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Introduction

LET dim-X be the covering dimension of a space X and let ind X and
Ind X be the dimensions defined inductively in terms of the boundaries
of neighbourhoods of points and closed sets respectively. The local
dimension locdim X is the least number n such that every point has
a closed neighbourhood U with dim I < n. The local inductive dimen-
sion JocInd X is defined analogously, while ind X is already a local
property.

The subset theorem, that dim 4 < dim X for A ¢ X, which was proved
by E. Cech (3) for perfectly normal spaces is here extended to totally
normal spaces. Cech’s problem (4) of whether the subset theorem holds
for completely normal Hausdorff spaces is reduced to the problem of
whether the local dimension of & completely normal Hausdorff space is
always equal to its dimension: that is, whether locdim X = dim X for
X completely normal and Hausdorfl. But it follows from [3.7] below
that a completely normal space X such that locdim X < dim X, if any
such exists, must be neither paracompact nor the union of a sequence
of closed paracompact sets nor the union of two paracompact sets one
of which is closed. Thus most of the usual methods of constructing
counter-examples are excluded.

However, a normal space M is constructed for which

locdim M << dim M.

Though this example is not completely normal, it is not clear that the
lack of complete normality plays any significant role.

It is well known [(6) appendix] that a normal Hausdorff space may
have a non-normal subspace of higher dimension. An example is given
below of a normal Hausdorff space .\ with a normal subspace M such
that dimN¥N = IndV = 0 but dimM = Ind M = 1.

The normal space M also has the property that ind M < dim M.
Examples are known (8, 9) of normal Hausdorff spaces X such that
ind X > dim X. Thus for normal Hausdorff spaces there are the known
relations ind X < Ind X and dim X < Ind X and no others.
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A lemma which proves useful in several of the proofs below is the
following (see [2.1]): If a closed set A of a normal space X 18 at most
n-dimensional, and if every closed set which does not meet A 48 at most n-
dimensional, then dim X < n.

1. Definitions and elementary relations

A covering of a topological space X is a collection of open sets of X
whose union is X. A covering B is called a refinement of a covering a
if each member of 8 is contained in some member of a.

The order of a collection of subsets of a space X is —1 if all the subsets
are empty; otherwise the order is the largest integer n such that some
n+1 members of the collection have a non-empty intersection, or is co
if there is no such largest number.

The dimension of a space X, dim X, is the least integer n such that
every finite covering of X has a refinement of order not exceeding =,
or the dimension is oo if there is no such integer.

[1.1] For any space X, dim X < n if and only if, for every finite
covering {U,..., U} of X, there is a covering {V,,..., .} of order not exceeding
n with each Vyc U,.

Proof. The condition s clearly sufficient, for {V} is a refinement of {Uy}.
To show necessity, let dim X < n. Then the covering {U;} has some
refinement B of order not exceeding n. Let each member of 8 be asso-
ciated with one of the sets U, containing it and let ¥, be the union of the
sets of B thus associated with U;. Then ¥, is open, ¥, c U, and each point
of X is in some member of 8, and hence in some ¥;. Each point p is in at
most n-1 members of 8, each of which is associated with a unique U,
and hence p is in at most n+ 1 members of ¥, Thus V] is & covering of
order not exceeding 7, a8 was to be shown. ‘

The inductive dimensions ind X and Ind X are defined inductively as
- follows. If X is the empty set,indX = IndX = —1. Ifind X < n—1
has already been defined, ind X < n means that, for each point p and
open set U with p € U, there is an open set ¥V with p € ¥ ¢ U for which
ind(V—V) < n—1. Similarly, Ind X < n means that, for each closed
set ¥ and open set U with F c U, thereis an openset Vwith Fc Vc U
for which Ind(V—V) < n—1. Andind X = co[Ind X = 0] means that
there is no integer n for which ind X < n [Ind X < a).

It is known [(6) appendix] that, for an arbitrary space X, dim X = 0
if and only if IndX = 0. If 4 is any subset of a space X, then
ind 4 < ind X [(6) appendix). If 4 is a closed subset of X, then

dim4 < dimX [(3)§4] and IndA4 < Ind X [(2) §16].
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If p is a point of & space X, the dimension of X at p, dim,, X, is defined
ag follows: dim, X is the least integer n such that, for some open set U
containing p, dim U = n or, if there is no such integer, dim, X = oo.

Similarly ind,, X [Ind,, X]is defined to be the least integer n such that,
for some open set U containing p, ind U = n [Ind U = =] or, if there is
no such integer, ind, X = oo [Ind, X = co]. It should be noted that the
dimension at a point as defined here is entirely different from that defined
by Menger (10) and Hurewicz and Wallman (6).

The local dimension of a space X, locdim X, is defined as follows. If
X is empty, locdim X = —1. Otherwise, locdim X is the least integer
n such that, for every point p € X, dim, X < = or, if there is no such
integer, locdim X = oo,

The local inductive dimensions, locind X and locInd X, are defined
similarly. If X is empty, locind X = locInd X = —1. Otherwise,
locind X [locInd X] is the least integer n such that, for every point
peX,ind, X < n[Ind, X < n] or, if there is no such integer,

locind X = oz [locInd X = o0].

Thus locdim X [locind X, locInd X] is the least integer n such that
there exists a covering {U)} of X with each dim U, < n [ind U, < n,
Ind U, < n], or,if thereisno such integer, loc dim X = oo[locind X = o0,
locInd X = oo].

