)

(thanks to E. George for
these slides!)

-
[ ’
N
N

N

~ . -
e
-
- [
7 -

N
\ \
\

> more complex
(less bias, more variance)

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.

Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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And yet...

Deep learning models are highly complex and expressive, yet even when
trained with no explicit regularization to perfectly interpolate noisy
training data, they still generalize well

2.5 - 1.0
true labels 0.0h = m o o -

random labels 0.8l

TITLL

§ shuffled p.lxels _ 0.7}

=15 random pixels | e

o . = 0.6f

o gaussian o

© 05

5 1.01 Q

g = 0.4} -

> =& |nception

0.5 0.3 o—o AlexNet
0.2 w—x MLP 1x512
0.0 5 10 15 20 25 Ob0 02 04 06 08 Lo
thousand steps label corruption
(a) learning curves (c) generalization error growth

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals.
Understanding deep learning requires rethinking generalization.
(CIFAR10) In International Conference on Learning Representations, 2017
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Benign overfitting

A number of benign/tempered overfitting results have emerged for two
layer networks trained with GD + logistic loss on noisy, linearly separable
data for binary classification with near-orthogonal inputs.

® [FCB22] consider smoothed leaky RelLU activations and assume the
data is drawn from a mixture of well-separated sub-Gaussian
distributions.

® [XG23] extends this result to more general activation functions,
including RelL U.

e [CCBG22, KCCG23] study convolutional networks where the noise
and signal components lie on disjoint patches.

e [FVBS23] considers leaky ReLU and analyzes the KKT points of the
max-margin problem.

e [KYS23] demonstrate benign-tempered overfitting transitions in the
case of univariate inputs for ReLU networks.

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.

Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Benign overfitting

® |nformally, we say a model exhibits benign overfitting if it achieves
zero error on noisy training data, but still performs well on test data.

® Significant progress has been made in understanding benign
overfitting in linear models, but less is known about non-linear models.

® \We seek to study the dynamics of a (shallow) ReLU neural network
trained using GD and hinge loss on a noisy binary classification

problem.

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.

Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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The loss

Hinge loss: max{0,1 — z}

® Defines a margin separating Logistic loss: log(1 + exp(—z))
classes and penalizes points for ® Attempts to learn log odds of
lying within or on the incorrect point being in positive class.
side. ® Points which are already well

® Contribution of each point to fitted, i.e., yif(x;) is large, have
overall loss driven only its a reduced contribution.
network activation. ® A point always contributes to

e When y;f(x;) > 1, point no the dynamics of the network
longer contributes to dynamics (never switches off).

(switches off).

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.
Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Benign overfitting

Assume inputs (x;, y;) € R? x {—1,1} have a signal and noise component
and let [ € [0, 1] control the strength of the signal component:

x; ~ VAyisi +vV1— An;.

We show three distinct training outcomes:

1. Benign overfitting (/\ small but not too small): zero training loss
and generalization error asymptotically (in dimension d) optimal.

2. Non-benign overfitting ([ very small): zero training loss and
generalization error bounded below by a constant. (note! optimal
classifier exists)

3. No overfitting ([\ /arge): zero training loss on “clean” points but
nonzero loss on “corrupted” points, and asymptotically optimal
generalization error.

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.

Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Benign overfitting

e Training sample has 2n points (x;, yi)?"; € (RY x {—1,1}).

® k positive and k negative points have their output label flipped:
denote 3(i) = —1 if i-th point is corrupted otherwise (i) = 1.

® Labels: y; = (—1)'5(i) (clean label is (—1)')

® |nputs are of the form

xi = (—1)/ (VAv + VI A8(>)n;).

* Noise vectors (n;)?"; are mutually independent and identically

distributed (i.i.d.) random vectors drawn from the uniform
distribution over S ! Nspan{v}+.
® A € [0, 1] controls the strength of the signal versus the noise.

® Test data has same form but is assumed uncorrupted.

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.

Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Main results (v =1)

¢ No overfitting (signal dominant regime): when 7 is sufficiently large relative ton, d (y 2 n_l)
then i) clean training points have 0 loss, ii) corrupt training points have loss one and iii) network
has asymptotically optimal generalization error.

¢ Benign overfitting (balanced signal-noise regime): when y is large but not too large relative to
n,d (d‘” - STS n"l) then i) clean training points have 0 loss, ii) corrupt training points have 0
loss and iii) network has asymptotically optimal generalization error.

e Harmful overfitting (noise dominant regime): when y is sufficiently small relative to n, d

(¥ S (nd)_” 2) then i) clean training points have 0 loss, ii) corrupt training points have loss 0
and iii) network has generalization error bounded from below.

