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A Purely Inductive Proof of Borel Determinacy

DONALD A. MARTIN!

In [2] we proved that all infinite Borel games of perfect information are
determined. The proof had two parts: (1) a basic construction showing that =,
determinacy implies 2, , , determinacy; (2) for each Borel set of Borel rank «. an
a-fold iteration of the basic construction, reducing the corresponding Borel game
to an open game. In the basic construction there occurred an auxiliary game
involving nested sequences of trees. This was fairly complex and necessitated a
priority argument. Step (2) produced more serious difficulties for the reader, since
the argument was not purely inductive but rather involved directly considering
the a-fold iteration of the basic construction.

In this paper we present a new proof in which we have made two important
: changes:

' {a) The basic construction handles only a single closed set (instead of infinitely
A many closed sets). Thus our auxiliary game has only two auxiliary moves.

: (b) We state a property of sets which implies determinacy and prove, by
) ' ' transfinite induction on Borel rank, that all Borel sets have the property.

‘ Our “new” proof is really only the old proof reorganized, but we expect that
the reader will find it much simpler. '

By a iree we mean a set 7 of finite sequences such that

N(ceT&rCofoextendst) =1 T}

(o€ T=3r(sgr&reT)

(i) says that T has no terminal nodes. If T'is a tree, {7] is the set of all infinite
sequences x such that Va(x} n € T), where x[ n = (x(0),....x{(n - 1)). A
game on T is played as follows:

} I aa a2 T
I II a, a; -
|
|
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It is required that {a,....,a,) € T for each n. If 4 C [T), then G(A,T) is the
game on T with the following winning condition: I wins a play (a,, ay....) if
and only if {a,, ay,...) € 4. Otherwise I wins. The notions of strategies and
winning strategies for 1 and II are defined in the obvious way., G(A,T) is
determined if either I or 11 has a winning strategy. Let S(T) be the set of all
strategies for either player for games on T. :

We give [T'] a topology by letting the basic open sets be those of the form {x:
o € x} for o € T. For a a countable ordinal > 0, we define the classes Z, and
I, as follows: Z; = the class of all open sets, IT, = { 4: 4 is the complement of
asetin 2, }. Fora > 1,3 = {4: 4 is a countable union of sets in Ug<ollg}) 4
is Borel if A € 2 for some a < w,.

A covering of a tree T is a triple (T, #, p) where

(1) Tis a tree;

@ (F]~ (1),

(3) ¢: S(T') —» S(T') and each ¢(5) is a strategy for the same player as §;

(4) if x is a play consistent with ¢(5), there is a play % consistent with § such
that # (%) = x.
A covering (T, =, @) of T unravels a set 4 C [T}if #~'(A) is clopen (closed and
open). )

We recall that Gale and Stewart [1) proved that G(A, T} is determined if 4 is
an open or closed subset of [T].

LemMMA 1. Let (T, 7, 9) be a covering which unravels A C [T'). G(A.-T) is
determined.

PROOF. 7 Y( A) is clopen, so G(# Y (A4), T') is determined. Let § be a winning
strategy, say for I. We show that ¢(3) is a winning strategy for I for G(A, T} Let
x be a play consistent with ¢(§). Let % be as given by (4). Since ¥ is consistent
with §, ¥ € 771(4). Thus x = 7 (%) € 4.

LeEMMA 2. Let (T, m,, @,) be a covering of T, and let (T3, my, ;) be a covering of
L. (Ty, my o my, @y © @,) is a covering of T,

Note that if (7, 7, @)is a coveringof 7, 4 C [T}, 4 € 3_, and 7 is continuous,
then 7 -'(4) € Z,. In particular, if we compose coverings as in Lemma 2 and m, is
continuous, then if (7, #;, ¢,) unravels 4 it follows that (T, momy, @0 p,)
unravels 4.

We want to prove by induction on « {simultaneously for all T') that every set in
Z, can be unraveled by a covering. Continuity helps, but to carry out an
induction we need a stronger condition:

A covering (T, 7, p) of Tisa k-covering if

(a}{(m(%)) 1 n depends onlyon x | n:
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PROOF OF BOREL DETERMINACY

(b) @(§) restricted to positions of length < » depends only on § restricted to
positions of length < a.

(c) By (a) we may think of 7 as 7. T — T, We demand that # I T* be one-one
and onto T*, where T* = {a € T: lerigth (o) = k-

LEMMA 3. Ler A C [T'] be closed and let k € w. There is a k-covering of T which
unravels A. :

Proo¥. We describe T implicitly by describing how games on 7 are played. By
increasing k if necessary, we may assume k is even.