[1.2] For any point p of a spuce X, dim, X < n if and only if each
neighbourhood U of p contains a neighbourhood V of p with dimV < n.

Proof. By the definition of dim, X, if there is any open set V with
pel and dim ¥V < =, then dim, X < n. On the other hand, if

dim, X < n,

there exists a neighbourilood Wof pwithdimW <n. V=UnW,
then p € ¥ c U and, since ¥ is a closed subset of W, dim ¥V < =.

[1.3) For any space X, locdim X < n tf and only if every covering of
X has a refinement {Uy} with each dim Uy < n.

This follows immediately from [1.2]. Analogous propositions are
clearly true of locind X and locInd X.

[1.4] For any space X, locdimX < dim X, locind X < ind X, and
locInd X <IndX. -
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Proof. If dim X < m, then every point p € X has the neighbourhood
X for which dimX = dimX < », and hence dim, X < n. Thus
locdim X < n. Similarly ind X < » implies locind X < » and

IndX < n implies locInd X < n.
[1.5] For any space X, locind X = ind X.

Proof. Letlocind X < nand let p e U c X with U open. Then there
is some open set W with p € W and ind W << n. Hence p € U n W with
Un W open in W. Hence, by the definition of ind W, there is a set V
open in W with peVcUN W and ind B < n—1, where B is the
boundary of ¥V in W. But, since V is openin W, itis open in W and hence
in X. Also the closure of V in W isits closure ¥ in Xand hence B = V—V.
Thus p € ¥V ¢ U with V open and ind(V —V) < n—1. Therefore

ind X < n.

Thus ind X < locind X, and so locind X = ind X, as was to be shown.

Thus the inductive dimension ind X is already a local property of X.
But dim X and Ind X are not in general local properties, as will be seen
in § 6 below. *

[1.6] If X i8 a regular space, ind X < locInd X.

Proof. This is shown inductively. Clearly locInd X = —1 implies
ind X = —1. Assume it proved that

locInd X € n—1 implies indX < n—1.

Let locIndX < n and let pe U c X with U open. Then, for some
open set 1V, pe I¥ and Ind ¥ < n. Since X is regular, there is an
openset @ with pe Gc @c UnII'. Since IndW < n, there is an open
set V of W with @cVcUN W and Ind B < n—1, where B is the
boundary of ¥ in W. Since ¥ is open in I, it is open in W and hence
in X. The closure of ¥ in W is its closure ¥ in X, and hence B = 7 —V.
Since B ¢ X, B is regular and, since Ind B < n—1, locInd B < n—1.
Hence by the induction hypothesis ind B < n—1. Thus p € ¥ c U with
V open and ind(V —¥) < n—1. Hence ind X < =, as was to be shown.

The above result, ind X < locInd X, is in fact clearly true for any
space in which the closure of each one-point set has no proper closed
subset, and hence true for 7} spaces as well as regular spaces.

It is known (11) that, if X is a normal space, dim X < Ind X. It
follows that, for a normal space X, locdimX < locInd X. For, if
locInd X < =, then each point p € X has a neighbourhood U with
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Ind U < n, and the closed set U of X is normal; hence dimU < n
Thus locdim X < n
Thus, using [1.4], [1.5], and [1.6], we have the following:

[1.7] If X i8 a normal regular space, then
indX <locInd X € Ind X,
locdimX < locInd X < Ind X,
locdim X < dim X < Ind X.

Since every normal Hausdorff space is regular, the inequalities of [1.7]
hold in particular for normal Hausdorff spaces.

2. Properties of dimension

[2.1] Let A be a closed set of a normal space X. If dim A4 < n and if
dim F < n for every closed set F of X which does not meet A, then

dmX <n

Proof. Let {U,,..., U;} be a covering of X. Then, by (3) § 22, since X
is normal and A is closed and dim 4 < n, there exists a collection {V} of
open sets of X of order not exceeding n with each ¥;c U; and 4 C‘U

-1

k
Let V= V;then Visopenand A c V.

i=1
Since X is normal, there exist open sets P and @ such that
X—VcPcPcQcQcX—A.
Since @ is closed and @ N 4 = 0, dim § < n. The sets U; N P together
with the sets ¥, form a collection of open sets of X covering the closed
set . Hence, by (3) § 22, @ is covered by a collection {G;, H,} of open
sets of X of order not exceeding » with G, c U; N P and H, cl,.

Let W, = G; U H, U (V,— P); then ¥, is open in X and W, c U;. Each
point of P is in at most n+1 of the sets {@;, H;} and in none of the sets
V;— P; hence it is in at most n+-1 of the sets W,. Each point of X — P
is in none of the sets @; and in at most n+41 of the sets ¥, and hence,
since H; c ¥, it is in at most n+1 of the sets W,. Thus {H}} is of order
not exceeding n. Each point of P is contained in § and hence in some
G, or H;; hence it is in some I¥,. And each point of X — P is in some

— P and hence in some T1;. Thus {W¥,} is a covering of X. Thus {W} is
a refinement of {U;} of order not exceeding n. Hence dim.X < », as was
to be shown.

2.2] If a normal space X is the union of two scts A and I3 with
closed and dim 4 < nand dim B < n, then dim X << n
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Proof. If F is a closed set of X which does not meet A, then F is a
closed subset of Band dim F < dim B < n. Hence,by[2.1],dim X < =,
as was to be shown.

