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The main subject of this book is games in which two players are given a set
A of infinite sequences of natural numbers and take turns choosing natural
numbers, producing an infinite sequence. The player who moves first wins
if this sequence belongs to A; otherwise the opponent wins. Such a game is
determined if one of the players has a winning strategy.

If A belongs to a set Γ of sets of infinite sequences of natural numbers,
then we call the game a Γ game. We will present proofs of theorems of
the following form: Under hypothesis H, all Γ games are determined. In
Chapter 1, the sets Γ are the first few levels of the Borel hierarchy and the
hypotheses H are the axioms of second-order arithmetic or slightly more.
For most of Chapter 2, Γ is the set of all Borel sets and H is ZFC. In the
remaining chapters, the sets Γ get larger and larger, and the hypotheses H
are large cardinal hypotheses.

Many of these theorems have converses or quasi-converses. These are
presented as exercises with hints that are essentially sketches of proofs.

The reader should have basic familiarity with set theory, but the book
assumes no familiarity with games, descriptive set theory, or large cardinals.

All of the nine chapters of the book are included in the current posting,
but another section may be added later to Chapter 5. Though Chapter 9 is
included, the reader should be aware that it has not been seriously proofread,
and it—especially the last part of it—might have significant errors. Correc-
tions and suggestions for Chapter 9 (and for the other chapters) would be
welcome.



Chapter 1

Elementary Methods

In this chapter we introduce the basic concepts of our subject and prove as
much determinacy as, roughly speaking, can be proved without appealing
to the existence of infinite sets larger than the sets of legal positions in our
games.

Readers interested primarily in the main results may wish to read just the
introductory Section 1.1 and the basic Section 1.2, where the determinacy of
open games is proved.

The proofs in §1.1 and §1.2 do not really need the Power Set or Re-
placement Axioms of set theory, though this fact is not mentioned in those
sections. In §1.3 and in much of §1.4, we explicitly work in a set theory
without the Power Set Axiom and with only a fragmentary Replacement
Axiom (adopted mostly to avoid complexities). We try to do this in a suf-
ficiently unobtrusive way that readers unfamiliar with axiomatic set theory
should be able to follow the proofs as ordinary proofs. In §1.4 we discuss
the optimal determinacy result for this theory, due to Antonio Montalban
and Richard Shore. In a slightly stronger theory, we prove the determinacy
of all ∆0

4 games (games that are both Gδσδ and Fσδσ). In the exercises we
discuss Harvey Friedman’s methods, which show that the determinacy of all
Σ0

4 games is not provable in the usual ZFC set theory if the Power Set Ax-
iom is dropped, and we mention an improvement by Montalban and Shore
showing the optimality of their positive results. Later (in §2.3) we will use
the results from §1.4 in analyzing level by level how much of the Power Set
and Replacement Axioms is needed for our proof of the determinacy of Borel
games.
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2 CHAPTER 1. ELEMENTARY METHODS

1.1 Basic Definitions

We begin by discussing rules of play of our games and afterward take up such
matters as winning, winning strategies, and determinacy.

Plays of our games will be finite or infinite sequences of moves. Rules of
play are given by specifying a game tree. A game tree is a nonempty tree
of finite sequences, i.e. is a set T of finite sequences such that if p ∈ T and
p extends q then q ∈ T . Members of T are called legal positions in T or
simply positions in T . When there is no danger of confusion, we will call
them legal positions or positions. A position in T is terminal in T if it has
no proper extension in T . If p is a non-terminal position, then a legal move
at p in T or simply a move at p in T is an a such that p_〈a〉 ∈ T , where _ is
the concatenation operation on sequences. A play in T is a finite or infinite
sequence every initial part of which belongs to T and which is a terminal
position in T if finite. All our games will have two players, I and II. (“I”
and “II” are not very imaginative names, but they have become traditional.)
Play of a game in T begins at the initial position (the empty sequence ∅,
which must belong to every game tree). I moves first, and moves alternate
between the two players. Thus a play of a game is produced as follows:

I a0 a2 a4 . . .
II a1 a3 . . .

Each 〈a0, a1, . . . , an〉must be a position in T . If a terminal position is reached,
then we have a play of the game and no further moves are made. If no
terminal position is reached, then the play is infinite.

There are various ways in which we could have chosen a more general
notion of game tree, even in our context of two-person games of perfect
information:

(1) We did not have to require that our players alternate moves. Instead
we could have introduced a move function M , defined on all non-terminal
positions, with M(p) giving the player who moves at p. There are two reasons
we did not do this. First, it is not really more general, since we can get the
same effect in our more restricted set-up. Suppose, for instance that we want
to simulate a game in which player II makes the first two moves. To do
so we introduce a new tree in which (a) the first move must be the empty
sequence and (b) the second move must be a sequence of length 2 that is a
legal position in the original tree. (See Exercise 1.1.5.) The second and more
important reason why we do not introduce a move function is that it would
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make the notion of a game tree more complicated. A game tree would be
a pair 〈T,M〉 and we would continually have to pay attention to the extra
object M in situations where it played no significant role.

(2) There is a more general notion of game tree which we could have cho-
sen. By a tree we mean a partial ordering with wellordered initial segments.
That is to say, a tree is a pair 〈T,<〉 such that T is a set and < partially
orders T and

(∀p ∈ T )(< wellorders {q ∈ T | q < p}).

A tree of finite sequences becomes a special case of a tree if we define p < q
to mean that p is properly extended by q. Why did we not define game
trees to be arbitrary trees rather than trees of finite sequences? One reason
has to do with finite sequences. (See (3) below.) The other reason has to
do with sequences : We want our positions to be sequences of moves . With
general trees, we have no extra objects to be our moves. This isn’t really a
serious problem, however. We will always be assuming that our players have
complete knowledge about the position whenever they make a move. Thus
making a move is essentially the same as choosing the new position that will
result when the move has been made. With general trees as game trees,
move could be defined by changing “essentially the same as” into “identical
with.” In other words, a legal move at p could be defined to be a position
q that is an immediate successor of p, i.e. a q ∈ T with p < q such that
there is no r with p < r < q. In this chapter such a solution would be quite
satisfactory for us. Indeed it would work somewhat more smoothly than our
actual definitions (and so we do after all keep it as an “actual” definition,
as the reader will see two paragraphs hence). In later chapters, however, we
will often be concerned with properties of individual moves in our official
sense. For example, it may be important that certain moves are chosen from
a countable set or that other moves come from a space that carries a measure.
Our choice was thus made in view of these later chapters. We confess that
we were also influenced by a desire to conform to real games: in chess a move
involves changing the placement of one or two individual pieces; it does not
involve the complete history of the game.

(3) As we indicated above, our game trees are special not only in that
they are trees of sequences but also in that we demand that the sequences be
finite. (In the context of general trees the corresponding restriction would be
a requirement that each member of T have only finitely many predecessors.)
If we removed this restriction we would be dealing not merely with games
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of infinite length—games that take forever to play—but also with games of
transfinite length—games that aren’t finished even after the players have
played forever. Such games are indeed of interest and a good deal of theory
about them has been developed. We will occasionally discuss these longer
games, both in the text and in exercises. Nevertheless, such games are in
some ways essentially more complex than merely infinite games, and we chose
in this case simplicity in our subject matter.

(4) Other possible generalizations of our notion of game tree allow for
such things as simultaneous moves by the two players. Though there are
ways to get the effect of such generalizations, we actually use simultaneous
moves when we study games of imperfect information in §2.4.

We said in (2) above that there is a possible definition of “move” according
to which a move is a position. Though we did not choose this definition,
there will be a number of occasions at which it would have been notationally
simpler if we had chosen it. Let us then compromise and define a Move at
p in T to be a position q such that, for some move a at p in T , q = p_〈a〉.
This usage would produce ambiguity if we were ever to write “Move” at the
beginning of a sentence, but we will have no reason to do so.

It is time to be more precise about some of our terminology and to intro-
duce some basic notation. By a finite sequence we mean a function whose
domain is the set of all predecessors of some natural number. We adopt
the convention from set theory that a natural number is the set of all its
predecessors, so that a finite sequence is a function whose domain is a natu-
ral number. We also adopt the set-theoretic notion of function, identifying a
function with its graph. With this convention, a finite sequence p is extended
by a finite sequence q if and only if p ⊆ q, and so “⊆” will be our standard
notation for “is extended by.” The length of a finite sequence p is the domain
of p. We denote the length of p by `h(p). Infinite sequences will be treated
similarly. An infinite sequence is a function with domain ω, the set of all
natural numbers. The length of an infinite sequence is ω. Infinite ordinal
numbers are also considered to be the set of all their predecessors. If x is a
finite or infinite play in T , then p ⊆ x just means that p is extended by x.
We will denote the set of all plays in T by dT e.

The most important example of a game tree is <ωω, the set of all finite
sequences of natural numbers. The set of all plays in this tree is ωω, the set
of all infinite sequences of natural numbers. Note that xy is the set of all
functions f : x→ y. (It is sometimes important to distinguish, e.g. ωω from
the ordinal number ωω.) The notation <xy, for ordinal numbers x, stands
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for
⋃
x′<x

x′y. The tree <ωω is an example of a tree all of whose plays are
infinite. If we wished, we could deal only with such trees, extending what
are now terminal positions by adjoining infinitely many irrelevant moves.

A strategy for I in T is a function σ whose domain is

{p ∈ T | `h(p) is even and p is not terminal}

such that σ(p) is always a legal move in T at p. A strategy for II in T is sim-
ilarly a function τ with domain {p ∈ T | `h(p) is odd and p is not terminal}
such that τ(p) is always a legal move at p. By SI(T ) we mean the set of all
strategies for I in T ; by SII(T ) we mean the set of all strategies for II in T .
We let S(T ) = SI(T ) ∪ SII(T ). Just as we defined Moves as well as ordinary
moves, we could define Strategies which are like strategies except that their
values are Moves instead of moves. We refrain from doing so: it turns out
not to be as useful as the Move move. A position p in T is consistent with
a strategy σ for I if p(n) = σ(p � n) for every even n < `h(p). (Here p � n is
the restriction of the function p to the set n = {0, 1, . . . , n − 1}, i.e. p � n is
the initial part of p of length n.) A play x in T is consistent with σ if every
position p ⊆ x is consistent with σ. Being consistent with a strategy for II is
similarly defined.

For each game tree T and each A ⊆ dT e, i.e., for each set of plays in T ,
we have a game G(A;T ). I wins a play x of G(A;T ) just in case x ∈ A.
Otherwise II wins x. It will be convenient to have G(A;T ) defined even for
sets A that are not subsets of dT e. In this case G(A;T ) will be the same game
as G(A∩dT e;T ). A strategy σ for I is a winning strategy for G(A;T ) if I wins
each play consistent with σ. Winning strategies for II are similarly defined.
G(A;T ) is determined if either I or II has a winning strategy for G(A;T ).
Note that it is impossible for both players to have winning strategies, since
there would be a play consistent with both strategies.

In Chapter 2 we will find it useful to introduce a variant notion of a game
tree in which there are some built-in winning conditions: Certain terminal
positions are designated as losing for one or the other of the players inde-
pendently of A. We defer making the definition until we have some use for
it.

Not all games in our sense are determined. (See [Gale and Stewart, 1953],
[Mycielski, 1964], page 114 of [Mauldin, 1981], and also Exercises 1.1.2 and
1.1.4.) To get determinacy results it is necessary to impose conditions of
some kind on the games.
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One way to do this is to impose conditions of size on the game tree. As we
will see in the next section, all games G(A;T ) with T finite are determined.
There are, however, undetermined games G(A;T ) with T countable (See
Exercise 1.1.2.) Most of the concern in this book will be with determinacy
results in the case T is countable.

Remark. All known proofs of the existence of undetermined games in
countable trees make use of the Axiom of Choice. [Mycielski and Steinhaus, 1962]
proposes as an alternative to the Axiom of Choice an assertion, there called
the Axiom of Determinateness and now called the Axiom of Determinacy or
simply AD.

AD: All games in countable trees are determined.

Large cardinal axioms imply that the Axiom of Determinacy is consistent
with the axioms of set theory other than Choice. This will be proved in
Chapter 9. (In this book we make free use of the Axiom of Choice, though
we will make occasional remarks about whether or not particular theorems
require it.)

Are there other conditions on T implying determinacy? In §1.2 we will
see that the absence of infinite plays is such a condition. But the absence of
infinite plays in T is for practical purposes equivalent with a simple topolog-
ical condition on I’s winning set A. Such topological conditions will be the
hypotheses of almost all our determinacy theorems, and so it is to topology
that we now turn.

For p ∈ T let

Tp = {q ∈ T | q ⊆ p ∨ p ⊆ q}.

