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Introduction
LET dim-X be the covering dimension of a space X and let ind X and
Ind X be the dimensions defined inductively in terms of the boundaries
of neighbourhoods of points and closed sets respectively. The local
dimension loo dim X is the least number n such that every point has
a closed neighbourhood U with dim U ^ n. The local inductive dimen-
sion locIndX is defined analogously, while indX is already a local
property.

The subset theorem, that dim A < dim X for A c X, which was proved
by E. Cech (3) for perfectly normal spaces is here extended to totally
normal spaces. Cech's problem (4) of whether the subset theorem holds
for completely normal Hausdorff spaces is reduced to the problem of
whether the local dimension of a completely normal Hausdorff space is
always equal to its dimension: that is, whether locdimX = dimX for
X completely normal and Hausdorff. But it follows from [3.7] below
that a completely normal space X such that locdimX < dimJf, if any
such exists, must be neither paracompact nor the union of a sequence
of closed paracompact sets nor the union of two paracompact sets one
of which is closed. Thus most of the usual methods of constructing
counter-examples are excluded.

However, a normal space M is constructed for which

locdim.3/" < dim M.

Though this example is not completely normal, it is not clear that the
lack of complete normality plays any significant role.

It is well known [(6) appendix] that a normal Hausdorff space may
have a non-normal subspace of higher dimension. An example is given
below of a normal Hausdorff space X with a normal subspace M such
that dimiV = IndAT = 0 but dimM = inAM = 1.

The normal space M also has the property that i ndJ / < dimM.
Examples are known (8, 9) of normal Hausdorff spaces X such that
ind X > dim X. Thus for normal Hausdorff spaces there are the known
relations indX < IndX and dimX < I n d Z and no others.
Quart. J. M»th. Oxford (2), 6 (1955), 101-20.
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A lemma which proves useful in several of the proofs below is the
following (see [2.1]): If a closed set A of a normal space X is at most
n-dimensional, and if every closed set which does not meet A is at most n-
dimensional, then dim X ^ n.

1. Definitions and elementary relations
A covering of a topological space X is a collection of open sets of X

whose union is X. A covering j9 is called a refinement of a covering a
if each member of /? is contained in some member of a.

The order of a collection of subsets of a space X is — 1 if all the subsets
are empty; otherwise the order is the largest integer n such that some
n + 1 members of the collection have a non-empty intersection, or is oo
if there is no such largest number.

The dimension of a space X, dim.X, is the least integer n such that
every finite covering of X has a refinement of order not exceeding n,
or the dimension is oo if there is no such integer.

[1.1] For any space X, dimX < n if and only if, for every finite
covering {Ult..., Uk} ofX, there is a covering {1^,..., V^ of order not exceeding
n with each V{-c Ut.

Proof. The condition is clearly sufficient, for {V^ is a refinement of {C^}.
To show necessity, let d i m i ^ n. Then the covering {£/<} has some
refinement £ of order not exceeding n. Let each member of /? be asso-
ciated with one of the sets Uj containing it and let V{ be the union of the
sets of fi thus associated with Ut. Then V{ is open, Vt c Uo and each point
of X is in some member of /?, and hence in some Vt. Each pointy is in at
most n + 1 members of j3, each of which is associated with a unique Uj,
and hence p is in at most n-\-1 members-of V^ Thus V, is a covering of
order not exceeding n, as was to be shown.

The inductive dimensions ind X and Ind X are defined inductively as
follows. If X is the empty set, indX = I n d Z = — 1. If ind X < n—1
has already been denned, ind-X < n means that, for each point p and
open set U with p e U, there is an open set V with p e V c U for which
ind(F—V) ^ 7i—1. Similarly, Ind-X ^ n means that, for each closed
set F and open set U with F c U, there is an open set V with F cV c U
for which Ind(F— V) < n— 1. And ind X = oo [Ind X = oo] means that
there is no integer n for which ind X < n [Ind X < ri\.

I t is known [(6) appendix] that, for an arbitrary space X, dim X = 0
if and only if Ind X = 0. If A is any subset of a space X, then
ind A < ind X [(6) appendix]. If A is a closed subset of X, then

dim A < dim X [(3) § 4] and Ind A ^ Ind X [(2) § 16].
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If p is a point of a space X, the dimension of X &tp, dim^ X, is defined

as follows: dimp X is the least integer n such that, for some open set U
containing p, dim U = n or, if there is no such integer, dimp X = oo.

Similarly ind ,̂ X [Ind;) X] is defined to be the least integer n such that,
for some open set U containing p, ind U = n [Ind U = n] or, if there is
no such integer, indp X = oo [Ind ,̂ X = oo]. It should be noted that the
dimension at a point as defined here is entirely different from that defined
by Menger (10) and Hurewicz and Wallman (6).

The local dimension of a space X, locdim A", is defined as follows. If
X is empty, loc dim X = — 1. Otherwise, loc dim X is the least integer
n such that, for every point p e X, dim^X < n or, if there is no such
integer, loc dim X = oo.

The local inductive dimensions, loc ind X and loc Ind X, are defined
similarly. If X is empty, loc ind X = loc Ind X = — 1 . Otherwise,
loc ind X [loc Ind X] is the least integer n such that, for every point
p e X, indy, X ^ n [Ind;) X ^ n] or, if there is no such integer,

loc ind A' = GO [loc Ind X = oo].

Thus loc dim X [loc ind X", loc Ind X] is the least integer n such that
there exists a covering {b\} of X with each dim U^ < n [ind U\ ^ n,
Ind?7A ^ n], or, if there is no such integer, locdim X = ooflocindX = oo,
loc Ind X = oo].

[1.2] For any point p of a space X, dim^ X ^ n if and only if each
neighbourhood U of p contains a neighbourhood V of p with dimF < n.