[2.3] If A i3 a closed set of a normal space X, then
dim X < max(dim 4, dim(X — 4)).
Proof. This follows immediately from [2.2] on setting B = X —A4.

A normal space X is called totally normal (5) if each open subspace ¥
of X has a locally finite covering by open subsets each of which is an ¥
set of X. As will be shown in [2.6] below, the inequality in [2.3] becomes
equality if X is totally normal.

[2.4] Each totally normal space 18 regular.

Proof. If X is totally normal, let p € ¥ ¢ X with ¥ open. Then p is
in some open F, set U contained in ¥ and, since U is an F, set, there is

a closed set F with p € F c U. Since X is normal, there is an open set V
with FcVcVcU; thenpe Vc VcY. Thus X is regular.

[2.5] Let a space X be the union of disjoint sets A each of which vs open
and closed in X. If each dim 4, < n, then dim X < n.

Proof. Let {U,,..., U;} be any finite covering of X. Then
{U,n A4,,.,0.,n4)}
is a covering of 4, and dim 4, < n; hence there is a covering {F};} of 4,
of order not exceeding n with ¥,; c U;n 4,. Let ¥; = |J W;; then {V;} is
A
a covering of X of order not exceeding n and ¥;c U,. Therefore

dimX < n
as was to be shown.

[2.8] IfY isanopen set of atotally normal space X, thendimY < dim X.
Proof. Let dim X < n; it issufficient to show that dim ¥ < n. Since Y
is an open set of a totally normal space X, we know [(5) proposition 4.3]
that for each ¢ = 1, 2,... there is a collection {W,}, locally finite in ¥,
of disjoint open sets and a corresponding collection {F},} of closed sets

of X such that F,, c Wyc ¥ and {J | F,, = ¥. Since F,, is closed in X,
dimF < dm X < n. Let F, i_ij)Fa, then since, for fixed 1, {F},} is
locally finite in Y, F, is closed in Y Likewise U F,, is closed in ¥, and
hence F, = F, — U F,, is open in F,. Therefore by [2.5], dim F; <<

Since X is totally norrna.l it is completely normal [(5) proposition ¢.6],
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and hence Y is normal. By the sum theorem [(3) § 23], since ¥ = 0 F,
i=1

with F; closed in ¥ and dim F;  n, therefore dimY < 7, as was to be
shown.

[2.7] If, for each open set Y of a space X, dimY < n, then, for each set
Aof X,dimA < n.

Proof. Let {G,,..., G;} be a covering of 4. Each @, is open in 4 and
K
hence there is an open set U, of X suchthat G, = U;n 4. LetY = |J U;;

i=1
then 4 cY and Y is open in X, and hence dimY < n. Hence there is

a covering {V;} of Y of order not exceeding n with each ¥,c U;. Then
{V;n A} is a covering of 4 of order not exceeding » and
VnNnAcUnA=4G,.
Hence dim 4 < » as was to be shown.
The subset theorem which was proved by Cech [(3) § 28] for per-
fectly normal spaces can be extended to totally normal spaces as follows.
[28]]waa3etmatotallynomzalﬂpa.ceX i7i-end1mA dim X.
Proof. This follows immediately from [2.8] and [2.7].
It is also true [(5) Theorem 2] that, if 4 is any subset of a totally
normal space X, then Ind 4 < Ind X.

3. Relation of local dimension: 6] dﬁnension

For any space X onehas the trivial relation locdim X < dim X, and

an example is given below of a normal Hausdorff space M with
locdim M < dim M.

But, as is now to be shown, in [3.3], [3.5], and [3.8], there is a wide class

- of normal spaces for which locdim X = dim X. 4

[3.1] If A s a closed set of a space X, locdim 4 < locdim X.

Proof. Let locdim X < n and let z be a point of A. Then there is a
neighbourhood U of z in X with dim U < n. Then U N 4 is a neighbour-
hood of z in 4 and the closure of U N 4 in 4 is a closed subset of U and
hence has dimension not exceeding n. Hence locdim A4 < n. Thus

Jocdim A4 < locdim X,
as was to be shown.

[3.2]) If {Uy} 58 any covering of a paracompact normal space X, then X
18 the union of a sequence of closed sets {H;} each of which is the union of
a collection {H,,} of disjoint sets with each H,;, open and closed in If; and
with each H,, contained in some U,.
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Proof. Since X is paracompact, {U;} has a locally finite refinement {V,}.
Since X is normal, {V,} can be shrunk [(7) (I, 33, 4)] to a covering {W,}
with W, c V.. There exist real continuous functions f, (0 < f,(z) < 1)
such that f,(z) = 0if x € X—V, and f,(z) = 1 if z € W,. Let F,, be the
set of points z for which f,(z) > 1/s and let G, be the set of points for
which f,(z) > 0.

Let the indices p. be well ordered. Let H;, be the set F;, — |J G, and

r<p

let H; = |J Hy,. Thesets F;, are closed, G, is open, and each H,, is closed.

Ifv<up, ,‘Hﬁ, ¢ G, and H;, N Hy, = 0. Thus, for each 1, the sets H,, are
disjoint. Since Hy, c ¥, the collection {H,,} for fixed ¢ is locally finite;
hence H, is closed and |J H,, is closed, whence H,, is open in H;. Thus
v .

H, is the union of disjoi;t sets H,,, each open and closed in H;, and
Hy, c ¥, which is contained in some Uj.