Tp is a game subtree of T , i.e. Tp is a subtree of T (a subset of T that is a
game tree), and every position terminal in Tp is terminal in T . Games in Tp
are played just as are those in T , except that the first `h(p) moves are fixed
in advance so as to produce the position p. We give dT e a topology by taking
as basic open sets the dTpe for p ∈ T . For A ⊆ dT e, let us say that the game
G(A;T ) is open, closed, etc. just in case A is open, closed, etc. respectively.

Remark. If p is a position in T , we will never create ambiguity by using
the notation “Tp” with any meaning other than that given it in the preceding
paragraph. The reader should be warned, however, that we will take such
liberties as denoting elements of an infinite sequence of game trees by “Ti.”
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In this chapter we will prove determinacy results for games in low levels
of the Borel hierarchy. We now define that hierachy and prove some basic
facts about it.

We use the logical notation for the Borel hierarchy in a topological space.
Σ0

1 is the class of open sets; Π0
1 is the class of closed sets; ∆0

1 the class of
clopen (closed and open) sets. For ordinals α > 1, Σ0

α is the class of all count-
able unions of sets belonging to

⋃
β<α Π0

β, Π0
α is the class of complements

of sets belonging to Σ0
α, and ∆0

α = Σ0
α ∩ Π0

α. A set is Borel if it belongs
to the smallest class containing the open sets and closed under countable
unions and complements. The following lemma gives some basic facts about
the Borel hierarchy in dT e.

Lemma 1.1.1. (1) The following hold in spaces dT e for every ordinal num-
ber α ≥ 1:

(a) (∀β)(α < β → Σ0
α ∪Π0

α ⊆∆0
β).

(b) Σ0
α is closed under countable unions and finite intersections.

(c) Π0
α is closed under countable intersections and finite unions.

(2) A set is Borel if and only if it belongs to
⋃

1≤α<ω1
Σ0
α, where ω1 is the

least uncountable ordinal number.

Proof. (1)(a). If A ∈ Π0
α, then A =

⋃
{A}; thus A ∈ Σ0

β for all β > α. This
shows that Π0

α ⊆ Σ0
β for all 1 ≤ α < β. It follows directly that, for all such

α and β, Σ0
α ⊆ Π0

β. If 1 < α < β, then it is immediate from the definition
that Σ0

α ⊆ Σ0
β. Let A ∈ Σ0

1. Since A is open,

A =
⋃
{dTpe | p ∈ T ∧ dTpe ⊆ A}.

For n ∈ ω, let

An =
⋃
{dTpe | p ∈ T ∧ `h(p) = n ∧ dTpe ⊆ A}.

Each An is closed as well as open, since

¬An =
⋃
{dTpe | p ∈ T ∧ `h(p) = n ∧ dTpe 6⊆ A}.

(¬A is dT e \ A.) Since A =
⋃
n∈ω An, we have that A is a countable union

of Π0
1 sets and so that A ∈ Σ0

β for every β > 1. We have now shown that
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Σ0
α ⊆ Σ0

β whenever 1 ≤ α < β. Combining this with our first observation,
we have that Σ0

α ⊆ ∆0
β for all such α and β. Since complements of ∆0

β sets
are also ∆0

β, we get the other half of (1)(a).
(1)(b) and (1)(c). The open sets of any space are closed under arbitrary

unions. For α > 1, the closure of Σ0
α under countable unions is immediate

from the definition. The closure of Π0
α under countable intersections follows

from the closure of Σ0
α under countable unions. The open sets of any space

are closed under finite intersections. Let α > 1 and j ∈ ω and let Ai ∈ Σ0
α

for i < j. For each i < j, let Ai,n, n ∈ ω, be such that each Ai,n ∈
⋃

1≤γ<α Π0
γ

and each Ai =
⋃
n∈ω Ai,n. Then⋂

i<j

Ai =
⋂
i<j

⋃
n∈ω

Ai,n =
⋃
s∈jω

⋂
i<j

Ai,s(i).

To show that
⋂
i<j Ai ∈ Σ0

α, it thus suffices to show that each
⋂
i<j Ai,s(i) ∈⋃

γ<α Π0
γ. For this fix s ∈ jω. By (1)(a) there is a γ < α such that Ai,s(i) ∈ Π0

γ

for every j < i. By the closure of all Π0
γ under countable, and so under finite,

intersections, it follows that
⋂
i<j Ai,s(i) ∈ Π0

γ. The closure of Π0
α under finite

unions follows from the closure of Σ0
α under finite intersections.

(2). By (1)(a), ⋃
1≤α<ω1

Σ0
α ⊆

⋃
1≤α<ω1

Π0
α.

Hence
⋃

1≤α<ω1
Σ0
α is closed under complements. If A is a countable subset of⋃

1≤α<ω1
Σ0
α, then there is a countable ordinal δ such that A ⊆

⋃
1≤α<δ Σ0

α ⊆⋃
1≤α<δ+1 Π0

α. Hence
⋃
A ∈ Σ0

δ+1. We have then that
⋃

1≤α<ω1
Σ0
α is a class

containing the open sets and closed under countable unions and complements.
By definition, this means that every Borel set belongs to

⋃
1≤α<ω1

Σ0
α.

The fact that every Σ0
α, 1 ≤ α < ω1, is Borel is proved by an easy

induction on α. �

It follows from part (2) of the lemma that, for all α ≥ ω1, Σ0
α = Π0

α =
∆0

α = the class of all Borel sets. If, e.g., T = <ωX and the cardinal number
|X| of X is at least 2, then the Borel hierarchy does not collapse before ω1,
i.e. ∆0

α ( Σ0
α ( ∆0

β whenever 1 ≤ α < β < ω1. (See Exercise 1.F.6 of
[Moschovakis, 2009].)

The “0” in “Σ0
α” means that the sets in the class are definable by quan-

tification over objects of type 0, i.e. natural numbers: Countable unions
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correspond to existential quantification over natural numbers; countable in-
tersections correspond to universal quantification over natural numbers. The
“α” in “Σ0

α” means that there are α alternations of universal and existen-
tial quantifiers, and the “Σ” means that the first quantifier is existential.
For example the Σ0

2 sets are just those sets A such that there is a clopen
B ∈ dT e × 2ω such that

(∀x ∈ dT e)(x ∈ A ↔ (∃m1)(∀m2) 〈x,m1,m2〉 ∈ B).

In later chapters we will introduce classes Σ1
n.

In the exercises we will sometimes deal with the effective Borel hierarchy
of subsets of ωω. (The reader not familiar with recursion theory can skip the
definition that follows and skip also the relevant exercises.) For simplicity
we stick to finite levels of that hierarchy. A ⊆ ωω belongs to Σ0

n, for n ≥ 1,
if there is a recursive B ⊆ ωω × nω such that

(∀x)(x ∈ A ↔ (∃m1)(∀m2)(∃m3) · · · (Qmn)〈x,m1,m2,m3, . . .mn〉 ∈ B).

A ∈ Π0
n if ¬A ∈ Σ0

n. ∆0
n = Σ0

n ∩ Π0
n. It is fairly easy to see that if we

replace “recursive” by “clopen” in this definition, we get the ordinary finite
Borel hierarchy. If x ∈ ωω, then we define Σ0

n(x), Π0
n(x), and ∆0

n(x) by
replacing “recursive” by “recursive in x”. It is fairly easy to see that, e.g.,
Σ0
n =

⋃
x∈ωω Σ0

n(x). (See page 160 of [Moschovakis, 1980].)
We end this section by listing the formal ZFC (Zermelo–Fraenkel, with

Choice) axioms for set theory. These axioms will play no explicit role until
§1.3, and even there and in §1.4, all the proofs in the text should be readable
by someone unfamiliar with formal set theory and ZFC.

First order logic has the symbols

( , ) , ¬ , ∧ , ∃ , = ,

together with variables
v0, v1, v2, . . . .

We assume the reader has enough familiarity with symbolic logic to know
that, e.g., “∧” is interpreted to mean “and.” We will often be careless about
what are our official variables, connectives, and quantifiers. One make think
of use of symbols other than the official ones as abbreviation. We will also
be careless about parentheses.

The language of set theory has, in addition to the symbols of first order
logic, the two-place predicate symbol ∈. The formulas of the language of set
theory are defined inductively as the smallest class satifying the following.
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(a) If x and y are variables, then x = y and x ∈ y are (atomic) formulas.

(b) If ϕ is a formula, then so is ¬ϕ.

(c) If ϕ and ψ are formulas, then (ϕ ∧ ψ) is a formula;

(d) If ϕ is a formula and x is a variable, then (∃x)ϕ is a formula.

An occurrence of a variable in a formula is free if it is not in the scope of a
quantifier, i.e., if it is not in a subformula of the form (∃x)ϕ. When we write,
e.g., ϕ(v1, . . . , vn), we imply that only variables among v1, . . . , vn occur free
in ϕ.

Following are the formal ZFC axioms. In stating them we make use of
some standard abbreviations, whose definitions the reader should be able
to give. For example, we write ∅ for the empty set (whose existence and
uniqueness follows from the Axioms of Empty Set, Comprehension, and Ex-
tensionality), so that x = ∅ abbreviates ¬(∃y) y ∈ x. A perhaps less familiar
abbreviation is (∃!x)ϕ(x, z1, . . . , zn), which abbreviates

(∃x)(ϕ(x, z1, . . . zn) ∧ (∀y)(ϕ(y, z1, . . . , zn)→ y = x)).

We precede the statement of each formal axiom by a parenthetical informal
version of the axiom.

Empty Set: (There is a set with no members.)

(∃x)(∀y) y /∈ x.

Extensionality: (Two sets with the same members are identical.)

(∀x)(∀y)((∀z)(z ∈ x↔ z ∈ y) → x = y).

Comprehension (Axiom Schema): (Every definable subcollection of a set
is a set.) For formulas ϕ(x, u, w1, . . . , wn),

(∀w1) · · · (∀wn)(∀u)(∃v)(∀x)(x ∈ v ↔ x ∈ u ∧ ϕ).

Foundation: (Every nonempty set has a ∈-minimal member.)

(∀x)(x 6= ∅ → (∃y ∈ x) y ∩ x = ∅)).

Pairing: (For any sets x and y, there is a set whose members are precisely
x and y.)

(∀x)(∀y)(∃z)(∀w)(w ∈ z ↔ (w = x ∨ w = y)),
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Union: (For any set x, there is a set of all the members of members of x.)

(∀x)(∃u)(∀z)(z ∈ u ↔ (∃y)(z ∈ y ∧ y ∈ x)).

Infinity: There is a set x such that ∅ ∈ x and such that x is closed under
the operation y 7→ y ∪ {y}.)

(∃x)(∅ ∈ x ∧ (∀y ∈ x) y ∪ {y} ∈ x).

Replacement (Axiom Schema): (If F is a definable operation and the do-
main of F is a set, then the range of F is a set.) For formulas ϕ(x, y, u, w1, . . . , wn),

(∀w1) · · · (∀wn)(∀u)((∀x ∈ u)(∃!y)ϕ
→ (∃v)(∀y)(y ∈ v ↔ (∃x ∈ u)ϕ)).

Power Set: For any set x, there is a set of all the subsets of x.)

(∀x)(∃y)(∀z)(z ∈ y ↔ z ⊆ x).

Choice: If x is any set of disjoint nonempty sets, then there is a set u that
has exactly one member in common with each member of x.

(∀x)((∀y ∈ x)(y 6= ∅ ∧ (∀z ∈ x)(y 6= z → y ∩ z = ∅)))
→ (∃u)(∀y ∈ x)(∃!w)w ∈ y ∩ u))).

In formal logic the Empty Set Axiom is superfluous; for the existence of some
object is provable, and so the existence of ∅ follows by Comprehension.

Exercise 1.1.1. Let A ⊆ ωω with |A| < 2ℵ0 . Prove that II has a winning
strategy for G(A; <ωω).

Exercise 1.1.2. Prove that not every game G(A; <ωω) is determined.

Hint. Use the Axiom of Choice to wellorder the set of all strategies in
<ωω in a sequence of order type 2ℵ0 . Now diagonalize to get an A for which
no strategy is winning. This is the proof in [Gale and Stewart, 1953], and
it is the most direct one. There are many other proofs. Unpublished work
of Banach and Mazur gives a proof which proceeds by showing that AD
implies that all sets of reals have the property of Baire. See pages 298-300
of [Moschovakis, 1980], page 114 of [Mauldin, 1981], and [Oxtoby, 1957]. For
another proof, see Exercise 1.1.3.
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Exercise 1.1.3. Let T ∗ be the game tree plays in which are as follows:

I s0 s1 s2 . . .
II a0 a1 . . . ,

where each si ∈ <ωω and each ai ∈ {0, 1}. For any A ⊆ ω2, let Let

A∗ = {〈s0, a0, s1, a1, . . .〉 | s0
_〈a0〉_s1

_〈a1〉_ . . . ∈ A}

and let G∗(A) = G(A∗;T ∗).
(a) Prove that I has a winning strategy for G∗(A) if and only if A has a

perfect subset (a non-empty closed subset without isolated points).
(b) Prove that II has a winning strategy for G∗(A) if and only if A is

countable.
(c) Use the Axiom of Choice to construct an uncountable subset of ω2

with no perfect subset.