Proof. By the definition of dim^X, if there is any open set V with
p e V and dim V < n, then dimp X < n. On the other hand, if

dinipX ^ n,

there exists a neighbourhood W ofp with dim W ^ n. If V = U n If,
then p e V c U and, since V is a closed subset of IF, dim V ^ n.

[1.3] For any space X, loc dim X ^ n if and only if every covering of
X has a refinement [U^j with each dim U^ ^ n.

This follows immediately from [1.2]. Analogous propositions are
clearlj' true of loc ind X and loc Ind X.

[1.4] For any space X, loc dim X < dim A', loc ind X ^ indX, and
loc Ind X < Ind X.
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Proof. If dim X ^ n, then every point p e X has the neighbourhood
X for which dim X = dim X < n, and hence dimp X <C w. Thus

ploc dim X ^ n. Similarly indX ^ n imph'es loc ind X ^ n and

Ind X ^ n implies loc Ind X ^ n.

[1.5] .For any apace X, loc ind X = indX.
Proof. Let loc ind X < n and let p e U c X with C/ open. Then there

is some open set W with p e W and ind IF < n. Hence p e U n W with
[/ n W open in IF. Hence, by the definition of ind IF, there is a set V
open in IF with p e V c U n W and ind B < n—1, where B is the
boundary of V in W. But, since F is open in W, it is open in W and hence
inX. Also the closure of V in W is its closure V in X and hence B = F—F.
Thus peV cU with F open and ind(F—F) < n— 1. Therefore

indX ^ n.

Thms indX ^ loc ind X, and so loc ind X = indX, as was to be shown.
Thus the inductive dimension indX is already a local property of X.

But dim X and Ind X are not in general local properties, as will be seen
in § 6 below. •

[1.6] If X is a regular space, indX ^ loc IndX.

Proof. This is shown inductively. Clearly loc IndX = —1 implies
ind X = — 1. Assume it proved that

locIndX^n—1 implies indX ^ n— 1.

.Let loc IndX <: n and let p e U c X with U open. Then, for some
open set W, p e W and Ind IF < n. Since X is regular, there is an
open set 0 with peOcQcUn W. Since JndW < n, there is an open
set F of IF with 8 c F c U n W and Ind.B < n— 1, where B is the
boundary of V in IF. Since V is open in IF, it is open in W and hence
in X. The closure of F in W is its closure V in X, and hence B = V— V.
Since B c X, B is regular and, since Ind B ^ n—1, loc Ind B < n—1.
Hence by the induction hypothesis ind B < n— 1. Thus p e F c U with
F open and ind(F—V) ^ n— 1. Hence indX < n, as was to be shown.

The above result, indX ^ loc IndX, is in fact clearly true for any
space in which the closure of each one-point set has no proper closed
subset, and hence true for Tt spaces as well as regular spaces.

It is known (11) that, if X is a normal space, dimX ^ IndX. It
follows that, for a normal space X, loc dim X < loc IndX. For, if
loc IndX ^ n, then each point peX has a neighbourhood U with
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Ind U < n, and the closed set U of X is normal; hence dim U ^ n.
Thus locdimX ^ n.

Thus, using [1.4], [1.5], and [1.6], we have the following:

[1.7] If X is a normal regular space, then

indX < locIndZ ^ IndZ,

locdimX < locIndX < IndX,

locdimX < dimX < IndX.

Since every normal Hausdorff space is regular, the inequalities of [1.7]
hold in particular for normal Hausdorff spaces.

2. Properties of dimension
[2.1] Let A be a closed set of a normal space X. If dim A < n and if

dim F < nfor every closed set F of X ichich does not meet A, then

dimX ^ n.

Proof. Let {Ul3..., Uk} be a covering of A". Then, by (3) § 22, since X
is normal and A is closed and dim A ^ n, there exists a collection {V{} of

open sets of X of order not exceeding n with each I ^ C P J and A c\JVt.

Let V = Q Vi\ then V is open and A c V.

Since X is normal, there exist open sets P and Q such that

X-VcPcFcQcQc X-A.
Since Q is closed and Q n A = 0, dim Q < n. The sets Ut n P together
with the sets Vt form a collection of open sets of X covering the closed
set Q. Hence, by (3) § 22, Q is covered by a collection {Oit H,} of open
sets of X of order not exceeding n with Ot c Ut n P and Ht c Vj.

LetWi = OiUHiU (Vt—P); then T̂  is open in Ar and T̂  c U{. Each
point of P is in at most n + 1 of the sets {Ot, H^\ and in none of the sets
Vi—P; hence it is in at most n + 1 of the sets Wt. Each point of X—P
is in none of the sets Qt and in at most n + 1 of the sets Yt and hence,
since Ht c Vit it is in at most n+1 of the sets Wt. Thus {Wc} is of order
not exceeding n. Each point of P is contained in Q and hence in some
Ot or Hj-, hence it is in some lf<. And each point of X—F is in some
Vt—P and hence in some T1J. Thus {T̂ } is a covering of A". Thus (W )̂ is
a refinement of {C/J of order not exceeding n. Hence dim A" s$ n, as was
to be shown.

[2.2] If a no>~mal space X is th-e union of two sets A and B ii-ith A
closed and dim A < n and dim B =gC n, then dim X < n.
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Proof. If F is a closed set of X which does not meet A, then F is a
closed subset of .Band dim .F ^ dimi? ^ n. Hence, by [2.1], dim X < n,
as was to be shown.

[2.3] If A is a closed set of a normal space X, then

dimX ^ max(dini.4,dim(X—.4)).

Proof. This follows immediately from [2.2] on setting B = X—A.

A normal space X is called totally normal (5) if each open subspace Y
of X has a locally finite covering by open subsets each of which is an Fa

set of X. As will be shown in [2.6] below, the inequality in [2.3] becomes
equality if X is totally normal.

