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The mathematical problem

1. Signal of interest f € C4(= CN*V)
2. Measurement operator « : C4 — C" (m < d)

3. Measurements y=of f+¢

4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =« f +¢.

Assume f is sparse:
% In the coordinate basis: || fllo = |supp(f)| < s < d
<> In orthonormal basis: f = Bx where ||x|lo<s<d

In practice, we encounter compressible signals.
4 fis the best s-sparse approximation to f



Many applications...

<> Radar, Error Correction

<> Computational Biology, Geophysical Data Analysis

<> Data Mining, classification

<> Neuroscience

<> Imaging

<> Sparse channel estimation, sparse initial state estimation
<> Topology identification of interconnected systems

>



Sparsity...

Sparsity in coordinate basis: f=x




Reconstructing the signal f from
measurements y

4 /;-minimization [Candes-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:
f=argmin|igll; suchthat [«/f—yl.<e¢,
8

where [¢|l» < €. Then we can stably recover the signal f:

Il — Xy

&

If=fll2Se+

This error bound is optimal.



Restricted Isometry Property

< of satisfies the Restricted Isometry Property (RIP) when thereis 6 < ¢
such that

Q=0 flla= Il flla= A+ fll whenever [[fllo=<s.

< m x d Gaussian or Bernoulli measurement matrices satisfy the RIP with
high probability when
m 2 slogd.

<> Random Fourier and others with fast multiply have similar property:
m > slog*d.



Other recovery methods

Greedy Algorithms

< If A satisfies the RIP, then A* A is “close” to the identity on sparse
vectors

<> Useproxy p=A"y=A"Ax=x
<> Threshold to maintain sparsity: x = Hs(p)
<> Repeat

<> (lterative Hard Thresholding)
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The One-Bit Compressive Sensing Problem

» Standard CS: vectors x € R” with ||x||o < s acquired via
nonadaptive linear measurements (a;,x), i =1,...,m.

» In practice, measurements need to be quantized.

» One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

y; = sign(aj, x), i=1,...,m.

» Goal: find reconstruction maps A : {£1}" — R” such that,
assuming the ¢>-normalization of x (why?),

x = Ay)l <~
provided the oversampling factor satisfies
m
Ai=——2>f
sin(n/s) — ™)

for f slowly increasing when ~ decreases to zero, equivalently

Ix — Aly)ll < g(A)

for g rapidly decreasing to zero when ) increases.
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Existing Theoretical Results

» Convex optimization algorithms [Plan—Vershynin 13a, 13b].

» Uniform, nonadaptive, no quantization error:
If A € R™*" is a Gaussian matrix, then w/hp

Arp(y)
[ALp(y)ll2 1,

» Nonuniform, nonadaptive, random quantization error:
Fix x € R" with [|x]jo < s,[|x]2 =1. f A€ R™ " is a
Gaussian matrix, then w/hp

Ix — Asocr(y)[l, S A4

X — < A5 whenever ||x[lo < s, [|x]2 = 1.

» Uniform, nonadaptive, adversarial quantization error:
If A € R™*" is a Gaussian matrix, then w/hp

Ix — Asocp(¥)ll, S A~ 1/12 \yhenever Ixllo < s, [|x|]2 = 1.
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» Power decay is optimal since

Ix — Dope(y)ll2 2 A7
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Limitations of the Framework
» Power decay is optimal since
Ix — Dopi(y)l2 2 A7

even if supp(x) known in advance [Goyal-Vetterli—Thao 98].

» Geometric intuition

X
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» Remedy: adaptive choice of dithers m,...,7m, in

y; = sign((aj,x) — 77), i=1,....,m.
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» Rely on an order-one quantization/recovery scheme:
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one-bit measurements and estimate both the direction and the
magnitude of x by producing X such that
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» Let x € R" with ||x|jo < s, ||x||2 < R. Start with x° = 0.

» For t =0,1,..., estimate x — x! by x — xt, then set
x = Ho(x® + x — xt), sothat |[x — x|, < R/2tTL
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Ix—xT|a <R2 T =R274 = Rexp(—c)).