Remark. This is a result of [Davis, 1964].

Exercise 1.1.4. Prove, in ZF (i.e., in ZFC without the Axiom of Choice)
that not every game G(A; <ωω1) is determined. (Recall that ω1 is the least
uncountable ordinal number, i.e. the set of all countable ordinal numbers.)
This result appears in [Mycielski, 1964].

Hint. Use Exercise 1.1.3 to show that it follows from AD that there is no
one-one f : ω1 → ω2. (Assume such an f exists and get a one-one g : ω1 → R.
Then use the existence of a perfect subset of the range of g to get a one-one
h : R → ω1, and show that this contradicts AD.) Now consider the game
G(A; <ωω1), where A is the set of all x : ω → ω1 such that x(0) ≥ ω and
{〈m,n〉 | x(2m + 1) < x(2n + 1)} is not a wellordering of ω of order type
x(0).

Exercise 1.1.5. Assume that all Σ0
7 games in countable trees are deter-

mined, and prove that this still holds when we broaden our notion of games
to allow a move function as on page 4 above. (Obviously Σ0

7 is just an
example.)

1.2 Open Games

The main result of this section is Theorem 1.2.4, the important basic theorem
of [Gale and Stewart, 1953] that all open games are determined. We will also
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introduce and study the technical concept of a quasistrategy, a concept that
will be the main tool in the rest of this chapter.

The fact that all games in finite trees are determined is usually attributed
to [Zermelo, 1913]. (See page 371 of [Kanamori, 1994] for a discussion.) The
proof of this fact works with very little change to give a proof of determinacy
for the case of trees without infinite plays.

Theorem 1.2.1. If there are no infinite plays in T , then G(A;T ) is deter-
mined for every A ⊆ dT e.

Proof. The Theorem follows easily from the following lemma.

Lemma 1.2.2. If G(A;Tp) is not determined, then there is a Move q at p
such that G(A;Tq) is not determined. (Recall the definition of “Move” on
page 4 and recall that G(A;Tq) is G(A ∩ dTqe;Tq).)

Proof of Lemma. Assume that G(A;Tp) is not determined. Assume for
definiteness that p has even length. (The other case is similar.)

If q is a legal Move at p, then I does not have a winning strategy for
G(A;Tq). If he had such a strategy σ′, then that strategy together with the
move q would give him a winning strategy σ for G(A;Tp):

σ(r) =

{
q(`h(r)) if r ⊆ p;
σ′(r) if q ⊆ r.

(Technically we should also define σ(r) in the third case: p ⊆ r∧ q 6⊆ r.
The reason we omitted this case is that such positions r are not consistent
with σ. We could have defined strategy so that strategies take as arguments
only positions consistent with them. See Exercise 1.2.3 for a minor reason
for doing so.)

It suffices then to show that there is a Move q at p such that II does not
have a winning strategy for G(A;Tq). If there is no such q, then for each
Move q at p there is a winning strategy τq for II for G(A;Tq). We then get a
winning strategy τ for II for G(A;Tp) by setting

τ(r) =

{
p(`h(r)) if r ⊆ p;
τq(r) if q ⊆ r and q is a Move at p.

(We can describe τ more briefly as
⋃
q τq.) This contradiction shows that q

must exist and completes the proof of the lemma. �
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Now let us prove the theorem by proving its contrapositive. Suppose that
G(A;T ) is not determined. Repeated applications of the lemma give us a
sequence

p0 ( p1 ( p2 ( . . .

of elements of T . There is a an infinite play x such that x ⊇ pi for all i. �

Remark. Both the proof of the lemma and the proof of the theorem from
the lemma use the Axiom of Choice. If we strengthen the hypothesis of the
theorem to make T wellfounded (equivalent in the presence of Choice to our
hypothesis that T has no infinite plays), then the latter use of the Axiom
of Choice is avoided. (See Exercise 1.2.1.) The former use is necessary even
for trees which contain only positions of length ≤ 2. (See Exercise 1.2.2.)
Of course, Choice is not needed to prove the theorem for a T that has a
canonical wellordering, as does our main example <ωω.

Corollary 1.2.3. All clopen games are determined.

Proof Let A ⊆ dT e with A clopen. For each x ∈ dT e there is a p ⊆ x such
that dTpe ⊆ A or dTpe ⊆ ¬A. This is because both A and ¬A are open and
so are the unions of their basic open subsets. Let

T ∗ = {q ∈ T | (∀p ( q)(dTpe ∩ A 6= ∅ ∧ dTpe ∩ ¬A 6= ∅)}.

The game tree T ∗ has no infinite plays: If x is an infinite play in T ∗, then x
is a play in T and so there is a p ⊆ x such that dTpe ⊆ A or dTpe ⊆ ¬A. But
the definition of T ∗ gives the contradiction that p is terminal in T ∗. Let

A∗ = {x ∈ dT ∗e | (∃y ∈ dT e)(x ⊆ y ∧ y ∈ A)}.

By Theorem 1.2.1, G(A∗;T ∗) is determined. Assume for definiteness that σ∗

is a winning strategy for I for G(A∗;T ∗). Let σ be any strategy for I in T
such that σ agrees with σ∗ on non-terminal positions in T ∗. We show that σ
is a winning strategy for G(A;T ). Let x ∈ dT e be consistent with σ. There
is a p ⊆ x that is terminal in T ∗. Either dTpe ⊆ A or else dTpe ⊆ ¬A. But p
is consistent with σ∗, so dTpe ∩ A 6= ∅ and this means that x ∈ A. �

The following terminology will be convenient in many of the proofs that
follow. By G is a win for I we mean that there is a winning strategy for I
for G. Similarly define G is a win for II.
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Theorem 1.2.4. ([Gale and Stewart, 1953]) All open games are determined.
All closed games are determined.

Proof The first assertion implies the second: If A ⊆ dT e is closed, let

T ′ = {∅} ∪ {〈0〉_p | p ∈ T}; A′ = {〈0〉_x | x /∈ A}.

The open game G(A′;T ′) is just G(A;T ) with the roles of the players reversed
via the dummy initial move 0. If the former is determined then so is the latter.

Lemma 1.2.5. Let T , A, and p ∈ T be arbitrary and assume that G(A;Tp)
is not a win for I.

(i) If `h(p) is even then there is no Move q at p such that G(A;Tq) is a
win for I.

(ii) If `h(p) is odd then there is a Move q at p such that G(A;Tq) is not
a win for I.

Proof of Lemma. The proof of Lemma 1.2.2 essentially contains the proof
of the present lemma, so we will be brief. (i) If there is a Move q at p such
that G(A;Tq) is a win for I, then I can win G(A;Tp) by first playing q and
then playing (the moves given by) a winning strategy for G(A;Tq). (ii) If σq
is a winning strategy for I for G(A;Tq) for each Move q at p, then

⋃
q σq is a

winning strategy for I for G(A;Tp). �

Returning to the proof of the theorem, let us assume that A ⊆ dT e is
open and that G(A;T ) is not a win for I. We will prove that there is a winning
strategy τ for II for G(A;T ). For each position p of odd length such that
G(A;Tp) is not a win for I, choose a move τ(p) at p such that G(A;Tp_〈τ(p)〉)
is not a win for I. Part (ii) of the lemma gives the existence of such a move.
For other positions of odd length, let τ(p) be arbitrary. Let x be a play
consistent with τ . By induction, using part (i) of the lemma, we get that
each p ⊆ x is such that G(A;Tp) is not a win for I. But A is open. If x ∈ A
then x ∈ dTpe for some p such that dTpe ⊆ A. For any such p, p ⊆ x and
G(A;Tp) is obviously a win for I. This contradiction gives that x /∈ A. This
in turn shows that τ is a winning strategy for II. �

Lemma 1.2.5 has other applications besides Theorem 1.2.4. For making
such applications, it will be useful to reformulate the lemma, which we now
do.

A quasistrategy for II in T is a game subtree T ′ of T such that
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(a) if p ∈ T ′ and `h(p) is even, then every Move in T at p belongs to T ′;

(b) if p ∈ T ′, `h(p) is odd, and p is not terminal in T , then some Move at
p in T belongs to T ′.

(Note that a subtree T ′ of T satisfying (a) and (b) is automatically a game
subtree of T and so a quasistrategy for II in T .) Quasistrategies for I are
similarly defined.

Every strategy τ for II in T gives rise to a quasistrategy for II in T : Let
T ′ = {p ∈ T | p is consistent with τ}. Except for irrelevancies, T ′ deter-
mines τ : T ′ determines τ(p) for all positions p consistent with τ . The special
property distinguishing the quasistrategy determined by a strategy from a
general quasistrategy is that in (b) “some” can be replaced by “one and
only one.” Thus we may think of a quasistrategy as a many-valued strategy.
Quasistrategies are often useful in situations where one is not assuming the
Axiom of Choice. But they are also useful in proofs of determinacy, as the
rest of this chapter will show. Quasistrategies for II in T are sometimes called
II-imposed subtrees (or subgames) of T .

The following Lemma is really just a reformulation of Lemma 1.2.5 (and
its dual).

Lemma 1.2.6. (1) If G(A;T ) is not a win for I, then

{q ∈ T | (∀p⊆ q) G(A;Tp) is not a win for I}

is a quasistrategy for II.
(2) If G(A;T ) is not a win for II, then

{q ∈ T | (∀p⊆ q) G(A;Tp) is not a win for II}

is a quasistrategy for I.

Proof. For (1), assume that G(A;T ) is not a win for I and let T ′ = {q ∈T |
(∀p ⊆ q)G(A;Tp) is not a win for I}. Clearly T ′ is a subtree of T . Property
(a) for T ′ follows from (i) of Lemma 1.2.5. Property (b) follows from (ii). (2)
similarly follows from the obvious variant of Lemma 1.2.5. �

Whenever G(A;T ) is not a win for I, let us call

{q ∈ T | (∀p⊆ q) G(A;Tp) is not a win for I}
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II’s non-losing quasistrategy for G(A;T ), . Similarly define I’s non-losing
quasistrategy for G(A;T ) when G(A;T ) is not a win for II. The proof of
Theorem 1.2.4 from Lemma 1.2.5 amounted to showing that, for A open,
II’s non-losing quasistrategy for G(A;T ) is a winning quasistrategy, in the
obvious sense.

Lemma 1.2.7. (1) If G(A;T ) is not a win for I and T ′ is II’s non-losing
quasistrategy, then G(A;T ′) is not a win for I.

(2) If G(A;T ) is not a win for II and T ′ is I’s non-losing quasistrategy,
then G(A;T ′) is not a win for II.

Proof. We prove (1). Suppose that σ is a winning strategy for I for G(A;T ′).
Then I can win G(A;T ) by playing σ until (if ever) II first departs from T ′

at some position p and then playing a winning strategy for G(A;Tp). �

Exercise 1.2.1. A game tree T is wellfounded if for every nonempty Y ⊆ T
there is a terminal element p of T ∩Y , i.e. a p ∈ T ∩Y such that no q properly
extending p belongs to T ∩ Y .

(a) Prove that T is wellfounded if and only if there are no infinite plays
in T . (The “if” direction will require the Axiom of Choice.)

(b) Assume that Lemma 1.2.2 holds for A and T and prove in ZF (i.e.,
don’t use the Axiom of Choice) that if T is wellfounded then G(A;T ) is
determined.

Exercise 1.2.2. Show that the Axiom of Choice is equivalent in ZF with the
determinacy of all games in trees T such that every p ∈ T has length ≤ 2.

Exercise 1.2.3. Working in ZF, assume that the Axiom of Choice is false.
Prove that there are A and T such that (i) there is a play of length 1 belonging
to A but (ii) G(A;T ) is not determined. (This shows that, in the absence of
Choice, it would be more natural to define strategy as suggested during the
proof of Lemma 1.2.2.)

Exercise 1.2.4. Let A ⊆ dT e be open. For each ordinal number α, we
define Pα, a set of positions of even length in T . The definition proceeds by
transfinite induction on α. Let p ∈ P0 if and only if dTpe ⊆ A. For α > 0,
p ∈ Pα if and only if p ∈ P0 or there is a Move q at p such that either q ∈ A
or q is not terminal and, for every Move r at q, r ∈

⋃
β<α Pβ. First show that

there is an α such that (∀γ ≥ α)Pγ = Pα. Now let P∞ be this limiting value
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of Pα. Show that G(A;T ) is a win for I if the initial position ∅ ∈ P∞ and
that G(A;T ) is a win for II if ∅ /∈ P∞. (This is a more constructive proof
of Theorem 1.2.4. It was independently noticed by several people. See Blass
[1972] for a related result.)