[2.4] Each totally normal space is regular.

Proof. If X is totally normal, let p e Y c X with Y open. Then p is
in some open Fo set U contained in Y and, since U is an Fa set, there is
a closed set F with p e F c U. Since X is normal, there is an open set V
with F cV cV cU; then peVcfcY. Thus X is regular.

[2.5] Let a space X be the union of disjoint sets A each of tvhich is open
and closed in X. If each dim A^ ^ n, then dimX ^ n.

Proof. Let {U^..., Uk} be any finite covering of X. Then
{Ut n Ax,..., Uk n ^A}

is a covering of A% and dim.4^ ^ n; hence there is a covering {Vx(} of A\
of order not exceeding n with T̂ { c Ui n A^. Let V{ = \J T (̂; then {Vt} is

A
a covering of X of order not exceeding n and F, c P,. Therefore

dimX ^ n,
as was to be shown.

[2.6] IfYis an open set ofa totally normal space X, then dim Y < dimX.

Proof. Let dim X ^ n; it is sufficient to show that dim Y ^ n. Since Y
\s an open set of a totally normal space X, we know [(5) proposition 4.3]
that for each i = 1, 2,... there is a collection {W^, locally finite in Y,
of disjoint open sets and a corresponding collection {F&} of closed sets

of X such that F^cW^cY and ( j (J F& = Y. Since FiX is closed in X,

< d imZ < n. Let Ft = \J Fa; then since, for fixed t, {i^} is
A

locally finite in Y, F{ is closed in Y. Likewise JJ Fi/t is closed in Y, and

hence FiX = Ft— \J Fifl is open in F{. Therefore, by [2.5], dimi^ < n.

Since X is totally normal, it is completely normal [(5) proposition 4.6],
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OD

and hence Y is normal. By the sum theorem [(3) § 23], since Y = (J F{

with Ft closed in Y and Him Ft ^ n, therefore Him Y ^ n, as was to be
shown.

[2.7] / / , for each open set Y of a space X, dim Y ^ n, then, for each set
A of X, dim A < n.

Proof. Let {G^,..., (?t} be a covering of A. Each (?(is open in A and

hence there is an open set Ut of X such that Ot = t^n .4 . L e t F = (J £^;

then 4 c 7 and Y is open in X, and hence dim F < n. Hence there is
a covering {Jj} of Y of order not exceeding n with each Vt c Ut. Then
{yt n .4} is a covering of .4 of order not exceeding n and

ViD AcU{DA = O{.

Henoe dim A ^ n as was to be shown.
The subset theorem, which was proved by Cech [(3) § 28] for per-

fectly normal spaces can be extended to totally normal gpaceaas follows.

[2.8] If A is a set in a totally normal space X\ wen dim A < dim X.

Proof. This follows immediately from [2.6] and [2.7].
It is also true [(5) Theorem 2] that, if A is any subset of a totally

normal space X, then Ind A < Ind X.

3. Relation of local dimension to dimension
For any space X oneiias the trivial relation loc dim X =Sj dim X, and

an example is given below of a normal Hausdorff space M with

loc dim .Af < dim.Jf.
But, as is now to be shown, in [3.3], [3.5], and [3.6], there is n, wide class
of normal spaces for which loc dim X = dimX.

[3.1] If A is a closed set of a space X, loc dim .4 < loc dim X.

Proof. Let loc dim X ^ n and let a; be a point of A. Then there is a
neighbourhood U of x in X with dim U < n. Then U C\ A is a neighbour-
hood of x in A and the closure ofUnAiaAiB& closed subset of U and
hence has dimension not exceeding n. Hence loc dim A ^ n. Thus

loc dim A ^ loc dim X,
as was to De shown.

[3.2] / / {£/J is any covering of a paracompact normal space X, thzn X
is the union of a sequence of closed sets {H{} eacli of whiclt is tlie union of
a collection {H[fl} of disjoint sets with each Hlfl open and dosed in H\ and
urith each Hifl contained in some U^.
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Proof. Since X is paracompact, { U)) has a locally finite refinement {T̂ }.
Since X is normal, {17,} can be shrunk [(7) (I, 33, 4)] to a covering {WJ
with Wp c 7^. There exist real continuous functions^, (0 </M(x) < 1)
such that/^(x) = 0 if x e X—V^ and/M(x) = 1 if x e W^. Let F^ be the
set of points x for which /F(x) > 1/* and let 0^ be the set of points for
which/^(x) > 0.

Let the indices \L be well ordered. Let H^ be the set Fifl — [JO, and

let H+ = (J 22^. The sets i ^ are closed, G îs open, and each B^^ is closed.

If v < (j., Hiv c Or and 5 ^ n Hltl = 0. Thus, for each », the sets .H^ are
disjoint. Since Hifl c V^, the collection {H^^} for fixed t is locally finite;
hence Hi is closed and (J Hiv is closed, whence H^ is open in flj. Thus

V + fl

Ht is the union of disjoint sets H(/l, each open and closed in Hit and
Hih c Vp, which is contained in some LTx-

Each point x e X is in some W and hence in some O^. Then, if we
take the first p for which x e 0 , x e i^ for some i while x is in none of
the sets Ov with v < /i. Hence x e H, for some t, and therefore x £ Ht.

Thus i = U iT,, as was to be shown.

[3.3] If X is a paracompact normal space, tlien locdimJf =

Proof. Let loc dim X < n. Then each point x e X is in some open
set Ux such that Him Ux < n. Then, by [3.2], X is the union of a sequence
of closed sets {Hf} each of which is the union of a collection {Hifi} of
disjoint sets with each H^ contained in some Ux. Then fljM is a closed
subset of Borne Ux, and hence dim Hifl < n. Hence, by [2.5], dimH, < n.