I a, @y v dp o (a,, Ty) Dy

I a, Ay (Tlh Qpiq) Qpvy

All (ao,...,a j) must belong to 7. T; must be a l-imposed subtree of T ie., if
(bo,....b;) € Trand (by,....b;, by,,) € Tand jis even, then {by,...,b,, b,,,)
€ T;. (I-imposed subtrees are now often called guasi-strategies for 1.) Further-
more we require that o C (aq,...,a,) or {a,,...,a,) C o for each o€ T,.
There are two options for I1:

First Option. Ty can be II-imposed subtree of T; such that [T} C 4. (II-
imposed is defined as is I-imposed, with “odd” replacing “even”.)

Second Option. Tycan be {o € T: 0 € 7 or 7 C ¢} for some 7 € T} such that
<a0,...,ak) Crand{x:xD21}Nd= @,

Forj = &, <ao,. ..,aj) must belong to Ty,

Note that each player has a legal move at every position, so we have indeed
described a tree T in our sense of “tree”. The function # is the obvious one. Note
that (a} and (c) in the definition of a k-covering are satisfied.

First let § € S(T) be a strategy for L. Let ¢(§) agree with § on positions of
length < k. Let {a,...,a,_,) be a position consistent with ¢(3), and so with 5.
Let (a,, T1) be the move given by §. Let (3) play a, at {a,...,a,_,).

Consider the game G({T;] — 4, T)). [T1}— A4 is open, so this game is de-
termined. If II has a winning strategy, let T, be the Il-imposed subtree of T}
consisting of positions in 77 which are not lost for Il in G([T}] - A, T;). If II
plays a,., at {ay,...,a,), o(§) assumes that the First Option is taken at
{ag,...,a,_y,{ay, T1)) and (Ty, a,.,) is played and follows § until (if ever) a
position ¢ € Ty is reached. When this happens, or immediately if 7, does not
exist or {ag,...,a,,,) & Ty, 9(5) proceeds as follows: First a winning strategy
for G([T\}] — 4, T,) is played, reaching—since A is closed—a position 7 € T;
such that 4 N {x: x 27} = &. Now ¢(§) assumes that II took the Second
Option at (ao,...,ak_,,(ak,Tl)> and played Ty={o&€n oCrorrCa}.
p(§) proceeds according to §.
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Now let § € S(T) be a strategy for II. At positions of length < k, p(§) folows
5. Let {aq,...,a,) be consistent with @(5), so that (ag,....a,_,) is consistent
with §.

Consider the game G(B, T) where

B={x:-3r[r Cx&3T] (if I plays (a,, T7) at {ag,...,a,_.),
then 3 calls for II to take the Second Option
andplay Ty, = {c€ 6 Crorr C s}

Il then wins G(B,T) if a position 7 2 (ag,...,a,) is reached such that {x:
x27}NA=0 and

<a0,...,ak_1,(ak,T§),({o ETioCrorTCo),a,,,))

is consistent with § for some 77 and some a,.,. B is closed. Suppose that
(ag,-..,a,) is a winning position for I in G(B,T). Let Ty={oeT
{ag,...,a,) 2o or ({ag,....a,) Co and ¢ is not lost for I in G(B,.T)H)).
Suppose I plays (a,, Ty at {a,,... 1@ ). Clearly § cannot call for 11 to take the
Second Option, since the associated r would be a loss for I'in G(B, T') but would
belong to T;. @(§) thus proceeds by assuming that (g w0 Iy) 1s played and
following § (omitting of course actually to play Ty;). If I ever departs from Ty, or
immediately if (a,,...,a,) is a winning position for I in G(B, T), @(3)
proceeds to play a winning strategy for G(B, T'). Thus a position 7 is reached
such that, for some 7} and ay,,, if I plays (a,, T7) at (ag,...,a,_,) then § calls
for II to take the Second Option and play({ceT:6CrorrcC o}, a,., ). o(3)
then follows §, assuming that (a «» T7) was played by L.

It s easy to check that ¢ satisfies (b) in the definition of a k-covering., Our
construction of ¢ has in effect shown that = and @ satisfy (4) in the definition of a
covering,

We must finally show that 7 A) is clopen, ¥ € 7Y A) = II takes the First
Option « [T},] C A.

LEMMA 4. Let (T, ,, m,, |, ®i+1) be (k + i)-coverings of T, for each i € w. There
is a tree T and there are W §; for i € w such that for each i € w: (T, T, ;) is a
(k + i)-covering of T, and H=m, 0, and @, = Piz1° Py