Exercise 1.2.5. Use the construction of Exercise 1.2.4 to prove that, if A ⊆
ωω, A ∈ Σ0

1, and G(A; <ωω) is a win for I, then there is a winning strategy
for I belonging to L(β) for β the least admissible ordinal greater than ω.
Prove also for such A and for the same β, that if G(A; <ωω) is a win for II
then there is a winning strategy for II belonging to L(β + 1). (The literal
construction of Exercise 1.2.4 doesn’t quite work; modify the definition of P0

to get P0 ∈ L(β).)

1.3 The Theorems of Wolfe and Davis

In §2.1 we will prove that all Borel games are determined. Nevertheless, the
remaining two sections of this chapter will be devoted to proofs of partial
results that will not be used in the proof in §2.1. What is of interest about
these proofs is that in essence they do not use the Power Set and Replacement
Axioms of ZFC (though one of them does use something that goes beyond the
other standard ZFC axioms). A striking result of [Friedman, 1971], proved
before Borel determinacy, implies that both Power Set and Replacement are
needed to prove that all Borel games (even in countable trees) are deter-
mined. This is surprising because almost all theorems of mathematics can
be proved in Zermelo Set Theory (ZC): ZFC without the Axiom of Replace-
ment but with Comprehension. Moreover the assertion that all Borel games
in countable trees are determined concerns only countable objects, whereas
Friedman’s result might be described as implying that Borel determinacy
cannot be proved without invoking principles about uncountable objects.

In the next two sections and in §2.3, we want to avoid using Power Set
and Replacement whenever we can. However, in order not to get embroiled
in technicalities, it is convenient to have available always a small part of
the Axiom of Replacement. To describe the appropriate theory, we need to
introduce the Lévy hierarchy of formulas of the language of set theory.

First we define the bounded formulas as constituting the smallest class
satisfying the following:

(a) Every atomic formula is bounded.
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(b) If ϕ is bounded, then so are (∃x)(x ∈ y ∧ ϕ) and (∀x)(x ∈ y → ϕ).

A formula is called Σ0 and also Π0 if it is bounded. For n ∈ ω, a formula is
Σn+1 if it is (∃x)ϕ for some variable x and some Πn formula ϕ; it is Πn+1 if
it is (∀x)ϕ for some variable x and some Σn formula ϕ.

The theory in which we will work in most of the next two sections is
ZC−+ Σ1 Replacement: ZFC without the Axiom of Power Set and with
the Axiom of Replacement only for Σ1 formulas. Another way to describe
this theory is that it is Kripke-Platek set theory with Choice (KPC) plus
Comprehension. The point of Σ1 Replacement is that it gives us cartesian
products, enough ordinal numbers, and some simple definitions by transfinite
recursion. We could get by without Σ1 Replacement, but then we would have
to be careful how we formulate some of our theorems as well as how we prove
them. With respect to the absence of the Power Set axiom, the reader not
familiar with formal axiomatic set theory should notice that the sets we deal
with in proofs about games in a tree T are subsets of T or are other sets of no
greater size than T . Sometimes we mention larger sets, e.g. dT e and subsets
of dT e. Talk of dT e is eliminable in simple ways: for example, instead of
“(∀x)(x ∈ dT e → . . .),” we can say “(∀x)((∀p⊆ x) p ∈ T )→ . . .).” Our talk
of subsets of dT e will be almost always be eliminable because the subsets in
question will be Borel sets, and therefore they can be specified by countable
systems of subsets of T : To specify a Borel set, it is enough to describe how
it is built up a countable family of open sets; the open sets A themselves are
given by the set of p ∈ T such that dTpe ⊆ A. Lemma 1.4.1 gives another way
to specify a Borel set: via a clopen subset of dT e × dSe, with S a countable
tree.

The proofs of all results in §1.1 and §1.2 go through in ZC− + Σ1 Re-
placement.

In this section we will prove, in ZC−+ Σ1 Replacement, determinacy for
Borel levels through Σ0

3.

Theorem 1.3.1. ([Wolfe, 1955]; ZC−+ Σ1 Replacement) All Σ0
2 (Fσ) games

are determined.

Proof. We first prove the following lemma.

Lemma 1.3.2. Let B ⊆ A ⊆ dT e with B closed. If G(A;T ) is not a win
for I, then there is a strategy τ for II such that every play consistent with τ
contains a position p with these properties:
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(i) dTpe ∩B is empty.

(ii) G(A;Tp) is not a win for I.

Proof of Lemma. Assume that G(A;T ) is not a win for I. Let C be the
set of all x ∈ dT e such that no p ⊆ x satisfies both (i) and (ii). The lemma
asserts precisely that G(C;T ) is a win for II. Assume for a contradiction
that this is false. C is closed, so Theorem 1.2.4 implies that G(C;T ) is a win
for I. Let T ′ be II’s non-losing quasistrategy for G(A;T ). By Lemma 1.2.7,
G(A;T ′) is not a win for I. But T ′ does not restrict I’s moves in T , so G(C;T ′)
is a win for I. Let σ be a winning strategy for I for G(C;T ′). Let x ∈ dT ′e be
consistent with σ. For every p ∈ T ′, and so for every p ⊆ x, G(A;Tp) is not
a win for I; i.e., (ii) holds for every p ⊆ x. Thus (i) fails for every p ⊆ x. In
other words dTpe ∩ B is nonempty for every p ⊆ x. But B is closed, so this
implies that x ∈ B. B ⊆ A and hence x ∈ A also. Since x was an arbitrary
play consistent with σ, we have derived the contradiction that σ is a winning
strategy for I for G(A;T ′). �

For the proof of the theorem, let A ⊆ dT e with A ∈ Σ0
2. Then A can

be written as A =
⋃
i∈ω Ai with each Ai closed. Assume that G(A;T ) is

not a win for I. We get a winning strategy τ for II as follows. Here and on
other occasions, we describe (the essential part of) a strategy by describing
an arbitrary play consistent with the strategy. Let τ0 be as given by the
lemma with B = A0. Let τ agree with τ0 until a position p0 is first reached
satisfying (i) and (ii). Now apply the lemma with B = A1 and Tp0 for T ,
getting τ1. Let τ agree with τ1 from p0 until a p1 is first reached satisfying
(i) and (ii). Continue in this way. If

⋃
i∈ω pi is finite and non-terminal, let τ

be arbitrary on positions extending
⋃
i∈ω pi. Let x be consistent with τ . For

each i, there is a pi ⊆ x with dTpie ∩Ai = ∅. Hence x /∈
⋃
i∈ω Ai; i.e., x /∈ A.

�

Theorem 1.3.3. ([Davis, 1964]; ZC−+ Σ1 Replacement) All Σ0
3 (Gδσ) games

are determined.

Proof We first prove a lemma analogous to Lemma 1.3.2.

Lemma 1.3.4. Let B ⊆ A ⊆ dT e with B ∈ Π0
2. If G(A;T ) is not a win for

I, then there is a quasistrategy T ∗ for II with the following properties:

(i) dT ∗e ∩B is empty.
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(ii) G(A;T ∗) is not a win for I.

Proof of Lemma. Assume that G(A;T ) is not a win for I. Let T ′ be II’s
non-losing quasistrategy for G(A;T ). Note that, for each p ∈ T ′, T ′p is II’s
non-losing quasistrategy for G(A;Tp); thus by Lemma 1.2.7 every p ∈ T ′ is
such that G(A;T ′p) is not a win for I.

Let us call a position p in T ′ good if there is a quasistrategy T ∗ for II
in T ′p such that (i) dT ∗e ∩ B is empty and (ii) G(A;T ∗) is not a win for I.
The lemma will be proved if we can show that the initial position ∅ is good,
since a T ∗ witnessing that ∅ is good is also a quasistrategy for II in T . Now
B ∈ Π0

2, so let B =
⋂
n∈ωDn with each Dn open. For each n let

En = A ∪ {x ∈ dT ′e | (∃p⊆ x)(dT ′pe ⊆ Dn ∧ p is not good)}.

Fix n and assume that G(En;T ′) is not a win for I. We show that ∅ is
good. Define a quasistrategy T ∗ for II in T ′ as follows: T ∗ agrees with II’s
non-losing quasistrategy T ′′ for G(En;T ′) until first (if ever) a position p is
reached with dT ′pe ⊆ Dn. Consider a first such p reached. Since p belongs

to T ′′, p must be good. Choose a quasistrategy T̂ (p) for II witnessing that p
is good. Let T ∗ agree with T̂ (p) for q ⊇ p. We will show that T ∗ witnesses
that ∅ is good. If x ∈ dT ∗e then either x /∈ Dn or else x belongs to some
dT̂ (p)e and so x /∈ B by (i). Thus dT ∗e ⊆ ¬Dn ∪ ¬B = ¬B, and we need
only show that G(A;T ∗) is not a win for I. Suppose to the contrary that σ
is a winning strategy for I for G(A;T ∗). If there is a position p consistent
with σ such that dT ′pe ⊆ Dn, then there is such a p such that T ∗p = T̂ (p).

T̂ (p) has property (ii) and so G(A;T ∗p ) is not a win for I. But then σ cannot
be a winning strategy for G(A;T ∗). Hence no such p can exist, and so every
play consistent with σ belongs to dT ′′e. By Lemma 1.2.7, G(En;T ′′) is not
a win for I. Thus there is an x ∈ dT ′′e such that x is consistent with σ and
x /∈ En. A ⊆ En, and so x /∈ A. Therefore σ is not a winning strategy. This
contradiction completes the proof that T ∗ witnesses that ∅ is good.

The argument just given has shown that ∅ is good unless, for each n ∈ ω,
G(En;T ′) is a win for I. For p ∈ T ′ and n ∈ ω, let

Ep
n = A ∪ {x ∈ dT ′pe | (∃q ⊆ x)(p ⊆ q ∧ dT ′qe ⊆ Dn ∧ q is not good)}.

The same argument shows that, for all p ∈ T ′ and all n ∈ ω, p is good unless
G(Ep

n;T ′p) is a win for I.
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Assume that the lemma is false. We get a strategy σ for I as follows. Let
σ0 be a winning strategy for I for G(E0;T ′). σ agrees with σ0 until first (if
ever) a p0 is reached with dT ′p0

e ⊆ D0 and p0 not good. If such a p0 is reached,
choose a winning strategy σ1 for I for G(Ep0

1 ;T ′p0
). Let σ agree with σ1 from

p0 until a p1 is first reached with dT ′p1
e ⊆ D1 and p1 not good. Continue in

this way, letting σ be arbitrary on positions extending
⋃
n∈ω pn if the latter

is a non-terminal position. If some pn does not exist, then the play x belongs
to Epn−1

n (En if n = 0) but there is no p ⊆ x with pn−1 ⊆ p if n > 0 and
dT ′pe ⊆ Dn and p not good. By the definition of En, x ∈ A. If all pn exist,
then the play belongs to

⋂
n∈ωDn = B ⊆ A. Thus every play consistent with

σ belongs to A, contrary to the hypothesis that G(A;T ′) is not a win for I.
�

Now let us prove the theorem. Let A ⊆ dT e with A ∈ Σ0
3. Let A =⋃

i∈ω Ai with each Ai ∈ Π0
2. We get a strategy τ for II as follows. Apply the

Lemma with B = A0 to get T ∗(∅). For positions p1 ∈ T of length 1, let τ(p1)
be an arbitrary move legal in II’s non-losing quasistrategy for G(A;T ∗(∅)).
For any position p2 consistent with τ and with `h(p2) = 2, apply the lemma
with B = A1 and with (T ∗(∅))p2 for T , getting T ∗(p2). For any position
p3 ∈ T ∗(∅) with `h(p3) = 3, let τ(p3) be an arbitrary move legal in II’s
non-losing quasistrategy for G(A;T ∗(p3)). Continue in this way. Let x be
a play consistent with τ . If x is finite, then x belongs to II’s non-losing
quasistrategy for G(A;T ∗(∅)), hence (T ∗(∅))x 6⊆ A, and so x /∈ A. If x is
infinite, then x ∈

⋂
n∈ωdT ∗(x � n)e ⊆

⋂
n∈ω ¬An, so x /∈ A. Thus τ is a

winning strategy for II for G(A;T ). �

Exercise 1.3.1. Let A ⊆ dT e with A ∈ Σ0
2. Let A =

⋃
n∈ω An with each An

closed. For each ordinal number α, we define Pα, a set of positions of even
length in T . For p ∈ T and dTpe ∩ A 6= ∅, let n(p) be the least n such that
dTpe ∩ An 6= ∅. For each ordinal α, let

Bp
α = {x ∈ dTpe | x ∈ An(p) ∨ (∃q)(p ⊆ q ⊆ x ∧ q ∈

⋃
β<α

Pβ)}.