CD

Hence, by the sum theorem [(3) § 23], since X = | J Ht with Ht closed

and dimZ^ < n, we have dimX < n. Thus dimX ^ loc dim X, and
hence loc dim X = dim X, as was to be shown.

[3.4] If X is a paracompact totally normal space, then

locIndZ = IndX.
Proof. Let loc Ind X ^ n. Then each point x e X is in some open set

Ux such that Ind Ux ^ n. Then, by [3.2], X is the union of a sequence
of closed sets {Hf} each of which is the union of a collection {HifX} of
disjoint sets with each Hifl open and closed in Ht and with each Hifl

contained in some Ux. Then Hifl is a closed subset of some Ux, and hence
IndHt/1 ^ n. Hence, by (5) proposition 5.1, Ind-fff ^ n. By the sum
theorem [(5) Theorem 4] for the inductive dimension of totally normal
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spaces, since X = \J H{ with R+ closed and Ind Ht < n, therefore
i - l

IndX < n. Thus IndX < loc IndX, and hence loc IndX = IndX, as
was to be shown.

[3.5] If a normal space X is the union of a sequence {A^ of closed para-
compact subsets, then loc dim X = dim X.

Proof. Let loc dim X < n. Then, by [3.1], since At is closed,

loc dim ̂  ^ n.

Since X is normal, the closed set Ai is normal. Hence, by [3.3], since At

is paracompact, dim.41 < n. By the sum theorem [(3) §23], since
GO

X = (J -^i with Ai closed and dim At =sj n, therefore dim X ^ n. Thus
i-i

dimX ^ loc dim X, and hence loc dim X = dirnX.
[3.6] / / a normal space X is the union of two paracompact sets A and B

with A closed in X, then loc dim X = dim X.

Proof. Let loc dim X ^ n. Then, by [3.1], since A is closed,

loc dim A < n.

Since X is normal, the closed set A is normal. Hence, by [3.3], since A
is paracompact, dim A ^ n. Let F be any closed set of X which does
not meet A; then F is normal and loc dim F ^ n. Since F is a closed
subset of B, F is paracompact and hence, by [3.3], dim F < n. Hence,
by [2.1], dimX ^ n. Thus dimX < loc dim X, and hence

loc dim X = dimX.

[3.7] Let X be an n-dimensional normal space. If X is paracompact,
or the union of two paracompact sets one of which is closed, or tlie union
of a sequence of closed paracompact sets, then the set of points of X at
which X is n-dimensional is an n-dimensional closed Bet of X.

Proof. Let D be the set of points of X at which X is n-dimensional
and let p e X—D. Since loc dim X < dim X = n, dim^ X < n and, for
some neighbourhood U oip, dim U ̂  n—\. Then, for each point x e U,
dinijX ^ n— 1, and hence xeX—D. Thus X—D is open and D is
closed.

Let F be any closed set of X which does not meet D. Then each
point x of F has a neighbourhood U in X such that dim£7 ^ ?i—1.
Then U n F is a neighbourhood of x in F and its closure in F is iv
closed subset of U and hence has dimension not exceeding n—l. Thus
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locdira F ^ n— 1. If X is paracompact, then the closed set F is para-
compact. If X = A U B with A closed and both A and B paracompact,
t h e n F = (A n F) u (B n F)

with ^ i n f closed and, since A n F IB closed in A and B n F IB closed
00

in B, A n F and B r\ F are paracompact. If X = \J At with each At

CD

closed and paracompact, then F = (J At n .F and each 4 4 0 .F is closed

and paracompact. The closed set F of X is normal; hence, by [3.3] or
[3.5] or [3.6], dimF < n—1.

By [2.1], if the dimension of D were ^ n—1, then we should have
dim X < n— 1, which is absurd. Thus dimZ) ^ n and, since Z> is closed
in X, dimD < dimX = n. Hence dimZ) = n, as was to be shown.

In reference to the hypotheses of [3.5], [3.6], and [3.7], note that Bing's
example H [see (1)] is a normal space which is the union of a countable
number of discrete and hence paracompact (even metrizable) closed
subsets but it is not paracompact. Either of his examples G or H is a
non-paracompact normal space which is the union of two discrete and
hence paracompact subsets, one of which is closed.

Nor does the normality of X follow from the other properties. For
example, let R be a non-countable set of points, one of which is called r0.
The open seta of i? are the sets not containing r0 and the sets containing
all but a finite number of points of R. Then R is a normal space: in'fact
it is a compact Hausdorff space. Let S have a countably infinite set
of points and let its open sets be sets not containing a special point s0

and sets containing all but a finite nuinber of points. Let X be the
subset of R X S formed by removing the point (r0, s0). Then X is a
Hausdorff space.

If A = ((Rxso)U(roxS))nX,

then A is closed in X and both A and X—A are discrete and hence
paracompact. Also the sets R x s for a ̂  s0 are compact and (R x s o ) n l
is discrete; thus X is the union of a countable collection of closed para-
compact subsets. But X is neither normal nor paracompact.

4. Properties of local dimension
As has been shown in [3.1] above, the closed-subset theorem holds

for the local dimension of arbitrary spaces. I now show that the open-
subset theorem holds for the local dimension, though not necessarily
for the dimension (see § 7 below), of regular spaces. And the subset
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theorem of local dimension holds for totally normal spaces. The finite-
sum theorem, but not the countable-sum theorem (see § 7 below), holds
for the local dimension of normal spaces.

[4.1] If Y isan open set efa regular space X,thenloc dim Y < locdimX
and loc Ind Y ^ loc Ind X.