Each point z € X is in some W, and hence in some G,. Then, if we
take the first p for which z € G,, z € F;, for some { while z is in none of
the sets G, with v << u. Hence z € H;, for some ¢, and therefore z € H,.

Thus X = GH,,a,swa.stobeshown.
i=1

[3.3) If X is a paracompact normal space, then locdim X = dim X.

Proof. Let locdim X < n. Then each point z € X is in some open
set U, such that dim U, < n. Then, by [3.2], X is the union of a sequence
of closed sets {H;} each of which is the union of a collection {H,,} of
disjoint sets with each H;, contained in some U,. Then H,, is a closed
subset of some U, and hence dim H;, < n. Hence, by [2.5), dim H; < n.
Hence, by the sum theorem [(3) § 23], since X = | J H, with H, closed

i=1

and dim H; < n, we have dimX < n. Thus dim X < locdim X, and
hence locdim X = dim X, as was to be shown.

[3.4] If X 3 a paracompact totally normal space, then
locInd X = Ind X.

Proof. Let locInd X < n. Then each point z € X is in some open set
U, such that Ind U, < n. Then, by [3.2], X is the union of a sequence
of closed sets {H;} each of which is the union of a collection {H,,} of
disjoint sets with each H,, open and closed in H; and with each H;,
contained in some U,. Then H,, is a closed subset of some U., and hence
Ind H;, < n. Hence, by (5) proposition 5.1, Ind H; < n. By the sum
theorem [(5) Theorem 4] for the inductive dimension of totally normal
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spaces, since X = |J H; with H; closed and Ind H; < n, therefore

i=1
Ind X < n. Thus Ind X <{ locInd X, and hence locInd X = Ind X, as
was to be shown,

[3.5] If a normal space X is the union of a sequence {A} of closed para-
compact subsets, then locdim X = dim X,

Proof. Let locdim X < n. Then, by [3.1], since 4, is closed,
locdim 4; < n.
Since X is normal, the closed set A, is normal. Hence, by [3.3], since 4,
is paracompact, dim4; < n. By the sum theorem [(3) § 23], since

X = {J A, with A, closed and dim 4, < #, therefore dim X < 2. Thus
fe=]

dim X < locdim X, and hence locdim X = dim X,
[3.8] If a normal space X i3 the union of two paracompact sets A and B
with A closed in X, then locdim X = dim X.

Proof. Let locdim X < n. Then, by [3.1], since 4 is closed,
' locdimA4 < n.

Since X is normal, the closed set 4 is normal. Hence, by [3.3], since A
is paracompact, dim A <{ n. Let F be any closed set of X which does
not meet A; then F is normal and locdim F < n. Since F is a closed
subset of B, F is paracompact and hence, by [3.3], dim ¥ < n. Hence,
by [2.1], dim X < n. Thus dim X < locdim X, and hence

locdim X = dim X.
[3.7] Let X be an n-dimensional normal space. If X is paracompact,
or the union of two paracompact sets one of which is closed, or the union

of a sequence of closed paracompact sets, then the set of points of X at
which X 1is n-dimensional ts an n-dimensional closed set of X.

Proof. Let D be the set of points of X at which X is n-dimensional
and let p € X—D. Since locdim X < dim X = =, dim,X <n and, for
some neighbourhood U of p, dim U { n—1. Then, for each point z € U,
dim_ X < n—1, and hence ze X—D. Thus X—D is open and D is
closed.

Let F be any closed set of X which does not meet D. Then each
point z of F has a neighbourhood U in X such that dimU < n—1.
Then U N F is a neighbourhood of z in F and its closure in # i3 a
closed subset of T and hence has dimension not exceeding n—1. Thus
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locdim F < n—1. If X is paracompact, then the closed set F is para-
compact. If X = 4 U B with A closed and both 4 and B paracompact,

then F=(4nF)u(BnF)
with A n F closed and, since A N F is closed in 4 and B N F is closed
in B, An F and Bn F are paracompact. If X = |J 4, with each 4,
i=1
closed and paracompact, then F = 0 A4, F and each 4, n F is closed
. . i=1

and paracompact. The closed set F of X is normal; hence, by [3.3] or
[3.5] or [3.6], dim F < n—1.

By [2.1], if the dimension of D were < n—1, then we should have
dim X < n—1, which is absurd. Thus dim D > n and, since D is closed
in X, dimD < dim X = n. Hence dim D = n, as was to be shown.

In reference to the hypotheses of [3.5], [3.6], and [3.7], note that Bing’s
example H [see (1)] is a normal space which is the union of a countable
number of discrete and hence paracompact (even metrizable) closed
subsets but it is not paracompact. Either of his examples G or H is a
non-paracompact normal space which is the union of two discrete and
hence paracompact subsets, one of which is closed.

Nor does the normality of X follow from the other properties. For
example, let R be a non-countable set of points, one of which is called r,.
The open sets of R are the sets not containing r, and the sets containing
all but a finite number of points of R. Then R is a normal space: irrfact
it is a compact Hausdorff space. Let S have & countably infinite set
of points and let its open sets be sets not containing a special point 8,
and sets containing all but a finite nuinber of points. Let X be the
subset of Rx S formed by removing the point (r;,s,). Then X is a
Hausdorff space.

If A= ((Bx8)VU (ryx8))NX,
then 4 is closed in X and both A and X— A4 are discrete and hence
paracompact. Also thesets R x sfors s s,are compactand (R X 8,) 0 X
is discrete; thus X is the union of a countable collection of closed para-
compact subsets. But X is neither normal nor paracompact.