Let p ∈ Pα if and only if n(p) is defined and G(Bp
α;Tp) is a win for I. As with

Exercise 1.2.4, first show that there is an α such that (∀γ ≥ α)Pγ = Pα, and
let P∞ be this limiting value of Pα. Now show that G(A;T ) is a win for I if
∅ ∈ P∞ and that G(A;T ) is a win for II if ∅ /∈ P∞.
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Exercise 1.3.2. Use the construction of Exercise 1.3.1 to prove Solovay’s
result (see pages 414–415 of [Moschovakis, 1980]) that, if A ⊆ ωω, A ∈ Σ0

2,
and G(A;T ) is a win for I, then there is a winning strategy for I belonging
to Lβ for β the closure ordinal for Σ1

1 monotone inductive definitions. Prove
also that, for such A and for the same β, that if G(A;T ) is a win for II
then there is a winning strategy for II belonging to L(β′), where β′ the least
admissible ordinal > β.

1.4 ∆0
4 Games

In this section we prove the determinacy of all ∆0
4 games. For countable

trees, ∆0
4 coincides with the difference hierarchy on Π0

3. (Theorem 1.4.2,
a result in [Kuratowski, 1958]). For uncountable trees, ∆0

4 coincides with
what we call the generalized difference hierarchy on Π0

3. Because the proofs
in this section are somewhat complicated, we first deal fully with the case
of countable trees. We prove, in the countable case, the equality of the
difference hierarchy with ∆0

4, and we prove (in the general case) determinacy
for the difference hierarchy. Then we take up general trees, showing how
to modify the definitions and proofs from the countable case to make them
work in the general case.

In earlier versions of this chapter, we mistakenly claimed that our proof of
determinacy for the difference hierarchy on Π0

3 went through in ZC−+ Σ1 Re-
placement. In [Montalban and Shore, 2012], the authors point out that only
for fixed finite levels of that difference hierarchy does our proof go through in
ZC−+ Σ1 Replacement. They go on to demonstrate that the assertion that
determinacy holds in countable trees for all finite levels cannot be proved in
ZFC− (ZFC minus Power Set). This improves the known theorem, proved
using the methods of [Friedman, 1971], that the determinacy of all Σ0

4 games
in countable trees cannot be proved in ZFC−. (See Exercise 1.4.1.) Before
giving our proof of determinacy for the full difference hierarchy, we present
the simplification of that proof that results from adapting it to the case of
a fixed finite level of the hierarchy. For this proof, we will not need to treat
the case of countable trees separately.

For the both the fixed-finite-level case and the full difference hierarchy
case, we first give determinacy proofs without paying attention to what hy-
potheses are being used. Afterward we discuss hypotheses. The determinacy
of the full difference hierarchy needs a theory stronger than ZC−+ Σ1 Re-
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placement, but this theory does not imply the existence of uncountable sets.
Moreover it, like ZC−+ Σ1 Replacement, does not imply that all Σ0

4 games
in countable trees are determined. (See Exercise 1.4.6.)

If Γ is a class of sets (e.g., Π0
3) and α > 0 is a countable ordinal, then a

set A ⊆ dT e belongs to α-Γ, the αth level of the difference hierarchy on Γ,
just in case there is a sequence 〈Aβ | β < α〉 with each Aβ ∈ Γ and such that

(∀x ∈ dT e)(x ∈ A ↔ µβ(x /∈ Aβ ∨ β = α) is odd),

where “µ” means “the least” and “odd” is defined in the natural way. (Limit
ordinals are even.) The difference hierarchy is ordinarily defined only for
classes Γ closed under countable intersections (so that

⋂
γ<β Aγ ∈ Γ) and we

will consider it only for such classes. 1-Γ = Γ, 2-Γ is the class of differences of
sets belonging to Γ, etc. Let Diff(Γ) =

⋃
α<ω1

α-Γ. We are interested in the

difference hierarchy because of Theorem 1.4.2, which states that Diff(Π0
α) =

∆0
α+1. Before proving this result of Kuratowski we prove a characterization

of Σ0
α that will be useful for the proof.

A game tree T is wellfounded if, for every nonempty Y ⊆ T , there is a p
in T ∩ Y such that no q ) p belongs to T ∩ Y . Using the Axiom of Choice,
one can show that T is wellfounded if and only if there are no infinite plays
in T . (Exercise 1.2.1.) For wellfounded T , the plays in T are thus exactly
the same as the terminal positions in T . If T is wellfounded, then we can
define functions with domain T by transfinite recursion. (See Theorem 5.6 of
[Kunen, 1980] or pages 82–83 of [Moschovakis, 1980].) To define an f with
domain (f) = T , it is enough to define f(p) in terms of the restriction of f
to the proper extensions of p, i.e. to define an operation G (which may be a
proper class) and let

f(p) = G(f � {q | p ( q})

for each p ∈ T . (Since the existence of f is proved by using the Axiom of
Replacement, we will in this section use definition by transfinite recursion
only for G’s definable by a simple enough formula that Σ1 Replacement
suffices to get f .) When we make such a definition, we will say that we
are defining f by induction on T . One can talk in more general terms of
wellfounded relations: A relation ≺ is wellfounded if, for every nonempty set
Y , there is an element of Y minimal with respect to ≺. Thus a game tree T
is wellfounded if and only if )� T is a wellfounded relation. In general, the
wellfoundedness of a relation is equivalent with the non-existence of infinite
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descending chains with respect to ≺. Definition by transfinite recursion is
applicable to general wellfounded relations. When we use it for ≺ we will
say we are making a definition by induction on ≺.

Let Ord be the (proper) class of all ordinal numbers, and let T be a
wellfounded game tree. By induction on T , we define ‖ ‖T : T → Ord by

‖p‖T = sup{‖q‖T + 1 | p ( q}.

Note that the supremum in this definition might as well be restricted to q
with `h(q) = `h(p) + 1. Define also

‖T‖ = ‖∅‖T .

Note that ‖T‖ and each ‖p‖T are ordinals smaller than |T |+, the least cardinal
number greater than |T |, the cardinal number of T . (Of course, since we now
are working in the weak theory ZC− + Σ1 Replacement, we don’t know that
|T |+ exists. Nevertheless, we will use the notation |T |+, construing it as
proper class if it is not a set.)

Lemma 1.4.1. (ZC−+ Σ1 Replacement) A ⊆ dT e is Borel if and only if
there is a tree S ⊆ <ωω and there is a clopen B ⊆ dT e × dSe such that S is
wellfounded and

(∀x ∈ dT e)(x ∈ A ↔ G(B(x);S) is a win for I),

where B(x) = {q ∈ dSe | 〈x, q〉 ∈ B}. Moreover, for α > 0 and A ⊆ dT e,
A ∈ Σ0

α if and only if such an S and B exist with ‖S‖ ≤ α.

Proof. If such S and B exist with ‖S‖ ≤ α, define Aq ⊆ dT e for q ∈ S by

x ∈ Aq ↔ G(B(x);Sq) is a win for I.

We prove by induction on ‖q‖ = ‖q‖S > 0 that

Aq ∈
{

Σ0
‖q‖ if `h(q) is even;

Π0
‖q‖ if `h(q) is odd.

If ‖q‖ = 0 then q is terminal, and so x ∈ Aq ↔ 〈x, q〉 ∈ B, so Aq is clopen.
Let ‖q‖ > 0. If `h(q) is even, then

Aq =
⋃
{Aq′ | q ⊆ q′ ∧ `h(q′) = `h(q) + 1};
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If `h(q) is odd, then

Aq =
⋂
{Aq′ | q ⊆ q′ ∧ `h(q′) = `h(q) + 1}.

In both cases, the desired conclusion follows directly by induction.

We prove the converse by induction on α. If α = 1 then A is open. Let
S = 1ω and let 〈x, 〈k〉〉 ∈ B ↔ dTx�ke ⊆ A. Let α > 1 and assume A ∈ Σ0

α.
Then there are Ai, i ∈ ω, such that A =

⋃
i∈ω Ai and such that each Ai ∈ Π0

βi

for some βi < α. Let Si ⊆ <ωω and Bi be given by induction for ¬Ai and βi,
for each i. Let

S = {〈i〉_q | q ∈ Si};
B = {〈x, 〈i〉_q〉 | q ∈ dSie ∧ 〈x, q〉 /∈ Bi}.

It is easy to see that S and B are as required. �

Theorem 1.4.2. ([Kuratowski, 1958], §33 III; ZC−+ Σ1 Replacement) For
countable T , Diff(Π0

ξ) = ∆0
ξ+1, for each countable ordinal ξ ≥ 1.

Proof We first show Diff(Π0
ξ) ⊆ ∆0

ξ+1. (For this part, we do not need
the assumption that T is countable.) Let 〈Aβ | β < α〉 witness that A ∈
Diff(Π0

ξ). Assume for definiteness that α is even.

A =
⋃
β<α

β odd

(¬Aβ ∩
⋂
γ<β

Aγ)

=
⋃
β<α

¬Aβ ∩
⋂
β<α

β even

(Aβ ∪
⋃
γ<β

¬Aγ)

Since eachAγ ∈ Π0
ξ and Π0

ξ is closed under countable intersections,
⋂
γ<β Aγ ∈

Π0
ξ ⊆ Σ0

ξ+1. Furthermore, ¬Aβ ∈ Σ0
ξ ⊆ Σ0

ξ+1. Since Σ0
ξ+1 is closed under

finite intersections, ¬Aβ ∩
⋂
γ<β Aγ ∈ Σ0

ξ+1. The first equation then gives

that A ∈ Σ0
ξ+1. An analogous calculation using the second equation gives

that A is the intersection of a member of Σ0
ξ and a member of Π0

ξ+1; hence
A ∈ Π0

ξ+1 also. By the definition of ∆0
ξ+1, A ∈∆0

ξ+1.
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We now turn to the more difficult other half of the theorem. Let A ∈
∆0

ξ+1. There are sets Ci, i ∈ ω, such that each Ci ∈ Π0
ξ and such that

¬A =
⋃
i∈ω

C2i;

A =
⋃
i∈ω

C2i+1.

For each i ∈ ω let Si and Bi be given by Lemma 1.4.1 with ¬Ci for the A of
that lemma and ξ for the α. Let

S = {〈i〉_q | q ∈ Si};
B = {〈x, 〈i〉_q〉 | q ∈ dSie ∧ 〈x, q〉 /∈ Bi}.

Note that G(B(x);S) is a win for I if and only if x ∈
⋃
n∈ω Cn = A ∪ ¬A =

dT e, and so each G(B(x);S) is a win for I. For n ∈ ω let

Sn = {q ∈ S | `h(q) ≤ 2n ∧ (∀n′ < n)(n′ even → q(n′) < n)}.

and let

Un = {〈p, t〉 | p ∈ T ∧ `h(p) = n ∧ t ∈ SII(S
n) ∧

(∀q ∈ dSe ∩ Sn)(q consistent with t → dTpe × {q} 6⊆ B)}.

Recall (page 5) that SII(S
n) is the set of all strategies for II in Sn.

Let U =
⋃
n∈ω Un. Partially order U by

〈p, t〉 ≺ 〈p′, t′〉 ↔ (p′ ( p ∧ t′ ( t).

The relation ≺ is wellfounded, since if

· · · ≺ 〈p2, t2〉 ≺ 〈p1, t1〉 ≺ 〈p0, t0〉

is an infinite descending chain with respect to ≺, then
⋃
n∈ω tn is a winning

strategy for II for G(B(
⋃
n∈ω pn);S), and this game is a win for I. By induc-

tion on ≺ define ord(p, t) = sup{ord(p′, t′) + 1 | 〈p′, t′〉 ≺ 〈p, t〉}. Note that
the supremum in this definition might as well be restricted to 〈p′, t′〉 ∈ Un+1

if 〈p, t〉 ∈ Un. The unique member of U0 is 〈∅, ∅〉. Set γ = ord(〈∅, ∅〉). By
the hypothesis that T is countable, it follows that U is countable also; hence
γ is a countable ordinal.
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If x ∈ dT e, t ∈ SII(S
n), and i < n, then t gives a fragment sti of a strategy

for I for G(Bi(x);Si): Let sti(q) = t(〈i〉_q) for each q such that 〈i〉_q ∈ Sn.
Let us say that t ∈ SII(S

n) is n-wrong for x ∈ dT e if there is an i < n such
that, for all σ ∈ SI(Si), if sti ⊆ σ then σ is not a winning strategy for I for
G(Bi(x);Si). Note that if t ∈ SII(S

n) is not n-wrong for x then 〈x�n, t〉 ∈ Un.

Remark. The reason we had to define “n-wrong” and not simply “wrong”
is that it is possible to have Sn = Sn

′
with n 6= n′.

Now define, for α ≤ γ,

A2α = {x ∈ dT e | (∀n)(∀t)((n even ∧ 〈x � n, t〉 ∈ Un ∧ ord(x � n, t) = α)
→ t is n-wrong for x)}.