Fine print:

2n data points

2m neurons (1 layer)

d = dimension

k = # corruptions

Assume: k<cn, step size small "Training shallow RelLU 'r|1etworks on noisy data using hinge loss: when do we
overfit and is it benign?

enough, d big enough1 noise nearly E. George, M. Murray, W. Swartworth, D. Needell.
orthogonal Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Empirics match

Test Loss
- 1.0

0.0
20 35 50 65 80 95 110125140155170185200

n

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.
Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Fairness

Often, because of objective functions over an entire population,
subgroups have drastically inferior accuracy

* Regression attempts to minimize average explanations
 NMF learns topics that explain the population overall

Mehrabi, Ninareh, et al. "A survey on bias and fairness in machine
learning." ACM Computing Surveys (CSUR) 54.6 (2021): 1-35.



NMF on mixed population

Deanna Needell, Mathematics

M = Large size low rank
0.10 4 * -#- Medium size low rank
“u =4+ small size low rank
\ —»— large size high rank
0.08 - yo— -+~ medium size high rank
T . codes 1 i
‘f ﬁ\ 2 ++- Small size high rank
z
3
E 0.06 A
>
1
L
s 0.04
o
-
0.02
0.00 A
2.5 5.0 7.5 10.0 12.5 15.0 17.5
Rank

Two sources of unfairness: representation and complexity
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NMF on mixed population

{uA—wAHni—nA—A* I% ||B—WBH||%—||B—B*||§}

min max ,
| Al |B|

WeR"'™" HeR "™ AB

One notion of “more fair” : Each group achieves loss equally,
relative to their size and best possible loss

(many formulations)
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“Fairer” NMF on mixed population

One notion of “more fair” : Each group achieves loss equally, relative to
their size and best possible loss

0.08 1 —~ Large size low rank
. =#= Medium size low rank
«~4+ small size low rank
0.07 - - |large size high rank
-#= medium size high rank
Small size high rank
a 0.06 1
3
0.05 1
0.04 4

25 5'0 7'5 10.0 125 15.0 17.5
Rank
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“Fairer” NMF on mixed population

One notion of “more fair” : Each group achieves loss equally, relative to
their size and best possible loss

#::;:t.,. =3¢ fair female
10°1‘ t:-t-.h =& fair male
] B 'w...*. +~¢- fair others
" N -, .. -3~ female
" = e - o
S - 3 —+ male
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8 “
- |
S
w
c
o
¢ 1077 4
- :
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“Fairer” NMF on mixed population

VNMF on Entire Population a FNMF on Entire Population i
feature 1 1 feature 1
feature 2 4 feature 2
feature 3 4 :ca:urci
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feature 5 4 08 feature 5
feature 6 4 feature 6
feature 7 1 feature 7
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g feature 9 g feature
5 feature 10 5 feature Z1LO
% feature }1 E ;eature 1.1
£ ot 1 04 2 e 13
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feature 15 feature
feature 16 02 feature 16
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Next up ...

Practical and efficient tensor
compression and reconstruction
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Tensor Compression and Reconstruction

Goal: Compress tensor data via linear measurements
that are practical to apply and allow for efficient
reconstruction

X € RMxM--xXnd _ d_mode tensor

Naturally multi-modal data is ubiquitous:
® datasets with many attributes
® datasets with temporal component
® color pictures, videos

So,

® Converting it to a vector (vectorization) or to a matrix =
(matricization) destroys the structure of such datal

® For x being the vectorization of a

ni X ny X ... X ng-dimensional tensor, N =[] n;, I/

resulting in a measurement matrix G of the size m x n¢. I
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Tensor Compression and Reconstruction

igl” .

N¢pars, waknown

lterative methods to recover r-sparse x: e.g., lterative Hard Thresholding

X = Xp + G (y — Gxx),
Xk+1 = Hr (Xk), Hr(.) gives the best r-sparse approximation.
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Tensor Compression and Reconstruction

Why does the step
X = X + G*(y — ka)

bring us closer to the solution? ldea: re-group
X = (/ — G*G)Xk . i G*y.

If G*G ~ [ close to the identity, then x = G*Gx = G*y = Xx (the next iterate is close to
a solution).

How to quantify G*G ~ [7
RIP-property: A m x N matrix G has a (9, r)-RIP property if

|||Gx||% — ||x||§| < 6||x||3 for any r-sparse vector x € RV

- When x is a matrix or tensor, sparsity can be substituted with (some
notion of) low-rankness (tubal, Tucker or HOSVD, multi-rank, CP)
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Tensor world...take a TRIP

HOSVD decomposition (Tucker rank)

A
A= Ui ol
rd rn o 4 B
_ ] -
=Y .Y ek ka) O v, ol ~ [t
TR T i=1
Where a” ui’ Sl u;l are Orthonormal (UI is Fig. 4.1 Tucker decomposition of a threc-way array.

the nj X r; matrix U' = (u},...,u})).