4. Properties of local dimension

As has been shown in [3.1] above, the closed-subset theorem holds
for the local dimension of arbitraty spaces. I now show that the open-
subset theorem holds for the local dimension, though not necessarily
for the dimension (see § 7 below), of regular spaces. And the subset
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theorem of local dimension holds for totally normal spaces. The finite-
sum theorem, but not the countable-sum theorem (see § 7 below), holds
for the local dimension of normal spaces.

[4.1] IfY 13 anopen set of a regular space X, thenlocdim ¥ < loedim X
and locIndY < locInd X.

Proof. Let locdim X < n and let z be a point of Y. There is a neigh-
bourhood U of z in X such that dim U < n. Since X is regular, there is
an open set ¥ containing z whose closure ¥ is contained in the open set
UnY. Then V is a neighbourhood of zin ¥, ¥ is the closure of ¥ in 7,
and, since V¥ is a closed subset of U, dim ¥ < n. Thus locdim¥Y < =.
Henoe locdim ¥ < locdim X. The proof that locIndY < locInd X is
similar and is omitted.

[4.2] If A is a subset of a totally normal space X, then

locdimA4 < locdimX and locInd4 < locInd X.

Proof. Letlocdim X < n and let z be a point of 4. There is a neigh-
bourhood U of zin X such that dim U < n. Then U n 4 is a neighbour-
hood of z in 4 whose closure in A is a subset of the totally normalspace U
and hence, by [2.8], has dimension not exceeding n. Thuslocdim 4 < n.
Hence locdim 4 < locdim X. The proof that locInd 4 < locInd X is
gimilar but uses (5), Theorem 2, instead of [2.8].

[4.3) If a normal space X is the union of two closed sets A and B and
if locdim 4 < n and locdim B < n, then lJocdim X < n.

Proof. If z€e X— A, then z € B and there is an open set U N B of B,
where U is open in X, such that dim U N B K n. If W= Un (X—A4),
then Wisopenin X,z € I¥, and, since ¥ ¢ U N B,dim W < n. Similarly,
if x € X— B, there is an open set of X containing £ whose closure has
dimension not exceeding n. If z € A N B, then there exist open sets U
and V containing z such that dim U N 4 < n and dim P'n B < n. Let

W=X—(A-U)—(B—-V});
then 1V is open, z € IV, and W c (U N A4) u (V n B). Then
dm W <dim(UnduVPn B)< max(dim Un4,dimPnB)<n

since the sum theorem [(3) § 23] holds in the normal space W. Thus
locdim X < n, as was to be shown,

5. The subset theorem and local dimension

In this section the problem of whether the subset theorem of dimen-
sion holds for all completely normal regular spaces is reduced to the
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apparently simpler problem of whether the local dimension of every
completely normal regular space is equal to its dimension.

If one drops the condition of regularity, there are trivial counter-
examples to the subset theorem. For example, let I be a line segment
and let X be the space consisting of I together with one additional
point z,, the open sets of X being the open sets of I and the whole
space X. Then X is completely normal but not regular, and dim X = 0
while dimI = 1.

[5.1] If X 18 any normal regular space, there 18 a normal regular space
X* containing X as an open subset such that dim X* < locdim X. If X
18 a Hausdorff space or a completely normal space, so 18 X*.

Proof. If X is empty, let X* = X. Otherwise the points of the space
X* are the points of X together with one new point z,. A set U of X*
is to be open if either (i) U c X and U is open in X or (i) z,€ U and
X*—U is a closed set of X which is contained in an open set V" of X
such that dim ¥ < locdim X.

It is clear that the empty set is an open set of type (i) and the whole
space X* is an open set of type (ii). The intersection of two open sets,
one of which is of type (i), is an open set of type (i). If [} and U; are open
sets of type (ii), then z, € U; N T} and

X*— (O, N Ty) = (X*—T)) v (XI*-T17),
which is the union of two closed sets and hence is a closed set of X.
If X*— U, cV, and X*— U, c ¥; with ¥, and F, open in X and
dim¥?, <locdimX and dim?, < locdim X,

then X*—(U, N T,)c,UF,and U T, = ¥, U 7, is a closed set of X and
hence is normal. Therefore, by the sum theorem,

dim(7, U V,) = max(dim¥,, dim ¥;) < locdim X.
Thus the intersection U; N T, is an open set of type (ii).

The union of any collection of open sets of type (i) is again an open
set of type (i). If the collection contains an open set U] of type (ii),
then fthe union U contains z,, and U—(z,) is a union of open sets of X,
and hence is open in X. Therefore X*—U is closed in X and, if

X*—U,ch
with ¥ open in X and dim ¥, < Jocdim X, then X*— U is also contained
in V;. Therefore U is an open set of type (ii). Thus X* is a topological

space, and clearly X is a subspace. The set X is an open set of type (i)
in X*,
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The space X* is normal. For, if £ and F are disjoint closed sets of X*,
at least one of them, say F, does not contain z,, Then X*—F is an
open set of X* containing z,; hence it is an open set of type (ii). There-
fore there is an open set V of X with Fc ¥V and dim ¥V < locdim X.
Then ¥V N (X*—E) is an open set of X containing the closed set F.
Since X is normal, there exists an open set W of X such that

FcWcWcVn(X*—E).
Let U = X*—W; then z,€ U, the set X*—U = W is closed in X,
W c V with V open in X, and dim ¥ < locdim X. Therefore U is an
open set of type (ii) while the set W is open of type (i) in X*. We have
Fc W and, since Wc X*—E,
EcX*—W=U, Unl =o.
Therefore X* is normal.