Similarly define A2α+1 for α < γ, with “odd” replacing “even.”
We show that 〈Aβ | β ≤ 2γ〉 witnesses that A ∈ Diff(Π0

ξ). Let x ∈ dT e
and let α be the least ordinal such that there exist n and t ∈ SII(S

n) with
t not n-wrong for x and with ord(x � n, t) = α. Such α, n, and t exist with
α ≤ γ, for ∅ ∈ SII(S

n), and the fact that there is no i < 0 guarantees that ∅
is not 0-wrong for x. Let n and t ∈ SII(S

n) be such that t is not n-wrong for
x and ord(x � n, t) = α. Choose n to be even, if possible. Note that α < γ if
n is odd, since n > 0. We show that

n even → x ∈
⋂
β<2α

(Aβ \ A2α) ∧ x /∈ A;

n odd → x ∈
⋂
β≤2α

(Aβ \ A2α+1) ∧ x ∈ A.

We do the case that n is even; the other case is similar. Since n is even, t
witnesses that x /∈ A2α. But the minimality of α implies that, for all α′ < α,
x belongs both to A2α′ and to A2α′+1. Thus x ∈

⋂
β<2αAβ\A2α. Since t is not

wrong for x, there is for each i < n a winning strategy σi for I for G(Bi(x);Si)
such that sti ⊆ σi. This means, first of all, that G(Bi(x);Si) is a win for I
for each i < n and so that (∀i < n)x /∈ Ci. Suppose for a contradiction
that also x /∈ Cn. Let σn be a winning strategy for I for G(Bn(x);Sn). Let
t′ ∈ SII(Sn+1) be such that st

′
i ⊆ σi for each i ≤ n. Clearly t′ is not n-

wrong for x. This implies, in particular, that 〈x � n + 1, t′〉 ∈ Un+1. But
〈x � n + 1, t′〉 ≺ 〈x � n, t〉, and so ord(x � n + 1, t′) < ord(x � n, t) = α. This
contradiction gives us that x ∈ Cn. Since n is even, it follows that x /∈ A.

To complete the proof of the theorem, we show that each Aβ ∈ Π0
ξ .

Assume for definiteness that β = 2α. Since Π0
ξ is closed under countable
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intersections, it is enough to show that, for any fixed t and even n, the set
A2α,n,t defined by

A2α,n,t = {x | (〈x � n, t〉 ∈ Un ∧ ord(x � n, t) = α) → t is n-wrong for x}

belongs to Π0
ξ . We apply Lemma 1.4.1. Fix such n and t. For i < n let

S ′i = {q ∈ Si | q is consistent with sti}.

Let
B′i = {〈x, q〉 ∈ Bi | 〈x � n, t〉 ∈ Un ∧ ord(x � n, t) = α}.

Now x ∈ A2α,n,t if and only if there is an i < n such that G(B′i(x);S ′i) is not
a win for I. Since ‖S ′i‖ ≤ ‖Si‖ ≤ ξ for each i and since each B′i is clopen, the
fact that A2α,n,t ∈ Π0

ξ follows by Lemma 1.4.1. �

We will prove the determinacy of ∆0
4 games by proving that all Diff(Π0

3)
games are determined and then applying Theorem 1.4.2. This proof is rather
complicated, so we first deal with the simpler case of α-Π0

3 games for α
finite. The following well known fact gives an equivalent characterization of
the games of this form.

Lemma 1.4.3. Let Γ be a collection of subsets of dT e closed under finite
unions and intersections. A subset A of dT e is k-Γ with k ∈ ω if and only
if A is a Boolean combination of finitely many Γ sets.

Proof. The “only if” direction is clear.
For the “if” direction, let A be a finite Boolean combination of finitely

many sets in Γ. For some positive integer k, A =
⋃
i<k Ei with each Ei the

intersection of finitely many sets each a member of Γ or the complement of
member of Γ. Since Γ is closed under finite unions and intersections, we may
assume that

A =
⋃
i<k

(Bi \ Ci),

where 1 ≤ k ∈ ω and where the Bi and Ci belong to Γ. We may also assume
that Bi ⊇ Ci for each i < k.

For x ∈ dΓe and j < k let

x ∈ A2j ↔ x belongs to at least j + 1 of the sets Bi;
x ∈ A2j+1 ↔ x belongs to at least j + 1 of the sets Ci.
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We will show that 〈Aj | i < 2k〉 witnesses that A ∈ 2k-Γ. Let x ∈ dT e.
Let m be least such that m = 2k or x /∈ Am.

First assume that m is an odd number 2j+ 1. Then x belongs to exactly
j of the Ci and to at least j + 1 of the Bi. Thus there is an i such that
x ∈ Bi \ Ci, and so x ∈ A.

Next assume that m is an even number 2j. Then x belongs to exactly j
of the Bi and to at least j of the Ci. Since Bi ⊇ Ci for each i, it follows that
{i | x ∈ Bi} = {i | x ∈ Ci}. Thus there is no i such that x ∈ Bi \ Ci, and so
x /∈ A. �

Theorem 1.4.4. For each finite k, ZC−+ Σ1 Replacement ` “All k-Π0
3

games are determined, and therefore G(A;T ) is determined for every A in
the Boolean algebra generated by Π0

3 subsets of dT e.”

Remark. The proof that follows was gotten by specializing—and so some-
what simplifying—the proof of Theorem 1.4.10 to the case γ = k. The proof
of Theorem 1.1 of [Montalban and Shore, 2012] was gotten in the same way,
and at heart the two proofs are the same. Montalban’s and Shore’s context
differs from ours in that they are dealing with second order arithmetic in-
stead of set theory, and so only countable trees are involved. Also they pay
attention to what fragment of the axiomatic theory of second order arith-
metic is needed for the proof. We won’t pay attention to this in giving our
proof, but we will discuss it afterward.

Proof. We give the proof for the case that k is odd. From this, the proof
for the case of even k can be gotten by exchanging “I” and “II.”

Let A ⊆ dT e with A ∈ k-Π0
3. Let 〈An | n < k〉 witness that A ∈ k-Π0

3.
Also without loss of generality, we assume that

m ≤ n < k → Am ⊇ An.

For each n < k, let An,i, i ∈ ω, be Σ0
2 sets such that An =

⋂
i∈ω An,i. For

each n < k and each i ∈ ω, let An,i,j, j ∈ ω, be closed sets such that
An,i =

⋃
j∈ω An,i,j.

For s ∈ ≤kω and for game subtrees S of T , we define, by induction on
`h(s), the assertion P s(S).

(1) P ∅(S) holds if and only if G(A;S) is a win for II;
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(2) If `h(s) = n+ 1 and n is even, then P s(S) holds if and only if there is
a quasistrategy U for I in S such that

(a) dUe ⊆ A ∪ Ak−n−1,s(n);

(b) P s�n(U) fails;

(3) If `h(s) = n + 1 and n is odd, then P s(S) holds if and only if there is
a quasistrategy U for II in S such that

(a) dUe ⊆ ¬A ∪ Ak−n−1,s(n);

(b) P s�n(U) fails;

Note that k − n− 1 is even if and only if n is even.
For `h(s) > 0, we say that U witnesses P s(S) if the obvious conditions

hold. For `h(s) = 0, U witnesses P s(S) if U is (the quasistrategy correspond-
ing to) a winning strategy for II for G(A;S).

For `h(s) = n+1, we say that a quasistrategy U (for I if n is even and for
II if n is odd) locally witnesses P s(S) if there is a subset D of S and there
are for each d ∈ D quasistrategies Rd in Sd, for II if n is even and for I if n
is odd, such that

(i) for each d ∈ D ∩ U , Ud ∩Rd witnesses P s(Rd);

(ii) dUe \
⋃
d∈DdRde ⊆

{
A if n is even;
¬A if n is odd;

(iii) for each p ∈ S, there is at most one d ∈ D such that d ⊆ p and p ∈ Rd.

If U witnesses P s(S), then U locally witnesses P s: Let D = {∅} and let
Rd = S. The next lemma, which will be an important technical tool, is the
converse.

Lemma 1.4.5. Let s ∈ ≤kω with 0 < `h(s) = n + 1. Assume that U locally
witnesses P s(S). Then U witnesses P s(S).

Proof of Lemma. We prove the lemma by induction on n (actually on odd
and even n separately).

Note first that U cannot fail to have property (a) (i.e. (2)(a) or (3)(a),
whichever is appropriate). To see this, assume for definiteness that n is even
and let x ∈ dUe. By (ii), we may assume that x ∈ dRde for some d ∈ D. But
then (i) implies that x ∈ A ∪ Ak−n−1,s(n).
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We now turn to property (b), for which we really need induction.
Suppose first that n = 0. Assume for a contradiction that (b) fails. Since

n = 0, let τ be a winning strategy for II for G(A;U).
We show that there is a d ∈ D consistent with τ such that if x ⊇ d

is a play consistent with τ then x belongs to dRde. Assume this is false.
Then for each d ∈ D such that d is consistent with τ , let f(d) ) d, f(d)
consistent with τ , f(d) /∈ Rd, and (∀q)(d ⊆ q ( f(d) → q ∈ Rd). By (iii)
there are no members d and d′ of D that are consistent with τ and such
that d ( d′ ⊆ f(d). It follows that there is a play x consistent with τ such
that f(d) ⊆ x whenever d ⊆ x. Clearly x cannot belong to

⋃
d∈DdRde. But

(ii) gives the contradiction that x ∈ A.
Let then d be consistent with τ such that x belongs to dRde for every

play x ⊇ d such that x is consistent with τ . Then the obvious restriction
of τ is a winning strategy for II for G(A;Ud ∩ Rd). Hence P ∅(Ud ∩ Rd),
contradicting (i).

Next suppose that n > 0 is even. Assume for a contradiction that (b)
fails. Let S ′ witness P s�n(U). We define D′ ⊆ S ′ as follows:

d ∈ D′ ↔


d ∈ S ′ ∧
d ∈ D ∧
G(¬dRde;S ′d) is a win for II.

For d ∈ D′, let R′d be II’s non-losing quasistrategy for G(¬dRde;S ′d). Note
that R′d ⊆ Rd.

Let d ∈ D′. Since R′d is a quasistrategy for II in S ′d and S ′d is a quasis-
trategy for II in Ud, it follows that R′d is a quasistrategy for II in Ud. Since
dR′de ⊆ dS ′e ⊆ ¬A∪Ak−n+,s(n−1), condition (3)(a) holds for R′d. By (i), R′d

cannot witness P s�n(Ud), so (3)(b) must fail for R′d. Let then U ′d witness
P s�n−1(R′d).

We define a quasistrategy U ′ for I in S ′ as follows:

(1) If p ∈ U ′ and there is no d ∈ D such that d ⊆ p and p ∈ Rd, then let
any move legal in S ′ at p be legal in U ′ at p.

(2) For each q ∈ S ′ and d ∈ D such d ⊆ q, such that q ∈ Rd \ R′d (taking
R′d = ∅ for d /∈ D′), and such that every q′ ( q belongs to R′d, let σq be
a winning strategy for I for G(¬dRde;S ′d). Whenever such a q belongs
to U ′, we let U ′q agree with σq until a position p /∈ Rd is reached.

(3) For d ∈ D′ ∩ U ′, let U ′d ∩R′d = U ′d.
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Using D′ and 〈R′d | d ∈ D′〉, we now show that U ′ locally witnesses
P s�n−1(S ′). Induction will then give that U ′ witnesses P s�n−1(S ′), contra-
dicting property (3)(b) of S ′. Property (i) follows from clause (3) in the
definition of U ′ and the fact that U ′d witnesses P s�n−1(R′d). For (ii), note
first that clause (2) in the definition of U ′ guarantees that, for each d ∈ D,

dU ′e ∩ dRde ⊆ dR′de.

Thus dU ′e \
⋃
d∈D′dR′de = dU ′e \

⋃
d∈DdRde ⊆ A. (iii) follows from the facts

that D′ ⊆ D and that (∀d ∈ D′)R′d ⊆ Rd.
For the remaining case, that of an odd n > 0, we make the same defi-

nitions as for the case of even n > 0, except that we exchange I and II, A
and ¬A, and G(¬dRde;S ′d) and G(dRde;S ′d). The argument is exactly the
same, except for a minor change in the case n = 1: In that case, the U ′d are
the quasistrategies corresponding to winning strategies for II for G(A;R′d),
and we must prove that dU ′e ⊆ ¬A. As before, dU ′e \

⋃
d∈D′dR′de ⊆ ¬A.

Moreover for d ∈ D′ we have that dU ′e ∩ dR′de = dU ′de ⊆ ¬A.

We say that P s(S) fails everywhere if P s(Sp) fails for every p ∈ S.

Lemma 1.4.6. Let s ∈ ≤kω and let m = lh(s). If P s(S) fails, then there is
a quasistrategy W in S for I if m is even and for II if m is odd such that
P s(W ) fails everywhere.