TRIP(0.r) property We say that a linear map A has the TRIP(d,r) property if for all X
with HOSVD rank at most r = (r1, ..., rp) we have

(1= )IX]* < JAX)I® < (1 + )X
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Tensor Compression and Reconstruction

* Methods like Tensor lterative Hard Thresholding
(TIHT) allow for efficient recovery of the tensor from
TRIP measurements
* Tucker rank (Rauhut et.al. ‘17)

« CPrank (N et.al. ‘19)

Algorithm 1 Tensor Iterative Hard Thresholding (TTHT)

Input: operator H,, rank r, measurements y, number of iterations 7'
Output: X = X7,
Initialize: X! =0
for 7=0,2,.... T -1do
W’ = X7 + A*(y — A(X7))
Xj+l . 'Hr(w])
end for

o [ o P R
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What kind of operators satisfy TRIP?

o Existing solution: vectorize the tensor and apply i.i.d. m x N
subgaussian map. For HOSVD rank r, TRIP is satisfied for:
(Rauhut etal. “17)

m > Co~2max{(r® + dnr)Ind,In(n~1)}

o Concern: A 6-mode tensor with 1000 dimensions in each mode
now requires the storage of a m x 10'® measurement matrix!
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Do we really need a huge vacuum?

For 1 <i<d, let A; be an m x n® matrix, let A : R X--X0" 5 RMX.-XM ha the linear
map which acts modewise on d’-mode tensors by

.A(y) = y X1 Al XKoo Kt Ad/.

For kK = 2 and subgaussian measurement matrices we have

For all X of rank at most (r,r,r,...,r) with prob1 —n
(1= 9)IX[* < JARX)I? < (1 +9)lIX]1,
where R is a reshaping operator that combines pairs of the modes, for target dimensions
2 ff g d
m > Cd“r<%6~ < max{n, log —}.
1

(lwen, N, Perlimutter, Rebrova, 22)
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Tensor Compression and Reconstruction

® Memory reduction is decisive: from
d K d
mn® to dmn"(+m“my) where K can be
as small as 2

vectorize

-
:

® Time is compatible (slightly worse than :
: A; X Y
from full measurements), compression E
quality is compatible (slightly better ‘ :
than from full measurements) E: @ E
z A y

® Reshaping is necessary
® The compression matrices are data-oblivious, generic and flexible (one or two stages,

various RIP matrix models can be used in construction)
® Theoretical guarantees arerigrous and show the advantage, but less than
experimentaly observed (room for improvement!)
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BenOv proof idea

1. There are two phases of training driven by the relative imbalance in
the number of clean versus corrupt points. Clean data dominates the
dynamics early on but once fitted the corrupt points takeover.

2. In the first phase the network fits the clean data by learning a strong
signal component, in particular by the end of this phase for most
neurons (—1) (wj,s) is large. Each corrupt point has some neurons of
the correct output sign that activate on it throughout this phase.

3. In the second phase clean points start to switch off. The network fits
the corrupt data by learning the noise components, however, only so
many updates can occur before these points are fitted and thus the
signal component the network has learned is not overly impacted.

4. At test time the noise component of a new input is approximately
orthogonal to the noise components the network has learned,
therefore it classified based on its signal component.
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Assumptions

Let € (0,1/2) denote the failure probability, p € (0,1) bound the
magnitude of inner products of the noise and A,, bound the norm of
weight initializations. For sufficiently large and small constants C > 1 and

c < 1 respectively,
1. k <cn,
d > Cp 2log(n/d)
Aw < C7)
n < &, where £ depends on n, m, k, [\, and d.

=~ N

)

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.

Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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Benign overfitting

® We study a densely connected, single layer feed-forward ReLU neural
network with no bias terms f : R2™*9 x RY — R,

2m
f(W,x) = Z(—l)j max{0, (w;,x)}.
j=1

® Use the hinge loss L(t) := 2,221 max{0,1 — y;f(t,x;)}.
® |nner weights trained using (sub)gradient descent. Let
o F) .= {ic[2n]: ¢(t,x;) < 1}
o AJ(-t) = {i € [2n]: (wj(.t),x,-) > 0},
then update can be written as

2n
wJ(-tH) = WJ(-t) + (—1)j7)z 1(/ € .AJ(-t) NF®)yx;.
I=1

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.
Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.



UC LA Deanna Needell, Mathematics

Benign overfitting

Theorem 1

Assume n > Clog(1/d), m > Clog(n/d), p < c- [\ and
C+/log(n/5)/d < A\ < cn 1. Then there exists a sufficiently small

step-size 1) such that with probability at least 1 — 0 over the randomness of
the dataset and network initialization the following hold.