The space X* is regular. For, if z € U ¢ X* with U open in X'*, then
either z = z, and U is open of type (ii) or z % 2, and z € U N X, which
is open of type (i) in X*. If 2 = zy € U, then, since X is open in X*,
(x,) is closed and, by the normality of X*, there is an open set IV with
zoe Wc Wc U, where W is the closure of W in X*. If x # x,, then,
by the definition of loeal dimension, there is some neighbourhood V of =
in X such that dim ¥ < locdim X. Since X is regular, there is an open
set IV of X withze Wc Wc Vn U. Since W is closed in X and ¥ cV
with ¥ open and dim 7 < loc dim X, therefore X*— W is open of type (ii)
and I7 is closed in X*. Thusze W c W ¢ U with W open and W closed
in X*. Therefore X * is regular.

The set (z,) is closed in X* and dim(zy) = 0 < locdim X since X is
non-empty. Let F be any closed set of X* which does not meet (z,).
Then X*~—F is an open set of type (ii) and hence F is closed in X and
F cV for some open set ¥V of X with dim ¥ < locdim X. Therefore
dim F < locdim X. Hence, by [2.1], since X* is normal,

dim X* < locdim X.

Let X be a Hausdorff space. Then, if z € X, (z) is a closed set of X.
And, since dim, X < locdim X, there is an open set V of X withze V
and dim ¥ < locdim X. Hence X*—(z) is an open set of type (ii) and
(z) is a closed set of X*. Since X is openin X'*, (z,) is a closed set of X'*.
Thus all one-point sets of X* are closed. Hence, since X* is normal,
X* is a Hausdorff space.

Let X be completely normal. If U is an open set of type (ii) in X'*,
then X*—U is closed in X and X*—{/cV with V open in X and

3695.2.6 I
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dim ¥V < locdim X. _Since X is normal, there is an open set W of X
with X*—U c W c W c V. Then X*— W is open of type (ii) and 7 is
closed in X*. Since X*—W is closed in the normal space X*, X*—W
is normal. Since W n U is a subset of the completely normal space X,
7 n U is normal. Then U is the union of two relatively closed normal
subsets X*— W and W n U; hence [(12) 186, lemma] U is normal.

And, if U is an open set of type (i), then U c X and hence U is normal.
Thus every open set of X* is normal and hence [(5) proposition 1.1] X*
is completely normal. This completes the proof of [5.1].

[8.2]) If X is a normal regular space such that dim X > locdim/X, then
there 18 a normal regular space X* containing X as an open subset such
that dim X > dim X*. If X is a Hausdor[f space or a completely normal
space, 80 18 X*.

Proof. By [5.1] we have dim X* < locdim X. Then, since

dim X > locdim X,
therefore dim X > dim X*. The remaining conclusions follow from {5.1].

[5.3] If X t8 a completely normal regular space with a subset A such
that dim A > dim X, then X has an open subset Y such that

dimY > Jocdim?Y.

Proof. Since dim X < dim 4, dim X is finite. Since dim4 > dim X,
there is a covering {G,,..., G} of .4 which has no refinement of order not

E
exceeding dim X. Let G, = 4 n U, with U;openin X,andletY = {J U,
i=1

Then Y is open in .X and the covering {U;} of Y has no refinement of order

not exceeding dim X. Therefore dimY > dim X. But, by [4.1],
locdim Y << locdim X < dim X.

Therefore dimY > locdimY, as was to be shown.

6. An example

We now construct an example of a normal Hausdorff space M such
that locdim M < dim M. Let T be the space consisting of the ordinal
numbers less than w, with the usual order topology [(6) appendix].
For each a e T, let

T,={B:B< o}, T.={B:BeT, B> a}
Then, for each «, T\, and T, are disjoint closed sets of 7' whose union is 7.
[6.1] If{U,} ts a countable (or finite) covering of T, then, for some integer j
and some xe T, T, c U;.
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Proof. Assume on the contrary that for each « and j there is some
B e T with B > « such that the interval (a,8) = {£: « < § < B} i8 not
contained in U;. Let the least such 8 be B,(x). Let y(x) be the least
upper bound of the sequence of ordinal numbers f,(x). Then

o <yla) <w;, and yla)eT.

Let oy = y(0), oy = ¥(oy),..., 4y = y(a,),.... Then the sequence {a,}
has a least upper bound & in 7' and 8 > a, since «,,; > «,. But 8 is in
some set U; of the covering and is in some interval («,8) contained in
U;. Then « < §, and hence, for some r, « < «, and

Oy = Y(o) = B >,

which is absurd. This completes the proof.

Let I be the space of real numbers, 0 << p < 1, and let the numbers
p € I be divided into congruence classes modulo the rational numbers.
There are c¢ such classes and ¢ > R,. Let X, of these classes ¢, be
chosen and indexed by the ordinal numbers a € 7.

Example M. Let M be the subspace of the product space T'x I con-
sisting of those pairs («, p) for which p ¢ |J Q.
>a

We define a special covering o of M as follows. For some irreducible
covering {W,,..., W} of I by intervals open in I and for some a€ 7, o
consists of the covering of M, = (T, x I) N M by thesets (Tyx W) N M,
together with a covering of M, = (T, x I) n M by a finite number of
disjoint open (and closed) sets. We may assume that 0 € W, 1 € W, and,
fori = 1,..., k—1, W, n W, is not empty.