Proof of Lemma. The case m = 0 is Lemma 1.2.7, so assume m = n+ 1.
Suppose for definiteness that n is even; the other case is similar. Let D be
the set of all d ∈ S such that P s(Sd) but such that, for every p ( d, P s(Sp)
fails. For each d ∈ D, let Ud witness P s(Sd). Let

B = {x ∈ dSe | (∃d ∈ D) d ⊆ x}.

First assume for a contradiction that the open game G(B;S) is a win for
I. Let σ be a winning strategy for I for G(B;S). We define a quasistrategy U
for I in S as follows: U agrees with σ until a position d ∈ D is reached. Then
Ud = Ud. For d ∈ D, let Rd = Sd. It is easy to see, using D and 〈Rd | d ∈ D〉,
that U locally witnesses P s(S), so Lemma 1.4.5 gives the contradiction that
U witnesses P s(S).

We know then that G(B;S) is a win for II. Let W be II’s non-losing
quasistrategy. Assume for a contradiction that q ∈ W and that U∗ witnesses
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P s(Wq). Let U be a quasistrategy for I in Sq defined as follows: Let U∩Wq =
U∗. When first (if ever) a position p /∈ W is reached, let U agree with a
winning strategy σp for I for G(B;S) until a position d ∈ D is reached. Then
let Ud = Ud. Let D′ = D ∪ {q}. Let Rq = Wq and let Rd = Sd for d ∈ D. It
is easy to see, using D′ and 〈Rd | d ∈ D′〉, that U locally witnesses P s(Sq).
Lemma 1.4.5 gives us the contradiction that some d ⊆ q belongs to D. �

For n + 1 = `h(s), we say that W strongly witnesses P s(S) if, for all
p ∈ W , Wp witnesses P s(Sp), i.e. if W witnesses P s(S) and P s�n(W ) fails
everywhere.

Lemma 1.4.7. Let s ∈ ≤kω with 0 < `h(s) = n+ 1. If P s(S), then there is
a W that strongly witnesses P s(S).

Proof of Lemma. Assume for definiteness that n is even. Let U witness
that P s(S). By property (2)(b) of U , P s�n(U) fails. By Lemma 1.4.6, let W
be a quasistrategy for I in U such that P s�n(W ) fails everywhere. Since W is
a quasistrategy for I in S and W inherits property (2)(a) from U , it follows
that W strongly witnesses P s(S). �

Lemma 1.4.8. Let s ∈ ≤kω with 0 < `h(s) = n + 1. At least one of P s(S)
and P s�n(S) holds.

Proof of Lemma. We prove the lemma by induction on k − n, simultane-
ously for all s and S.

Suppose for definiteness that n is even. (The case that n is odd is slightly
simpler, since n + 1 = k is impossible.) Assume that P s(S) fails. We will
define a quasistrategy U for II, and also D ⊆ S and 〈Rd | d ∈ D〉. Simul-
taneously we will define the notion of a position q ∈ U marking stage j, for
j ∈ ω. For any play x ∈ dUe, the set of j such that some q ⊆ x marks stage
j will be a (not necessarily proper) initial segment of ω, and, whenever q ( x
marks stage j and q′ ⊆ x marks stage j′, we will have q ( q′ ↔ j < j′.

The initial position ∅ marks stage 0. By induction, P s_〈0〉(S) holds if
n + 1 < k; let W ∅ be a quasistrategy for II strongly witnessing this. If
n + 1 = k, let W ∅ be a quasistrategy for II in S such that P s(W ∅) fails
everywhere.

Assume inductively that q ∈ U marks stage j and that q belongs to a
quasistrategy W q for II in Sq such that P s(W q) fails everywhere and such
that W q strongly witnesses P s_〈j〉(Sq) if n+ 1 < k.
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Assume first that G(Ak−n−1,s(n),j;W
q) is a win for I. Then q ∈ D. Let R̂q

be I’s non-losing quasistrategy for for G(Ak−n−1,s(n),j;W
q). Let Rq∩W q = R̂q

and, for p ∈ Sq \W q, let Rq
p = Sp. Let U q witness P s�n(R̂q). (U q exists since

dR̂qe ⊆ Ak−n−1,s(n),j ⊆ Ak−n−1,s(n), and so the non-existence of U q would
imply P s(W q), whereas P s(W q) fails everywhere.) We let U agree with U q

on R̂q. No p ∈ R̂q with q ( p belongs to D or marks any stage.
Suppose that either R̂q exists and p ⊇ q is a first position in Uq not belong-

ing to R̂q or else p = q and R̂q does not exist (i.e., G(Ak−n−1,s(n),j;W
q) is a win

for II). Let U agree with a winning strategy τp for II for G(Ak−n−1,s(n),j;W
q)

until a position q′ ⊇ p is first reached with dW q
q′e ∩ Ak−n−1,s(n),j = ∅ and

q ) p if p is not terminal. No q∗ with p ⊆ q∗ ( q′ belongs to D or marks any
stage. The position q′ marks stage j + 1. P s(W q

q′) fails everywhere, because

P s(W q) fails everywhere. If n = k, let W q′ = W q
q′ . If n < k then, by in-

duction, P s_〈j+1〉(W q
q′) holds; let W q′ strongly witness this. The position q′

marks stage j + 1. Note that W q′ strongly witnesses P s_〈j+1〉(Sq′) if n < k,
as required.

This completes the definition of U .
Suppose first that n > 0. We will show, using D and 〈Rd | d ∈ D〉, that U

locally witnesses P s�n(S). By Lemma 1.4.5, this will show that U witnesses
P s�n(S).

Since Ud ∩ Rd = Ud ∩ R̂d = Ud for d ∈ D, condition (i) holds. For (ii),
suppose that x is a play in U such that x /∈

⋃
d∈DdRde. From the definition

it follows that we have either

∅ = q0 ( q1 ( q2 ( · · · ⊆ x

or
∅ = q0 ( · · · ( qk = qk+1 = · · · = x

such that each qj marks stage j. From the definition we also get that

j < j′ → W qj ⊇ W qj′ .

Hence x ∈
⋂
j∈ωdW qje. Since W qj witnesses P s_〈j〉(Sqj) if n + 1 < k, it

follows in that case that

x ∈
⋂
j∈ω

(¬A ∪ Ak−n−2,j) = ¬A ∪
⋂
j∈ω

Ak−n−2,j

= ¬A ∪ Ak−n−2.
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From the definition we also get that, for each j,

dW qj+1e ∩ Ak−n−1,s(n),j = ∅.

Hence x /∈
⋃
j∈ω Ak−n−1,s(n),j = Ak−n−1,s(n). Since Ak−n−1,s(n) ⊇ Ak−n−1, we

have that x /∈ Ak−n−1. If n + 1 = k, this means that x /∈ A0, and so x /∈ A.
If n+ 1 < k, then

x ∈ (¬A ∪ Ak−n−2) \ Ak−n−1.

By our assumption that the Am are monotonely decreasing with m,

x ∈ (¬A ∪
⋂

m<k−n−1

Am) \ Ak−n−1.

Since k − n − 1 is even, x ∈ ¬A, as required by (ii). It is easy to see that
(iii) holds.

Now suppose that n = 0. The argument for (ii) in the case n > 0 still
works, so dUe \

⋃
d∈DdRde ⊇ ¬A. Since Ud ∩ Rd = Ud and dUde ⊆ ¬A, we

have that
⋃
d∈DdRde ⊆ ¬A. Thus U is a winning quasistrategy for G(S;A),

and so P ∅(S) holds. �

We can now prove the theorem. Assume that G(A;T ) is not a win for II.
This means that P ∅(T ) fails. By Lemma 1.4.6, let W ∅ be a quasistrategy for
I in T such that P ∅(W ∅) fails everywhere.

We define a quasistrategy U for I in W ∅. Assume inductively that we
have defined {p | p ∈ U ∧ `h(p) ≤ j}. Let p ∈ U with `h(p) = j. Assume
inductively also that p ∈ W p, where W p is a quasistrategy for I in W ∅

p such

that P ∅(W p) fails everywhere. For each q ) p with `h(q) = j + 1, let
q ∈ U ↔ q ∈ W p. By Lemma 1.4.8, P 〈j〉(W p

q ) holds for all such q. Let W q

be a quasistrategy for I in W p
q strongly witnessing P 〈j〉(W p

q ).
We show that every play x ∈ dUe belongs to A, and so that U is a

winning quasistrategy for I for G(A;T ). Let x ∈ dUe. If x is finite, the fact
that x ∈ dW ∅e implies that x ∈ A. Assume then that x is infinite. Since
x ∈ dW x�j+1e for each j ∈ ω, it follows that

x ∈ A ∪
⋂
j∈ω

Ak−1,j = A ∪ Ak−1 = A.

The last equality holds because k is odd and the An are monotonely decreas-
ing with n. �
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To get sharper form of Theorem 1.4.4, we need to pay attention to what
fragment of the Comprehension schema is used for a given k. As we remarked
on page 19, ZC−+ Σ1 Replacement is the same as KPC + Comprehension.
Similarly Z− + Σ1 Replacement is the same as KP + Comprehension. If,
e.g., we restrict Comprehension to Πn formulas for n ≤ k, then we get the
theory KP + Πk Comprehension.

Theorem 1.4.9. ([Montalban and Shore, 2012]) For each finite k, KP +
Πk+2 Comprehension ` “All k-Π0

3 games are in countable trees are deter-
mined.”

Proof. See [Montalban and Shore, 2012]. The proof is basically like that of
Theorem 1.4.4, with careful attention to how much Comprehension the steps
of that proof use. In addition to Comprehension, the proof of Theorem 1.4.4,
also uses Σk+2 Dependent Choice. To justify this, Montalban and Shore use
L and absoluteness to prove that Σk+2 DC is conservative over KP + Πk+2

Comprehension for formulas that are Π4 over the reals. �

In the case of uncountable trees, the most useful version of their theorem
is probably one that adds “+ V = L” to “KP + Πk+2 Comprehension.” The
author has not checked whether adding this hypothesis to the hypotheses of
Theorem 1.4.9 and dropping the word “countable” yields a theorem (without
increasing “k + 2).”

Theorem 1.4.10. All Diff(Π0
3) games are determined.

Proof. Let A ⊆ dT e with A ∈ Diff(Π0
3). Let 〈Aα | α < γ〉 witness that

A ∈ Diff(Π0
3). Without loss of generality, we assume that γ is odd. Also

without loss of generality, we assume that

α ≤ β < γ → Aα ⊇ Aβ.

For each α < γ, let Aα,i, i ∈ ω, be Σ0
2 sets such that Aα =

⋂
i∈ω Aα,i.

For each α < γ and each i ∈ ω, let Aα,i,j, j ∈ ω, be closed sets such that
Aα,i =

⋃
j∈ω Aα,i,j.

Let Q be the set of all pairs 〈r, s〉 such that

(i) r ∈ <ωγ;

(ii) s ∈ <ωω;
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(iii) `h(r) = `h(s);

(iv) (∀i < `h(r))(i even ↔ r(i) even).

(v) i < j < `h(r) → r(i) > r(j).

For 〈r, s〉 ∈ Q and for game subtrees S of T , we define, by induction on
`h(r) the assertion P r,s(S):

(1) P ∅,∅(S) holds if and only if G(A;S) is a win for II;

(2) If `h(r) = n + 1 and n is even, then P r,s(S) holds if and only if there
is a quasistrategy U for I in S such that

(a) dUe ⊆ A ∪ Ar(n),s(n);

(b) P r�n,s�n(U) fails;

(3) If `h(r) = n+ 1 and n is odd, then P r,s(S) holds if and only if there is
a quasistrategy U for II in S such that

(a) dUe ⊆ ¬A ∪ Ar(n),s(n);

(b) P r�n,s�n(U) fails.

For 〈r, s〉 ∈ Q and `h(r) > 0, U witnesses P r,s(S) if the obvious con-
ditions hold. For `h(r) = 0, U witnesses P r,s(S) if U is (the quasistrategy
corresponding to) a winning strategy for II for G(A;S).

For 〈r, s〉 ∈ Q and `h(r) = n + 1, we say that a quasistrategy U (for I if
n is even and for II if n is odd) locally witnesses P r,s(S) if there is a subset
D of S and there are for each d ∈ D quasistrategies Rd in Sd, for II if n is
even and for I if n is odd, such that

(i) for each d ∈ D ∩ U , Ud ∩Rd witnesses P r,s(Rd);

(ii) dUe \
⋃
d∈DdRde ⊆

{
A if n is even;
¬A if n is odd;

(iii) for each p ∈ S, there is at most one d ∈ D such that d ⊆ p and p ∈ Rd.

As in the special case occurring in the proof of Theorem 1.4.4, if U witnesses
P r,s(S), then U locally witnesses P r,s: Let D = {∅} and let Rd = S. The
next lemma, the analogue of Lemma 1.4.5, is the converse.