1. The training process terminates at an iteration Tepnd < %
2. For all i € [2n] then ¢(Tend, i) = 0.

3. The generalization error satisfies

P(sgn(F(Tena: X)) # ¥) < exp (—cd - 12).

"Training shallow ReLU networks on noisy data using hinge loss: when do we
overfit and is it benign?"

E. George, M. Murray, W. Swartworth, D. Needell.
Neural Information Processing Systems (NeurlIPS), Spotlight paper, 2023.
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CUR Factorization

o Ac RdXd,
o C c RY%K: k columns of A
e R c RSXY: srows of A

o U c RS*K: the intersection of
Cand R

Theorem
Ifrank(U) = rank(A), then

A= CU'R.
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CUR Factorization — for tensors??

Let A € R9*? with CUR decomposition of A= CU'R. Then
A= CU'R = CUTUUIR = U x4 (CU') x5 (RT(UT)).
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CUR Factorization

Theorem (Cai-Hamm—-Huang—N, 2022)

(Chidori CUR) Let A € R9**9 withrank(A) = (r,...,r). Let |; C [d].

SetR = .A(/1 E /n), C,' = .A(,')(:, Ji— ®j75,'/j) and U; = C,'(/,' ) Then
the following are equivalent:

Q rank(U)) =r,
@ A=R x4 (C Ul Xz xp (c,,u;f,z,
CUR
Q rank(R) = (r,---,r),
Q rank( A (1;,:)) =rforalli e [n].
Moreover, if the above statements hold, then A = A x_, (C;C}).
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CUR Factorization

\\

Figure 1: Illustration of Chidori CUR decomposition a la Theorem 3.1 of a 3-mode tensor in the
case when the indices I; are each an interval and J; = ®;£;I;. The matrix C; is obtained by
unfolding the red subtensor along mode 1, C> by unfolding the green subtensor along mode 2, and
C5 by unfolding the yellow subtensor along mode 3. The dotted line shows the boundaries of R.
In this case U; = Ry;) for all 1.
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CUR Factorization

Theorem (Cai-Hamm—-Huang—N, 2022)

(Fiber CUR): Let A € RY**9 with rank(A) = (r,...,r). Letl; C [d]
and J; C [d""']. SetR = A(h,- -, I), Ci = A¢y(:, Ji) and

U; = Ci(1;,:). Then the following statements are equivalent

@ rank(U;) =,

Q@ A=Rx1(CiU]) xz--- xn (Cal}),

CUR
@ rank(C;) =rforalli € [n] andrank(R) = (r,---,r),
Q rank(C;) = r andrank(A(1;,:)) = r for all i € [n].

y

Note: We have also attained robustness results with respect to sparse corruptions.

"Robust Tensor CUR: Rapid Low-Tucker-Rank Tensor Recovery with Sparse Corruptions"
by H. Cai, Z. Chao, L. Huang, D. Needell. Submitted, 2022.
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CUR Factorization

Figure 2: Illustration of the Fiber CUR Decomposition of Theorem 3.3 in which J; is not necessarily
related to I;. The lines correspond to rows of Csy, and red indices within correspond to rows of Us.
Note that the lines may (but do not have to) pass through the core subtensor R outlined by dotted
lines. Fibers used to form C, and C3 are not shown for clarity.
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CUR Factorization

10%¢ .
——RTCUR-F
i ——RTCUR-R/| |
= AAP
o —=—IRCUR
= 1072
2
E 1073
eb)
a'et
1074
0 5 . 16 1|5 20

Runtime (sec)

Figure: Runtime vs. relative error comparison: 3-mode tensor with d = 500
and multilinear rank (3, 3, 3).

AAP = Accelerated Alternating Projections, IRCUR = Iterated Robust CUR for RPCA
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CUR Factorization

Runtime (sec) 6.15 1099.3 97.85
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CUR Factorization

Figure 5: Face modeling on EztYaleB: Visual comparison of the outputs by RCUR and RPCA
for face modeling task. The first row contains the original face images. The second and third
rows are the face models and the facial occlusions outputted by RCUR, respectively. The last
two rows are the face models and the facial occlusions outputted by RPCA, respectively.
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Fair NMF (in progress)

« Regularizing with sup-norm not ideal (outliers, results still unfair)

« Enforcing objective function to maximize fairness across groups

: I 1
argmin — |4 = WaH4||% + b_2||XB — WgHg||%
WsERTY steR‘;)IS'VSG{M,A,B}

1l 1
+;||XA — Wi Hall7 + ﬁ”XB — W Hpl%

1 1 :
o (a”XA — Wy Hallr — EHXB — WMHB”F)

 |terative scheme that hones in on groups not adequately
represented