Proof. Let loc dim X ^ n and let a; be a point of Y. There is a neigh-
bourhood U of x in X such that dim U ^ n. Since X is regular, there is
an open set V containing x whose closure V is contained in the open set
U n 7. Then V is a neighbourhood of x in Y, V is the closure of V in Y,
and, since 7 is a closed subset of V, dim V < n. Thus loc dim Y < n.
Hence loc dim 7 < loc dim X. The proof that loc Ind Y ^ loc Ind X is
similar and is omitted.

[4.2] If A is a subset of a totally normal space X, then

loc dim A < loc dim X and loc Ind A < loc Ind X.

Proof. Let loc dimX ^ n and let x be a point of A. There is a neigh-
bourhood U of x in X such that dim U < n. Then 17 n 4̂ is a neighbour-
hood of x in A whose closttre in A is a subset of the totally normal space U
and hence, by [2.8], has dimension not exceeding n. Thus loc dim A ^ n.
Henoe loc dim A ^ loc dim X. The proof that loc Ind A ^ loc Ind X is
similar but uses (5), Theorem 2, instead of [2.8].

[4.3] If a normal space X is the union of tico closed sets A and B and
if loc dim A ^ n and loc dim B ^ n, then loc dim X ^ n.

Proof. If x e X—.4, then x e B and there is an open set U D B of B,
where U is open in X, such that dim U n B < n. If TF = U n (X—^4),
then TTisopeninX.x e IF, and, since W cU t~\ B, dim IT ̂  n. Similarly,
if x e X—5, there is an open set of X containing x whose closure has
dimension not exceeding n. If x e A n B, then there exist Open sets U
and F containing x such that dim C7 n A ^ n and dim V n B ^ n. Let

TF = X-(A-U)-(B-V);
then TF is open, x 6 TF, and TF c (£7 n A) u (F n 5). Then

dim IF ̂  dim(777n U V C\ 5 ) < max(dim 777T2, dim FTTff) ^ n

since the sum theorem [(3) § 23] holds in the normal space W. Thus
loc dim X ^ n, as was to be-shown.

5. The subset theorem and local dimension
In this section the problem of whether the subset theorem of dimen-

sion holds for all completely normal regular spaces is reduced to the
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apparently simpler problem of whether the local dimension of every
completely normal regular space is equal to its dimension.

If one drops the condition of regularity, there are trivial counter-
examples to the subset theorem. For example, let / be a line segment
and let X be the space consisting of I together with one additional
point x0, the open sets of X being the open sets of / and the whole
space X. Then X is completely normal but not regular, and dim X = 0
while dim/ = 1.

[5.1] If X is any normal regular space, there is a normal regular space
X* containing X as an open subset such that dim X* ^ loc dim X. If X
is a Hausdorff space or a completely normal space, so is X*.

Proof. If X is empty, let X* = X. Otherwise the points of the space
X* are the points of X together with one new point i0. A Bet U of X*
is to be open if either (i) U cX and U is open in X or (ii) x0 e U and
X*— U is a closed set of X which is contained in an open set V of X
such that dim V ^ loc dim X.

It is clear that the empty set is an open set of type (i) and the whole
space X* is an open Bet of type (ii). The intersection of two open sets,
one of which is of type (i), is an open set of type (i). If C\ and Ut are open
sets of type (ii), then x0 e t/x n Ut and

Z*-(ffi n Vt) = (X*-l\) U {X*-Ut),
which is the union of two closed sets and hence is a closed set of X.

If X*— L\ c TJ and X*— UtcVt with Vy and Yt open in X and

dim Vi ^ loc dim X and dimFt < loc dim X,

thenX*—(C^n Uz)cV1DYl and Vt U \\ = Fx U Fs is a closed set of X and
hence is normal. Therefore, by the sum theorem,

diin(FiU Vt) = max(dimF1,dimT^2) <T loc dim X.
Thus the intersection L\ n Ut is an open set of type (ii).

The iinion of any collection of open sets of type (i) is again an open
set of type (i). If the collection contains an open set Ur of type (ii),
then the union U contains x0, and U—(x0) is a union of open sets of X,
and hence is open in X. Therefore X*—U is closed in X and, if

x*-rlCFx
with Vx open in X and dim Fx ^ loc dim X, then X*— U is also contained
in Vy. Therefore U is an open set of type (ii). Thus X* is atopological
space, and clearly X is a subspace. The set X is an open set of type (i)
in X*.
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The space A* is normal. For, if E and F are disjoint closed sets of X*,
at least one of them, say F, does not contain x0. Then X*—F is an
open set of X* containing x0; hence it is an open set of type (ii). There-
fore there is an open set V of X with F c V and dim V ^ loc dim X.
Then V n (X*—E) is an open set of X containing the closed set F.
Since X is normal, there exists an open set W of X such that

FcWcWcVn (X*-E).

Let U = X*— W; then x0 e U, the set X*— U = W is closed in A',
W c V with F open in X, and dim F <T loc dim X. Therefore U is an
open set of type (ii) while the set W is open of type (i) in A'*. We have
F c W and, since W c X*-E,

EcX*-W = U, U n W = 0.
Therefore X* is normal.

The space X* is regular. For, if x s U c X* with U open in A*, then
either x = x0 and U is open of type (ii) or x ^ x0 and x e U r\ X, which
is open of type (i) in X*. If a; = x0 e £/, then, since X is open in A*,
(x0) is closed and, by the normality of A*, there is an open set IF with
x0 e W c W c U, where W is the closure of W in A*. If x ^ x0, then,
by the definition of local dimension, there is some neighbourhood F of x
in A such that dim V < loc dim A. Since A is regular, there is an open
set W of A with xeWcWcVnU. Since W is closed in A and W c F
with F open and dim F ̂  loc dim A, therefore A* — W is open of type (ii)
and W is closed in A*. Thus xeWcWcU with W open and W closed
in A*. Therefore A* is regular.

