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The mathematical problem

1. Signal of interest f ∈Cd (=CN×N )

2. Measurement operator A :Cd →Cm (m ¿ d)

3. Measurements y =A f +ξ
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

f

+

ξ
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4. Problem: Reconstruct signal f from measurements y



Sparsity

Measurements y =A f +ξ.

y
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

Assume f is sparse:

G In the coordinate basis: ‖ f ‖0
def= |supp( f )| ≤ s ¿ d

G In orthonormal basis: f = B x where ‖x‖0 ≤ s ¿ d

In practice, we encounter compressible signals.
F fs is the best s-sparse approximation to f



Many applications...

G Radar, Error Correction

G Computational Biology, Geophysical Data Analysis

G Data Mining, classification

G Neuroscience

G Imaging

G Sparse channel estimation, sparse initial state estimation

G Topology identification of interconnected systems

G ...



Sparsity...

Sparsity in coordinate basis: f=x



Reconstructing the signal f from
measurements y

F `1-minimization [Candès-Romberg-Tao]

Let A satisfy the Restricted Isometry Property and set:

f̂ = argmin
g

‖g‖1 such that ‖A f − y‖2 ≤ ε,

where ‖ξ‖2 ≤ ε. Then we can stably recover the signal f :

‖ f − f̂ ‖2 . ε+ ‖x −xs‖1p
s

.

This error bound is optimal.



Restricted Isometry Property

G A satisfies the Restricted Isometry Property (RIP) when there is δ< c

such that

(1−δ)‖ f ‖2 ≤ ‖A f ‖2 ≤ (1+δ)‖ f ‖2 whenever ‖ f ‖0 ≤ s.

G m ×d Gaussian or Bernoulli measurement matrices satisfy the RIP with
high probability when

m & s logd .

G Random Fourier and others with fast multiply have similar property:
m & s log4 d .



Other recovery methods

Greedy Algorithms

G If A satisfies the RIP, then A∗A is “close” to the identity on sparse
vectors

G Use proxy p = A∗y = A∗Ax ≈ x

G Threshold to maintain sparsity: x̂ = Hs(p)

G Repeat

G (Iterative Hard Thresholding)



The One-Bit Compressive Sensing Problem

I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via
nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.

I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.

I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.
I In practice, measurements need to be quantized.

I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.
I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.
I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,

assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.
I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,
assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.
I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,
assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero

, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



The One-Bit Compressive Sensing Problem
I Standard CS: vectors x ∈ Rn with ‖x‖0 ≤ s acquired via

nonadaptive linear measurements 〈ai , x〉, i = 1, . . . ,m.
I In practice, measurements need to be quantized.
I One-Bit CS: extreme quantization as y = sign(Ax), i.e.,

yi = sign〈ai , x〉, i = 1, . . . ,m.

I Goal: find reconstruction maps ∆ : {±1}m → Rn such that,
assuming the `2-normalization of x (why?),

‖x−∆(y)‖ ≤ γ

provided the oversampling factor satisfies

λ :=
m

s ln(n/s)
≥ f (γ)

for f slowly increasing when γ decreases to zero, equivalently

‖x−∆(y)‖ ≤ g(λ)

for g rapidly decreasing to zero when λ increases.



A visual



A visual



Existing Theoretical Results

I Convex optimization algorithms [Plan–Vershynin 13a, 13b].

I Uniform, nonadaptive, no quantization error:
If A ∈ Rm×n is a Gaussian matrix, then w/hp∥∥∥∥x− ∆LP(y)

‖∆LP(y)‖2

∥∥∥∥
2

. λ−1/5 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.

I Nonuniform, nonadaptive, random quantization error:
Fix x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 = 1. If A ∈ Rm×n is a
Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/4.

I Uniform, nonadaptive, adversarial quantization error:
If A ∈ Rm×n is a Gaussian matrix, then w/hp

‖x−∆SOCP(y)‖2 . λ−1/12 whenever ‖x‖0 ≤ s, ‖x‖2 = 1.
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Limitations of the Framework

I Power decay is optimal since

‖x−∆opt(y)‖2 & λ−1

even if supp(x) known in advance [Goyal–Vetterli–Thao 98].

I Geometric intuition

Sn−1

x

http://dsp.rice.edu/1bitCS/choppyanimated.gif

I Remedy: adaptive choice of dithers τ1, . . . , τm in

yi = sign(〈ai , x〉 − τi ), i = 1, . . . ,m.

http://dsp.rice.edu/1bitCS/choppyanimated.gif
http://dsp.rice.edu/1bitCS/choppyanimated.gif
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Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 =

Hs(

xt + x̂− xt

)

, so that ‖x− xt+1‖2 ≤ R/

4t+12t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 =

Hs(

xt + x̂− xt

)

, so that ‖x− xt+1‖2 ≤ R/

4t+12t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 =

Hs(

xt + x̂− xt

)

, so that ‖x− xt+1‖2 ≤ R/

4t+12t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 =

Hs(

xt + x̂− xt

)

, so that ‖x− xt+1‖2 ≤ R/4t+1

2t+1

.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 = Hs(xt + x̂− xt), so that ‖x− xt+1‖2 ≤ R/

4t+1

2t+1.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 = Hs(xt + x̂− xt), so that ‖x− xt+1‖2 ≤ R/

4t+1

2t+1.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Exponential Decay: General Strategy

I Rely on an order-one quantization/recovery scheme:
for any x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R, take q � s ln(n/s)
one-bit measurements and estimate both the direction and the
magnitude of x by producing x̂ such that

‖x− x̂‖2 ≤ R/4.