PrROOF. We show in effect that the inverse Limit of the system of coverings
exists. Using (c) in the definition of a (k + i)-covering, we may assume—replac-
ing the 7;’s by isomorphic trees if necessary—that (T)**! = (7, }%*/ angd
7oy P (T41)*" = identity foreachi. Leto € T e ¢ Tiforalllargei(= o € 7,
for i/ minimal such that k + i > length{e)). Let j € w. Let 7o) =@, o
°m_y°m(e), where k + i > length(o), (If j = /, we intend 7,{(¢) = 0.) Condition
(4) in the definition of a covering and condition (b) in the definition of a
{k + i}-covering imply (since Ty P (Tra ) = identity), that ®41(5;.1) agrees
with s;,, on positions of length > & + /. Thus we can let PS5y = @ppe -
°@;() on positions of length < &k + /. {Once again we intend ®;(§)=3§ on
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positions of length < k + i, when j = i. Note also that “¢,{§)” makes sense on
positions of length < k + i, since T+ = (T))**)

We need only check (4). Let x, be consistent with (). Let x;,,, X,,5,... be
successively given by (4) for the coverings (T, 1, 71, @1 (Tjias Tans @iiadie o
Since m,, I (T,.,)**" is the identity, we may let 6 C £ = (o < x; for all large 7).
Since § agrees with §,{¥) on positions of fixed length, for all large 7, % is consistent
with 3. Also #(x I n) = %, 1 n forall large i, so m(& I n) = m; o+ omlx;}
n)= x; [ n.

THEOREM. If A is a Borel subset of [T] and k € w, there is a k-covering of T
which unravels A.

, ProoF. By Lemma 3, the theorem holds for all A & II,, for all T. Obviously
. any covering which unravels 4 unravels the complement of A. Assume that
a < w, and that, for all 7, the theorem holds for each set in 24 for B < a. Let
A €3, Then A =U,,4, with each 4, € Il B <o Let (T),m, 9,) be a
k-covering of T, = T which unravels 4. Let (T, m), 9,) be a (k + 1)-covering of
T, which unravels 7;7(4,). In general, let (7}, 11, @;41) be a (k + i)-covering
of T, which unravels m, ' ey o -+ om(4). Let T and the 4, §, be given by
Lemma 4. (T, #,, §,) unravels each of A,, 4,,.... Since il (A) = U e g A
P 75 '(A) is open. Let (T*, 7*, ¢*) be a k-covering of T which unravels #g'(A).
| (T*, 7y o m*, g o p*) is a k-covering of T which unravels 4.

COROLLARY. If A € [T'] is Borel, G(A, T) is determined.

REMARKS. (1) The priority construction of [2] has disappeared. It seems
0 possible that considering the infinitely many closed sets at once, as in [2}, might
it be necessary for a sharp calculation of complexity of strategies. Superficially, it
might also appear that this could be necessary for getting a sharp bound on the
e size of the covering trees, but a little thought shows this is not the case.

’» (2) In [2] we said that our proof did not need the axiom of choice in the case 7
3 is countable. Several people have pointed out that countable choice is necessary to
' get a Borel code for each Borel subset of {T'). That is also true here, though our
definition of “Borel” is more restrictive here.

:L' ‘_ (3) Moschovakis (who incidentally kept suggesting that a purely inductive proof
: of Borel determinacy should be possible) simplified our original proof (see [3) by
using trees with terminal nodes, removing the necessity for G((T1} — A, T3) and
G(B, T) used above. We do not know whether this idea can be mixed with out
new proof.

(4) Does the unraveling property hold for any class beyond the Borel sets? We
first note the following curiosity.

Curiosity. Assume the Axiom of Determinacy plus Uniformization for sets of
pairs of elements of ¥ There is a single O-covering (T, =, @) which unravels
every A C w®.

PROOF. We describe games on 7. I begins by playing a strategy s for [ a game
on T. II next plays an element x of w* consistent with s. The players then amuse
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themselves playing, say, natural numbers to satisfy our definition of a tree, Let
(s, x,...) = Xx.(a) is fulfilled.

If § is a strategy for I, let p(§) be the first move given by §.

Suppose § is a strategy for II. Consider the following game G° on T. H{ wins a
play x of G* if and only if there is an s such that, if I plays s then § calls for I to
play x. If 5 is a strategy for I for G*, then II can defeat s by playing the x given by
5. Thus, by AD, II has a winning strategy for G°. By uniformization, we can pick
for each § a winning strategy ¢(§) for II for G*,

Uniformization is needed only because we required that g is single-valued,

We know of no proof, from any large cardinal assumption consistent with
choice, that every I1j set can be unraveled by a covering. If we could show that,
for any countable family .o of IT! sets, there is a covering which unravels every
number of &, then we could prove determinacy for the o-algebra generated by the

I} sets. Results of J. Steel show that one needs at least (approximately) a
measurable cardinal ¥ of order x**,

REFERENCES

L. D. Gale and F. M. Siewart, afinite games with perfect information, Contributions to the theory of
games, Ann. of Math. Studies, No. 28, Princeton Univ. Press, 1953, pp. 245-266.

2. Donald A. Martin, Bore! determinacy, Ann. of Math. (2) 102 (1975}, 363-371.
3. Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980,

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CariForMIA, LOS ANGELES 90024

455