The set (x0) is closed in A* and dim(x0) = 0 < loc dim A since A is
non-empty. Let F be any closed set of A* which does not meet (x0).
Then A* — F is an open set of type (ii) and hence F is closed in A and
F c V for some open set V of A with dim V ^ loc dim A. Therefore
dim.F ^ loc dim A. Hence, by [2.1], since A* is normal,

dim A* < loc dim A.

Let A be a Hausdorff space. Then, if x e A, (x) is a closed set of A.
And, since dimx A ^ loc dim A, there is an open set F of A with x e V
and dim V < loc dim A. Hence A*—(x) is an open set of type (ii) and
(x) is a closed set of A*. Since A is open in A*, (x0) is a closed set of A*.
Thus all one-point sets of A* are closed. Hence, since X* is normal,
A* is a Hausdorff space.

Let A be completely normal. If U is an open set of type (ii) in A*,
then X* — U is closed in A and A*— U c V with F open in A and

36SS.2.6 j
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dim F ^ locdim X. Since X is normal, there is an open set W of X
•with X*— UcW cWcV. Then X*— W is open of type (ii) and W is
closed in X*. Since X*— W is closed in the normal space X*, X*— W
is normal. Since W n U is a subset of the completely normal space X,
W n U is normal. Then U is the union of two relatively closed normal
subsets X*—W and W n U; hence [(12) 186, lemma] U is normal.

And, if U is an open set of type (i), then U c X and hence £7 is normal.
Thus every open set of X* is normal and hence [(5) proposition 1.1] X*
is completely normal. This completes the proof of [5.1].

[5.2] If X is a normal regular space such that dim X > loc dim X, then
there is a normal regular space X* containing X as an open subset such
that dim X > dim X*. If X is a Hausdorff space or a completely normal
space, so is X*.

Proof. By [5.1] we have dim X* < loc dim X. Then, since

dim X > loc dim X,

therefore dim X > dirnX*. The remaining conclusions follow from [5.1].

[5.3] If X is a completely normal regular space with a subset A such
tJiat dim A > dim X, then X has an open subset Y such that

dimY > loc dim Y.

Proof. Since dim X < dim A, dim X is finite. Since dim A > dim X,
there is a covering {0x,..., Ok] of A which has no refinement of order not

t
exceeding dim X. Let G{ = 4 n t/( with Vt open in X, and let Y = (J U{.

Then Y is open in X and the covering {U(} of Y has no refinement of order
not exceeding dim X. Therefore dim Y > dim X. But, by [4.1],

loc dim Y ^ loc dim X ^ dimX.

Therefore dim Y > loc dim Y, as was to be shown.

6. An example

We now construct an example of a normal Hausdorff space M such
that loc dim M < dim M. Let T be the space consisting of the ordinal
numbers less than cu1 with the usual order topology [(6) appendix].
For each aeT, let

Ta = {fi: fi < a}, ra = tf:fieT,fi>ct}.
Then, for each a, Ta and T"a are disjoint closed sets of T whose union is T.

[6.1] If '{Uf} is a countable (or finite) covering of T, then, for some integer j
and some a. e T, T'a c Uy
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Proof. Assume on the contrary that for each a and j there is some
jSeJ1 with {S > <x such that the interval (a,/3) = {£: a < £ < /?} is not
contained in f/y. Let the least such fi be 0y(ot). Let y(a) be the least
upper bound of the sequence of ordinal numbers /Jy(a). Then

a < y(a) < uix and y(a) e T.

Let â  = y(0), oj = y(a1),..., o,.+1 = y{a,.),.... Then the sequence {a,.}
has a least upper bound S in T and 8 > aT since o,.+1 > <xr. But S is in
some set Uf of the covering and is in some interval (a, fi) contained in
Uj. Then a < 8, and hence, for some r, a < cxr and

which is absurd. This completes the proof.
Let / be the space of real numbers, 0 ̂  p ^ 1, and let the numbers

p e I be divided into congruence classes modulo the rational numbers.
There are c such classes and c ^ Kx. Let Kx of these classes Qa be
chosen and indexed by the ordinal numbers a e T.

Example M. Let M be the subspace of the product space T X / con-
sisting of those pairs (a, p) for which p $ (J Qo.

We define a special covering a of M as follows. For some irreducible
covering {W ,̂..., Wk) of / by intervals open in / and for some a e T, a
consists of the covering of M'a = (Ta x / ) n M by the sets (^xW^nM,
together with a covering of Ma = (Ta x / ) n M by a finite number of
disjoint open (and closed) sets. We may assume that 0 e Wlt 1 e W£, and,
fori = 1,..., k—1, W{ n Wi+1 is not empty.

[6.2] For each finite covering {U{} of M and pel there is a neighbour-

hood (open interval) W of p in I and an ae T such that, for some Uj of

the covering, {r.xW)n M cU,.

Proof. For each pel there exists some jJeJ 7 such that Fp Xp c M;
if p e Qa, it is sufficient to take /J > a while, if p is in no Qa, one may
take £ = 0. Let WJp) be the n^-neighbourhood of p in I and let V(j, n)
be the set of points a of T$ such that, for some y < a,

((y,«+l)xWn(p))nMcU}.

Clearly V(j, n) is an open set in T^.
For each a e Tp, (a,p) e M, and hence (a, p) e Uj for some Uj of the

covering. There is an open set G} of Tx 1 such that U} = GjC\ M.
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Then (a, p) e Uj, and hence there is some product neighbourhood
(y, a+1) X Wn(p) of (<x,p) contained in Oj. Then

((Y,cc+l)xWn(p))nMcUj,

and hence a e V(J, n). Thus {V(j, n)} is a covering of T'p, and, since j
and n take a finite and countable number of values respectively, the
covering is countable. Adding the open set To, we get a countable
covering of T.