I Let x ∈ Rn with ‖x‖0 ≤ s, ‖x‖2 ≤ R. Start with x0 = 0.

I For t = 0, 1, . . ., estimate x− xt by x̂− xt , then set

xt+1 = Hs(xt + x̂− xt), so that ‖x− xt+1‖2 ≤ R/

4t+1

2t+1.

I After T iterations, number of measurements is m = qT , and

‖x− xT‖2 ≤ R 2−T = R 2−
m
q = R exp (−cλ) .

I Software step needed to compute the thresholds τi = 〈ai , xt〉.



Order-One Scheme Based on Convex Optimization

I Measurement vectors a1, . . . , aq: independent N (0, Iq).

I Dithers τ1, . . . , τq: independent N (0,R2).

I x̂ = argmin ‖z‖1 subject to ‖z‖2 ≤ R, yi (〈ai , z〉 − τi ) ≥ 0.

I If q ≥ cδ−4s ln(n/s), then w/hp

‖x− x̂‖ ≤ δR whenever ‖x‖0 ≤ s, ‖x‖2 ≤ R.

I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.
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I Pros: dithers are nonadaptive.

I Cons: slow, post-quantization error not handled.
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Order-One Scheme Based on Hard Thresholding

I Measurement vectors a1, . . . , aq: independent N (0, Iq).
I Use half of them to estimate the direction of x as

u = H ′s(A∗sign(Ax)).

I Construct sparse vectors v,w (supp(v) ⊂ supp(u)) according
to

x

2Ru
2Rv

w

I Use other half to estimate the direction of x−w applying
hard thresholding again.

I Plane geometry to estimate direction and magnitude of x.
I Cons: dithers 〈ai ,w〉 are adaptive.
I Pros: deterministic, fast, handles pre/post-quantization errors.
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Measurement Errors

I Pre-quantization error e ∈ Rm in

yi = sign(〈ai , x〉 − τi + ei ).

I If ‖e‖∞ ≤ εR 2−T (or ‖et‖2 ≤ ε
√
q‖x− xt‖2 throughout),

then
‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the convex-optimization and hard-thresholding schemes.

I Post-quantization error f ∈ {±1}m in

yi = fi sign(〈ai , x〉 − τi ).

I If card({i : f ti = −1}) ≤ ηq throughout, then

‖x− xT‖2 ≤ R 2−T = R exp(−cλ)

for the hard-thresholding scheme.
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Numerical Illustration
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Numerical Illustration, ctd
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Ingredients for the Proofs

I Let A ∈ Rq×n with independent N (0, 1) entries.
I Sign Product Embedding Property: if q ≥ Cδ−6s ln(n/s),

then with w/hp∣∣∣∣∣
√
π/2

q
〈Aw, sign(Ax)〉 − 〈w, x〉

∣∣∣∣∣ ≤ δ
for all w, x ∈ Rn with ‖w‖0, ‖x‖0 ≤ s and ‖w‖2 = ‖x‖2 = 1.

I Simultaneous (`2, `1)-Quotient Property: w/hp, every e ∈ Rq

can be written as

e = Au with

{
‖u‖2 ≤ d‖e‖2/

√
q,

‖u‖1 ≤ d ′
√
s∗‖e‖2/

√
q,

where s∗ = q/ ln(n/q).
I Restricted Isometry Property: if q ≥ Cδ−2s ln(n/s), then with

w/hp ∣∣∣∣1q ‖Ax‖22 − ‖x‖22
∣∣∣∣ ≤ δ‖x‖22

for all x ∈ Rn with ‖x‖0 ≤ s.
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Ingredients for the Proofs, ctd

I Random hyperplane tessellations of
√
sBn

1 ∩ Sn−1:

I a1, . . . , aq ∈ Rn independent N (0, Iq).
I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√
sBn

1 ∩ Sn−1 with
sign〈ai , x〉 = sign〈ai , x′〉, i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.

I Random hyperplane tessellations of
√
sBn

1 ∩ Bn
2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),
I τ1, . . . , τq ∈ R independent N (0, 1),
I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].
I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√
sBn

1 ∩ Bn
2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.
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√
sBn

1 ∩ Bn
2 :

I a1, . . . , aq ∈ Rn independent N (0, Iq),
I τ1, . . . , τq ∈ R independent N (0, 1),
I apply the previous results to [ai ,−τi ], [x, 1], [x′, 1].
I If q ≥ Cδ−4s ln(n/s), then w/hp all x, x′ ∈

√
sBn

1 ∩ Bn
2 with

sign(〈ai , x〉 − τi ) = sign(〈ai , x′〉 − τi ), i = 1, . . . , q, satisfy

‖x− x′‖2 ≤ δ.



Thank you!
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