Exponential Decay: General Strategy

>

Rely on an order-one quantization/recovery scheme:

for any x € R” with [|x]jp <'s, ||x]]2 < R, take ¢ < sIn(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing X such that

IIx —X|l2 < R/4.

Let x € R" with ||x||o < s, ||x||2 < R. Start with x° = 0.

For t =0,1,..., estimate x — x* by x/—?t then set
x = Hy(x! +x/—_?t), so that |x — x'|, < R/28FL
After T iterations, number of measurements is m = g7, and
Ix—xT ]2 < R2T=R279 = Rexp(—c)).

Software step needed to compute the thresholds 7; = (aj, x*).
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Measurement vectors ai, . ..,aq: independent N(0,1,).
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X = argmin ||z||; subject to ||z]2 < R, yi({aj,z) — 77) > 0.
If g > c5*sIn(n/s), then w/hp

v

v

v

Ix = X|| <0R whenever ||x]jo < s, |x|l2 < R.

v

Pros: dithers are nonadaptive.

v

Cons: slow, post-quantization error not handled.
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Order-One Scheme Based on Hard Thresholding

» Measurement vectors ay, ..., aq: independent N(0,1,).
» Use half of them to estimate the direction of x as

u = H.(A*sign(Ax)).

» Construct sparse vectors v,w (supp(v) C supp(u)) according
to

2Rv
2R w

» Use other half to estimate the direction of x — w applying
hard thresholding again.

» Plane geometry to estimate direction and magnitude of x.

» Cons: dithers (a;, w) are adaptive.

» Pros: deterministic, fast, handles pre/post-quantization errors.
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Measurement Errors
» Pre-quantization error e € R™ in
yi = sign((aj, x) — 7 + €;).

> If [le]loo <eR27T (or |lef]]2 < e,/q||x — x||2 throughout),
then
[x =x"|la < R27T = Rexp(—c))

for the convex-optimization and hard-thresholding schemes.

» Post-quantization error f € {£1}" in
yi = fisign((aj, x) — 77).
» If card({/ : f* = —1}) < nq throughout, then
[x —xT|l2 < R2™T = Rexp(—c))

for the hard-thresholding scheme.



Numerical lllustration

1000 hard-thresholding-based tests
n=100, s=15, m=100000, T=10 (4 minutes)

0025

0005

—»— perfect one-bit measurements
- = - prequantization noise (st. dev.=0.1)
o bit flips (5%)

1000 d-—ord i
n=100, s=10, m=20000, T=5 (11 hours)

d tests

0035

3
0
x

001

0005

——perfect one-bit measurements
-5-p ion noise (st. dev.=0.005)




Numerical lllustration, ctd

500 hard-thresholding-based tests 100 d-ords b:
n=100, m/s=2000:2000:20000, T=6 (9 hours) n=100, m/$=20:20:200, T=5 (11 hours)
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» Sign Product Embedding Property: if g > C6~%sIn(n/s),
then with w/hp

<5

'@(Aw, sign(Ax)) — (w, x)

for all w,x € R" with [|w/|o, [|x][o < s and ||w]|j2 = ||x|]2 = 1.
» Simultaneous ({2, 1)-Quotient Property: w/hp, every e € RY

can be written as

_ : lullz < dlel2//a,
o= witn (Ul ol

where s, = q/In(n/q).
> Restricted Isometry Property: if g > C5~2sIn(n/s), then with

w/hp

1
1qHAxH% i3] < oz

for all x € R™ with [|x][p <'s.
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» Random hyperplane tessellations of \/sBf' N S"~1:
> ai,...,aq € R” independent N(0,1,).
» If g > C6*sln(n/s), then w/hp all x,x’ € \/sBf N S"~1 with
sign(a;,x) = sign(a;,x’), i =1,...,q, satisfy

[Ix — x[|]2 < 6.

» Random hyperplane tessellations of \/sBj N BY:
> ai,...,a, € R" independent N(0,1,),
> T1,...,7q € R independent N(0, 1),
» apply the previous results to [a;, —7;], [x,1], [X/,1].
» If g > C6*slIn(n/s), then w/hp all x,x" € /sB] N By with
sign({a;,x) — 7;) = sign({a;,x’) — 7), i =1,...,q, satisfy

Ix = x'|]2 < 6.
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