By [6.1] there exist j(p), n(p), and <x(p) such that Ta(p) c V(j(p), n(p)),
and hence (T'a(p)xWn{l))(p)) n M c Uj. Thus it is sufficient to take
a = a(p) and W = Wn(p)(p).

[6.3] Every finite covering {[/,} o/ i f has a special refinement.

Proof. By [6.2], for each pel there is a neighbourhood W(p) and an
element a(p) of T such that (T1^,) X W(p)) n M c Uj for eomej. Since /
is compact, the covering {W{p)} of 7 contains an irreducible finite covering
{Wk} with Wk. = W(pt). Let a be the greatest of the corresponding ordinal
numbers a(pk). Then for each Wk there is some Uj such that

The space 3 / a = (Ta x / ) n M is a subspace of T ax (/—Qa), which is
a zero-dimensional separable metrizable space. Hence the covering of
Ma by the sets TJi n Ma has a finite refinement which is a covering by dis-
joint open sets. This, together with the collection of sets (T ,̂ X Wk) n M
which cover Afa = (T^x / ) n M, forms the required special covering of
M. This completes the proof.

A covering {£7J of a Bpace X is called shrinkable if there is a covering
{V{} of X such that F4 c Ut. A space X is normal if and only if each finite
covering of X is shrinkable [(7) 26], or, equivalently, if and only if each
finite covering of X has a shrinkable finite refinement. In particular the
covering {W/} of I is shrinkable, and hence each special covering of M is
shrinkable. Therefore, since every finite covering has a special refine-
ment, M is a normal space.

Since T and / are Hausdorff spaces, the subspace M of T x / is a
Hausdorff space. Hence, since M is normal, it is a regular space.

It can easily be shown that M is countably paracompact but is not
paracompact, not countably compact, and not completely normal.

[0.4] For the normal Hausdorff space M we have

indJfcf = locdimilf = Ioclnd3/ = 0.
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Proof. Each point {a,p) e M is contained in the open and closed set
Ma c if, and M is a subset of the zero-dimensional separable metrizable
space Tax(I-Qa). Thus

dimJ/a = ind Ma = JndMa = 0,

and hence ind M = loc dim M = loc Ind M = 0,

as was to be shown.

[6.5] For the space M, dimM = 1.

Proof. Since each finite covering of M has a special refinement and
since a special covering has order not exceeding 1, therefore dim M ^ 1.

Let O0 be the set of points (a,p) of M with p < 1, and let Ot be the
set of points with p > 0. Then {O0, GJ is a covering of M. LetfJ/j,..., Ur}
be any refinement of {O0, Oj}.

Choose a special refinement of {U{}. The set (Ta x WJ n M is contained
in some set Uo and ?74 c (?0. The set (TaxWk) n M is not contained in
Go and hence is not contained in U{, Hence there is a first j such that
(Tax Wj) n M i L\; let (T^xWj) n if c Uh. Then, for any p e W5_x n T̂
and any ^ so large that /3 > a and (/J, p) e JfeT, we have

(p,P) e <ra x H5) n M c Vh, tf.p) e (Ta x W^) nMc U<.
Thus (fi,p) e L'i n Uk, and the order of {U(} is at least one. Therefore
dim M ^ 1, and hence dim M = 1.

[6.6] IndJlf = 1.

Proo/. Let F c U with JP closed in Jf and U open in Jf. Choose a
6pecial refinement of the covering {M—F, U} oiM. Let V be the union
of the sets of the special refinement which meet F; then F cV c U.

For each j = 1,..., h, W^—Wf consists of at most two points. Let
E = | J (%—Wj); then E is a finite subset of / . It is known that

Ind T = 0, and it follows that Ind (Tx£) = 0. But (V—V) n M is *
closed subset of TxE; hence Ind((F—F)n M) < 0. Hence Ind M < 1.
Therefore 1 = dimM < IndJIf < 1, and hence IndM = 1, as was to
be shown.

7. More examples
Example N. Let JNT be the space M* formed from M by adding a single

point £„ as in § 5 above. A basic set of neighbourhoods of x0 in N consists
of the sets (x0) U M"a for a e T, where ATa = (Ta X I) n M.

[7.1] The. apace N is a normal Hausdorff space such that

dim.V = Ind.V = 0.
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Proof. I t follows from [5.1] that N is a normal Hausdorff space and
that dimi^ < locdim.M. Hence, by [6.4], dimi^ < 0 and hence, since
N is not empty, dim N = 0. This implies [(6) appendix] that Ind-A^ = 0.

Example N shows that the subset theorem does not hold for all normal
Hausdorff spaces, even if the subset is required to be normal. For N is
a normal Hausdorff space with dim N = Ind N = 0, having as an open
subspace a normal space M with dim Jf = Ind M = 1.

Example Q. Let Q be a space consisting of a sequence {Nt} of different
copies of the space N together with a special point y0. A basis for the
open sets of Q is formed by the open sets of each Nt together with the
sets (i/0) u (J N< {oTJ = J> 2,....

i>J

[7.2] The space Q is anormal Hausdorff space and dim Q = IndQ = 0.

Proof. If p and q are two points of Nf, then, since Nt ia a Hausdorff
space, p and q have disjoint neighbourhoods in Nj. If p e Nt and q e Nj,
then Nd and Nj are open, and N{ n Nf = 0. If p = y0 and q e Nt, then p
and q have the disjoint neighbourhoods (y0) u [J Nf and Nj. Thus Q is a

Hausdorff space.
If E and F are disjoint closed sets of Q, then one of them, say F, does

not contain y0. Then y0 has a neighbourhood which does not meet F, and
hence F c N( u ... U N} for some finite j . Since N{ is normal, there exist
disjoint open sets Ut and V{ of N{ with E n NjC U{ and Ĵ  n Nf c V{. Let

U = Ĉ  U ... vUjU (j/0)U U #„ 7 = Vx U ... U ^ .