[6.2] For each finite covering {U;} of M and p € I there 18 a neighbour-
hood (open interval) W of p in I and an a € T such that, for some U of
th ing,

¢ covenng (T xW)yn M c U,

Proof. For each p € I there exists some B € T such that Tgxpc M;
if p € Q,, it is sufficient to take B > « while, if p is in no @,, one may
take B = 0. Let W,(p) be the n-1-neighbourhood of p in I and let V(j, n)
be the set of points o of T such that, for some y < a,

(()’:a+1)x H::(P)) nNMc L}'

Clearly ¥(j,n) is an open set in T’.
For each a € T, (a,p) € M, and hence («, p) € U} for some L of the
covering. There is an open set ) of Tx I such that U, = G;n M.
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Then («,p)€ U, and hence there is some product neighbourhood
(v, a+1) X W,(p) of (a, p) contained in G;. Then

((rra+1) X Wy(p)) N M c U,

and hence a € V(j,n). Thus {V(j,n)} is a covering of Tp, and, since j
and n take a finite and countable number of values respectively, the
covering is countable. Adding the open set Tﬂ, we get a countable
covering of T.

By [6.1] there exist j(p), n(p), and «(p) such that T, ¢ V(j(p), n(p)),
and hence (T X W, (p)) N M c U, Thus it is sufficient to take
a = a(p) and W = W,,(p).

[6.3) Every finite covering {U;} of M has a special refinement.

Proof. By [6.2), for each p € I there is a neighbourhood W(p) and an
element o(p) of T such that (T, X W(p)) n M c U for some j. Since I
is compact, the covering {W(p)} of I contains an irreducible finite covering
{W.} with W, = W(p,). Let « be the greatest of the corresponding ordinal
numbers a(p;). Then for each W, there is some [; such that

(Tox W) 0 M c T

The space M, = (T, x I)n M is a subspace of T, X (I —@,), which is
a zero-dimensional separable metrizable space. Hence the covering of
M, by the sets U; N M, has a finite refinement which is a covering by dis-
joint open sets. This, together with the collection of sets (T% x W) N A
which cover M, = (T,x I) N M, forms the required special covering of
M. This completes the proof.

A covering {U;} of a space X is called shrinkable if there is a covering
{V}} of X such that ¥, c U;. A space X is normal if and only if each finite
covering of X is shrinkable {(7) 26], or, equivalently, if and only if each
finite covering of X has a shrinkable finite refinement. In particular the
covering {W} of I is shrinkable, and hence each special covering of A is
shrinkable. Therefore, since every finite covering has a special refine-
ment, M is a normal space.

Since T and I are Hausdorff spaces, the subspace M of T'X I is a
Hausdorff space. Hence, since M is normal, it is a regular space.

It can easily be shown that M is countably paracompact but is not
paracompact, not countably compact, and not completely normal.

[6.4] For the normal Hausdorff space M we have
ind M = locdim M = locInd M = 0.
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Proof. Each point (a, p) € M is contained in the open and closed set
M, c M, and M is a subset of the zero-dimensional separable metrizable
space T, X (I—@,). Thus

dim M; = ind M, = Ind M, = 0,
and hence ind M = locdim M = locInd M = 0,
as was to be gshown.

[8.5] For the space M, dim M = 1.

Proof. Since each finite covering of M has a special refinement and
gince a special covering has order not exceeding 1, therefore dim M < 1.

Let @, be the set of points («, p) of M with p < 1, and let G, be the
set of points with p > 0. Then {G,, G,}isa coveringof M. Let {},,..., U}
be any refinement of {G,, G,}.

Choose a special refinement of {U;}. Theset (T, x W) N M is contained
in some set U, and U; c G,. The set (T, x W) N M is not contained in
G, and hence is not contained in U,. Hence there is a first j such that
(ToaxW)n M ¢ U let (TexW)n M cU,. Then, for any pe W,_,n W,
and any B so large that 8 > « and (8, p) € M, we have

B.p)e(TexW)NMcl, (Bp)e(TeXW )N Mcl,.
Thus (8,p) € U;n U,, and the order of {U}} is at least one. Therefore
dim M > 1, and hence dim M = 1.

[6.6] Ind M = 1.

Proof. Let F c U with F closed in M and U open in M. Choose a
special refinement of the covering {M —F, U} of M. Let V be the union
of the sets of the special refinement which meet F; then Fc V c U.

For each j = 1,..., k, W,—W, consists of at most two points. Let
E = |J (i;—W)); then E is a finite subset of I. It is known that

i

Ind T = 0, and it follows that Ind(TxE) = 0. But (P—V)n M is 2
closed subset of T' X E; hence Ind((V —V)n M) < 0. HenceInd M < 1.
Therefore 1 = dim 3 < Ind M < 1, and hence Ind M = 1, as was to
be shown.

7. More examples

Ezample N. Let N be the space M* formed from M by adding a single
point z,asin § 5 above. A basic set of neighbourhoods of z, in N consists
of the sets (z,) U M, for a € T, where M, = (T, xI)n M.