Then Lr and T' are open, EcU, F c V, and U n F = 0. Thus £ is a
normal space.

If .F is any closed set of Q which does not meet (t/0), then F is a closed
set of i\~j U ... U Nj for some j and hence

dim F < dim^Vi U ... u 2*}).

Hence, by [7.1] and [2.5], dim/1 sC 0. Therefore, by [2.1], since

dim(y0) = 0,

we have dim Q = 0. It follows [(6) appendix] that Ind Q = 0, which
completes the proof.

Example P. Let P be a space consisting of a sequence {Mf} of different
copies of the space M together with a special point y0. A basis for the
open sets of P is formed by the open sets of each M{ together with the
sets ( z / 0 ) u U 3 / i f o r j = 1, 2
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[7.3] The space P is a normal Hausdorff space and indP = 0 while
locdimP = loc IndP = dimP = IndP = 1.

Proof. That P is a normal HausdorflF space is shown as in the proof
of [7.2]. Since ind M = 0, each point of M+ has an arbitrarily small open
and closed neighbourhood in Mt. The point y0 has arbitrarily small open
and closed neighbourhoods of the form (y0) U (J Mt. Thus ind P = 0.

The point y0 has a neighbourhood U such that dim U < locdim P.
And the neighbourhood U contaias a neighbourhood of the form
(y0) U [J M{, and hence contains the closed set Mj+l. Therefore

dim D ^ dim.Vy.Lj = 1.
Thus locdimP ^ 1.

If F c U with F closed and V open in P, then y0 has a neighbourhood
(y0) U (J M( which either does not meet F or is contained in U. Since

Ind Mt = 1, there is an open set V{ with boundary Bt = F4—Vt c Mt such
that F n Mi c V( c t ' n .Vf and Ind fif < 0. Let V be the union of the
sets V\ for i < j together with the open and closed set (y0) U (J ^ ' n

case the latter meets F. Then / c F c f / ' and the boundary of V is
B = BXU ...U Bj. Thus fi is the union of disjoint relatively open and
closed sets B( with each Indfi, < 0. Hence [(5) proposition 5.1]
IndB < 0. Therefore IndP < 1. Hence

1 < locdimP < dimP < IndP < 1,

1 < locdimP < locIndP < Ind P s$ 1.

This completes the proof.
Clearly P is a subspace of Q. Thus the subset theorem does not hold

for the local dimension of normal Hausdorff spaces. For Q is a normal
Hausdorff space with loc dim Q = loc Ind Q = 0, and P is a normal
subspace of Q with loc dim P = loc Ind P = 1.

Also, though, by [4.3], the finite-sum theorem holds for the local
dimension of normal spaces, the countable-sum theorem does not hold.
For the normal space P is the union of a sequence of closed sets

(y0), Mv Mt,...

with locdim(y0) = 0, locdim.l/, = 0, but locdimP = 1.

Example S. O. V. Lokucievskil (8) has given an example of a normal
Hausdorff compact space S which is the union of two closed subsets
Sx and S2 such that ind Sr = Ind *9X = 1, ind S2 = Ind St = 1, and
ind S = Ind.S' = 2. Hence, by [1.7], loc Ind Sx = loc Ind .S, = 1, and
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loc ind S = 2. Thus not even the finite-sum theorem holds for ind,
loc Ind, and Ind.

Since dimSj ^ IndSj = 1 and dimSa ^ Ind 5, = 1, therefore, by
the sum theorem, dim<S ̂  1. Also, S contains a closed set homeo-
morphic to a line segment; hence loc dim S > 1. Therefore

loc dim S = dim S = 1.
[7.4] No relations between ind, loc dim, loc Ind, dim, and Ind, other

titan those listed in [1.7] above, hold for all normal regular spaces.

Proof. This is shown by the properties of Examples M, P, and S
above, as is more clearly seen in the following table:

Space

M
P
S

ind

0
0
2

loc dim

0
1
1

loc Ind

0
1
2

dim

1
1
1

Ind

1
1
2

REFERENCES
1. R. H. Bing, "Metrization of topological spaces', Canadian J. Math. 3 (1951),

175-St).
2. E. Cech, "DLmense dokonale normalnich prostoni', Rozpravy Ctski Akad. II,

42 (1032), no. 13; "Sur la dimension des espaces parfaitement normaux',
Bull. Int. Acad. Prague, 33 (1932), 38-55.

3. 'Contribution a la theorie de la dimension', Cat. Mat. Fys. 62 (1933).
277-91.

4. Problem P53, Colloq. Math. 1 (1948), 332.
5. C. H. Dowker, 'Inductive dimension of completely normal spaces', Quart.

J. Math. (Oxford) (2) 4 (1962), 267-81.
6. W. Hurewicz and H. Wallman, Dimension Theory (Princeton, 1941).
7. S. Lefschetz, Algebraic Topology (New York, 1942).
8. O. V. Lokucievekil, 'On the dimension of bicompacta', Doklady Akad. Kauk

SSSR, 67 (1949), 217-19.
9. A. Lunc, 'A bicompactum whose inductive dimension is greater than its

dimension defined by means of coverings', Doklady Akad. Nauk SSSR, 66
(1949), 801-3.

10. K. Menger, Di»\ensionetheorie (Berlin, 1928).
11. N. Vedenissoff, ' Sur la dimension au sens de E. Cech', Bull. Acad. Sci. URSS,

Sir. Math. 5 (1941), 211-16.
12. C. T. Yang, 'On paraconipact spaces', Proe. American Math. Soc. 5 (1954),

185-9.