(7.1] The space N is a normal Hausdorff space such that
dmy = Ind N = 0.
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Proof. It follows from [5.1] that N is a normal Hausdorff space and
that dim N < locdim M. Hence, by [6.4], dim N < 0 and hence, since
N isnotempty, dim N = 0. This implies [(6) appendix] that Ind N = 0.

Example N shows that the subset theorem does not hold for all normal
Hausdorff spaces, even if the subset is required to be normal. For N is
a normal Hausdorff space with dim N = Ind N = 0, having as an open
subspace a normal space M with dimM = Ind M = 1.

Ezample Q. Let @ be a space consisting of a sequence {N;} of different
copies of the space N together with a special point y,. A basis for the
open sets of @ is formed by the open sets of each N, together with the
sets (yo) U Ny forj=1,2,...

i>)

[7.2] Thespace Q is a normal Hausdor[f space and dim @ = Ind @ = 0.

Proof. If p and g are two points of N}, then, since &, is a Hausdorff

space, p and ¢ have disjoint neighbourhoods in N,. If p € N;and g € N},

then N and A are open, and N, N N; = 0. If p = y, and g€ N, then p

and ¢ have the disjoint neighbourhoods (y,) U {J N; and N;. Thus Qisa
1>5 -

Hausdorff space.

If E and F are disjoint closed sets of @, then one of them, say F', does
not contain y,. Then y, has a neighbourhood which does not meet ¥, and
hence ¥ c N, U ... U N; for some finite j. Since A, is normal, there exist
disjoint open sets ; and ¥, of A} with EN N,c U;and FN N, c V. Let

U=UuV..uluV(y)VUUN, V=WKUu..U¥.
i>]

Then U and 1" are open, Ec U, FcV,and UNV =0. Thus Qisa
normal space.

If F is any closed set of @ which does not meet (y,), then F is a closed
set of N} U ... U N for some j and hence

dim F < dim(M, U ... U N)).
Hence, by [7.1] and {2.5], dim F < 0. Therefore, by [2.1], since
din](yﬂ) = Or
we have dim @ = 0. It follows [(6) appendix] that Ind @ = 0, which
completes the proof.

Example P. Let P be a space consisting of a sequence {M;} of different
copies of the space M together with a special point y,. A basis for the
open sets of P is formed by the open sets of each M; together with the
sets (yo)UUU M, forj=1,2,...

i>j



LOCAL DIMENSION OF NORMAL SPACES 119

[7.3] The space P is a normal Hausdorff space and ind P = 0 while
locdim P = locInd P = dim P = Ind P = 1.

Proof. That P is a normal Hausdorff space is shown as in the proof
of [7.2]. Since ind M = 0, each point of M, has an arbitrarily small open
and closed neighbourhood in M;. The point y, has arbitrarily small open
and closed neighbourhoods of the form (y,) U U M,. Thus ind P = 0.

The point y, has a neighbourhood U such that dim U < locdim P.
And the neighbourhood U contains a neighbourhood of the form
(¥o) U U M, and hence contains the closed set 3f;,;. Therefore

dimU > dim M., = 1.
Thus Ioc dim P >
If Fc U with F closed and U open in P, then y, has a neighbourhood
(¥o) Y U M; which either does not meet F or is contained in U. Since
i>]

Ind )M, = 1, there is an open set ¥, with boundary B; = V,—V; c M, such
that FN M, cV,c U n.M; and Ind B; < 0. Let V be the union of the
sets V; for ¢+ <{ j together with the open and closed set (y,) U U M; in

case the latter meets F. Then Fc ¥ c U and the boundary of V is
B = B,V ..U B;. Thus B is the union of disjoint relatively open and
closed sets B, with each Ind B, < 0. Hence [(5) proposition 5.1]
Ind B < 0. Therefore Ind P << 1. Hence

1 LlocdimP <dimP L IndP <1
1 <locdimP < locInd P < Ind P < 1.

This completes the proof.

Clearly P is a subspace of Q. Thus the subset theorem does not hold
for the local dimension of normal Hausdorff spaces. For @ is a normal
Hausdorff space with locdim Q@ = locInd@Q = 0, and P is a normal
subspace of @ with locdim P = locInd P = 1.

Also, though, by [4.3], the finite-sum theorem holds for the local
dimension of normal spaces, the countable-sum theorem does not hold.
For the normal space P is the union of a sequence of closed sets

(yo), JI],, MZy"'
with loc dim(y,) = 0, locdim M, = 0, but locdim P = 1.
Ezxample S. O. V. Lokucievskii (8) has given an example of a normal
Hausdorff compact space S which is the union of two closed subsets

S, and S; such that indS; = IndS; =1, indS, = IndS; = 1, and
ind § = Ind S = 2. Hence, by (1.7], locInd S, = locInd S, = 1, and
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locind § = 2. Thus not even the finite-sum theorem holds for ind,

locInd, and Ind.

Since dim$;, < IndS, =1 and dim S, < Ind§, = 1, therefore, by
the sum theorem, dim S <{ 1. Also, S contains a closed set homeo-
morphic to a line segment; hence locdim § > 1. Therefore

locdim 8 = dim 8§ = 1.

[7.4] No relations between ind, locdim, locInd, dim, and Ind, other
than those listed in [1.7] above, hold for all normal regular spaces.

Proof. This is shown by the properties of Examples M, P, and S

above, as is more clearly seen in the following table:

Space | ind |loc d'ﬂl loc Ind|{ dim | Ind
hYi 0 0 ) 1 1
P 0 1 1 1 1
S 2 1 2 1 2
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