Lemma 1.4.11. Let 〈r, s〉 ∈ Q with 0 < `h(r) = n + 1 . Assume that U
locally witnesses P r,s(S). Then U witnesses P r,s(S).
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Proof of Lemma. We prove the lemma by induction on n (actually on odd
and even n separately).

Note first that U cannot fail to have property (a) (i.e. (2)(a) or (3)(a),
whichever is appropriate). To see this, assume for definiteness that n is even
and let x ∈ dUe. By (ii), we may assume that x ∈ dRde for some d ∈ D. But
then (i) implies that x ∈ A ∪ Ar(n),s(n).

We now turn to property (b), for which we really need induction.
Suppose first that n = 0. Assume for a contradiction that (b) fails. Since

n = 0, let τ be a winning strategy for II for G(A;U).
We show that there is a d ∈ D consistent with τ such that if x ⊇ d

is a play consistent with τ then x belongs to dRde. Assume this is false.
Then for each d ∈ D such that d is consistent with τ , let f(d) ) d, f(d)
consistent with τ , f(d) /∈ Rd, and (∀q)(d ⊆ q ( f(d) → q ∈ Rd). By (iii)
there are no members d and d′ of D that are consistent with τ and such
that d ( d′ ⊆ f(d). It follows that there is a play x consistent with τ such
that f(d) ⊆ x whenever d ⊆ x. Clearly x cannot belong to

⋃
d∈DdRde. But

(ii) gives the contradiction that x ∈ A.
Let then d be consistent with τ such that x belongs to dRde for every play

x ⊇ d such that x is consistent with τ . Then the obvious restriction of τ is a
winning strategy for II for G(A;Ud∩Rd). Hence P ∅,∅(Ud∩Rd), contradicting
(i).

Next suppose that n > 0 is even. Assume for a contradiction that (b)
fails. Let S ′ witness P r�n,s�n(U). We define D′ ⊆ S ′ as follows:

d ∈ D′ ↔


d ∈ S ′ ∧
d ∈ D ∧
G(¬dRde;S ′d) is a win for II.

For d ∈ D′, let R′d be II’s non-losing quasistrategy for G(¬dRde;S ′d). Note
that R′d ⊆ Rd.

Let d ∈ D′. Since R′d is a quasistrategy for II in S ′d and S ′d is a quasis-
trategy for II in Ud, it follows that R′d is a quasistrategy for II in Ud. Since
dR′de ⊆ dS ′e ⊆ ¬A∪Ar(n−1),s(n−1), condition (3)(a) holds for R′d. By (i), R′d

cannot witness P r�n,s�n(Ud), so (3)(b) must fail for R′d. Let then U ′d witness
P r�n−1,s�n−1(R′d).

We define a quasistrategy U ′ for I in S ′ as follows:

(1) If p ∈ U ′ and there is no d ∈ D such that d ⊆ p and p ∈ Rd, then let
any move legal in S ′ at p be legal in U ′ at p.
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(2) For each q ∈ S ′ and d ∈ D such d ⊆ q, such that q ∈ Rd \ R′d (taking
R′d = ∅ for d /∈ D′), and such that every q′ ( q belongs to R′d, let σq be
a winning strategy for I for G(¬dRde;S ′d). Whenever such a q belongs
to U ′, we let U ′q agree with σq until a position p /∈ Rd is reached.

(3) For d ∈ D′ ∩ U ′, let U ′d ∩R′d = U ′d.

Using D′ and 〈R′d | d ∈ D′〉, we now show that U ′ locally witnesses
P r�n−1,s�n−1(S ′). Induction will then give that U ′ witnesses P r�n−1,s�n−1(S ′),
contradicting property (3)(b) of S ′. Property (i) follows from clause (3) in
the definition of U ′ and the fact that U ′d witnesses P r�n−1,s�n−1(R′d). For
(ii), note first that clause (2) in the definition of U ′ guarantees that, for each
d ∈ D,

dU ′e ∩ dRde ⊆ dR′de.

Thus dU ′e \
⋃
d∈D′dR′de = dU ′e \

⋃
d∈DdRde ⊆ A. (iii) follows from the facts

that D′ ⊆ D and that (∀d ∈ D′)R′d ⊆ Rd.
For the remaining case, that of an odd n > 0, we make the same defi-

nitions as for the case of even n > 0, except that we exchange I and II, A
and ¬A, and G(¬dRde;S ′d) and G(dRde;S ′d). The argument is exactly the
same, except for a minor change in the case n = 1: In that case, the U ′d are
the quasistrategies corresponding to winning strategies for II for G(A;R′d),
and we must prove that dU ′e ⊆ ¬A. As before, dU ′e \

⋃
d∈D′dR′de ⊆ ¬A.

Moreover for d ∈ D′ we have that dU ′e ∩ dR′de = dU ′de ⊆ ¬A. �

We say that P r,s(S) fails everywhere if P r,s(Sp) fails for every p ∈ S.

Lemma 1.4.12. Let 〈r, s〉 ∈ Q and let m = `h(r). If P r,s(S) fails, then
there is a quasistrategy W in S for I if m is even and for II if m is odd such
that P r,s(W ) fails everywhere.

Proof of Lemma. The case m = 0 is Lemma 1.2.7, so assume m = n+ 1.
Suppose for definiteness that n is even; the other case is similar. Let D be
the set of all d ∈ S such that P r,s(Sd) but such that, for every p ( d, P r,s(Sp)
fails. For each d ∈ D, let Ud witness P r,s(Sd). Let

B = {x ∈ dSe | (∃d ∈ D) d ⊆ x}.

First assume for a contradiction that the open game G(B;S) is a win for
I. Let σ be a winning strategy for I for G(B;S). We define a quasistrategy
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U for I in S as follows: U agrees with σ until a position d ∈ D is reached.
Then Ud = Ud. For d ∈ D, let Rd = Sd. It is easy to see, using D and
〈Rd | d ∈ D〉, that U locally witnesses P r,s(S), so Lemma 1.4.11 gives the
contradiction that U witnesses P r,s(S).

We know then that G(B;S) is a win for II. Let W be II’s non-losing
quasistrategy. Assume for a contradiction that q ∈ W and that U∗ witnesses
P r,s(Wq). Let U be a quasistrategy for I in Sq defined as follows: Let U∩Wq =
U∗. When first (if ever) a position p /∈ W is reached, let U agree with a
winning strategy σp for I for G(B;S) until a position d ∈ D is reached. Then
let Ud = Ud. Let D′ = D ∪ {q}. Let Rq = Wq and let Rd = Sd for d ∈ D. It
is easy to see, using D′ and 〈Rd | d ∈ D′〉, that U locally witnesses P r,s(Sq).
Lemma 1.4.11 gives us the contradiction that some d ⊆ q belongs to D. �

For n + 1 = `h(r), we say that W strongly witnesses P r,s(S) if, for all
p ∈ W , Wp witnesses P r,s(Sp), i.e. if W witnesses P r,s(S) and P r�n,s�n(W )
fails everywhere.

Lemma 1.4.13. Let 〈r, s〉 ∈ Q with 0 < `h(r) = n + 1. If P r,s(S), then
there is a W that strongly witnesses P r,s(S).

Proof of Lemma. Assume for definiteness that n is even. Let U witness
that P r,s(S). By property (2)(b) of U , P r�n,s�n(U) fails. By Lemma 1.4.12,
let W be a quasistrategy for I in U such that P r�n,s�n(W ) fails everywhere.
Since W is a quasistrategy for I in S and W inherits property (2)(a) from U ,
it follows that W strongly witnesses P r,s(S). �

Lemma 1.4.14. Let 〈r, s〉 ∈ Q with 0 < `h(r) = n + 1. At least one of
P r,s(S) and P r�n,s�n(S) holds.

Proof of Lemma. We prove the lemma by induction on r(n), simultane-
ously for all n, r, s, and S. (Recall that r is a strictly decreasing sequence
of ordinals.)

Suppose for definiteness that n is even. Assume that P r,s(S) fails. We
will define a quasistrategy U for II, and also D ⊆ S and 〈Rd | d ∈ D〉.
Simultaneously we will define the notion of a position q ∈ U marking stage
j, for j ∈ ω. For any play x ∈ dUe, the set of j such that some q ⊆ x marks
stage j will be a (not necessarily proper) initial segment of ω, and, whenever
q ( x marks stage j and q′ ⊆ x marks stage j′, we will have q ( q′ ↔ j < j′.
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If r(n) > 0, let 〈βj,mj〉, j ∈ ω, be an enumeration of all pairs 〈β,m〉 with
β odd, β < r(n), and m ∈ ω.

The initial position ∅ marks stage 0. By induction, P r_〈β0〉,s_〈m0〉(S)
holds if r(n) > 0; let W ∅ be a quasistrategy for II strongly witnessing this.
If r(n) = 0, let W ∅ be a quasistrategy for II in S such that P r,s(W ∅) fails
everywhere.

Assume inductively that q ∈ U marks stage j and that q belongs to a
quasistrategy W q for II in Sq such that P r,s(W q) fails everywhere and such
that W q strongly witnesses P r_〈βj〉,s_〈mj〉(Sq) if r(n) > 0.

Assume first that G(Ar(n),s(n),j;W
q) is a win for I. Then q ∈ D. Let R̂q be

I’s non-losing quasistrategy for G(Ar(n),s(n),j;W
q). Let Rq ∩W q = R̂q and,

for p ∈ Sq \W q, let Rq
p = Sp. Let U q witness P r�n,s�n(R̂q). (U q exists since

dR̂qe ⊆ Ar(n),s(n),j ⊆ Ar(n),s(n), and so the non-existence of U q would imply
P r,s(W q), whereas P r,s(W q) fails everywhere.) We let U agree with U q on
R̂q. No p ∈ R̂q with q ( p belongs to D or marks any stage.

Suppose that either R̂q exists and p ⊇ q is some first position in Uq not

belonging to R̂q or else p = q and R̂q does not exist (i.e., G(Ar(n),s(n),j;W
q) is a

win for II). Let U agree with a winning strategy τp for II for G(Ar(n),s(n),j;W
q)

until a position q′ ⊇ p is first reached with dW q
q′e∩Ar(n),s(n),j = ∅ and q ) p if p

is not terminal. No q∗ with p ⊆ q∗ ( q′ belongs to D or marks any stage. The
position q′ marks stage j + 1. P r,s(W q

q′) fails everywhere, because P r,s(W q)

fails everywhere. If r(n) = 0, let W q′ = W q
q′ . If r(n) > 0 then, by induction,

P r_〈βj+1〉,s_〈mj+1〉(W q
q′) holds; let W q′ strongly witness this. The position q′

marks stage j + 1. Note that W q′ strongly witnesses P r_〈βj+1〉,s_〈mj+1〉(Sq′)
if r(n) > 0, as required.

This completes the definition of U .
Suppose first that n > 0. We will show, using D and 〈Rd | d ∈ D〉,

that U locally witnesses P r�n,s�n(S). By Lemma 1.4.11, this will show that
U witnesses P r�n,s�n(S).

Since Ud ∩ Rd = Ud ∩ R̂d = Ud for d ∈ D, condition (i) holds. For (ii),
suppose that x is a play in U such that x /∈

⋃
d∈DdRde. From the definition

it follows that we have either

∅ = q0 ( q1 ( q2 ( · · · ⊆ x

or

∅ = q0 ( · · · ( qk = qk+1 = · · · = x



1.4. ∆0
4 GAMES 43

such that each qj marks stage j. From the definition we also get that

j < j′ → W qj ⊇ W qj′ .

Hence x ∈
⋂
j∈ωdW qje. Since W qj witnesses P r_〈βj〉,s_〈mj〉(Sqj) if r(n) > 0,

it follows that

x ∈
⋂
j∈ω

(¬A ∪ Aβj ,mj) = ¬A ∪
⋂

β<r(n)

β odd

⋂
m∈ω

Aβ,m

= ¬A ∪
⋂

β<r(n)

β odd

Aβ.

From the definition we also get that, for each j,

dW qj+1e ∩ Ar(n),s(n),j = ∅.

Hence x /∈
⋃
j∈ω Ar(n),s(n),j = Ar(n),s(n). Since Ar(n),s(n) ⊇ Ar(n), we have that

x /∈ Ar(n). Thus we have that

x ∈ (¬A ∪
⋂

β<r(n)

β odd

Aβ) \ Ar(n).

Since r(n) is even, x ∈ ¬A, as required by (ii). It is easy to see that (iii)
holds.

Now suppose that n = 0. A simplification of the argument for (ii) in
the case n > 0 still works, so dUe \

⋃
d∈DdRde ⊇ ¬A. Since Ud ∩ Rd = Ud

and dUde ⊆ ¬A, we have that
⋃
d∈DdRde ⊆ ¬A. Thus U is a winning

quasistrategy for G(S;A), and so P ∅,∅(S) holds. �

We can now prove the theorem. Assume that G(A;T ) is not a win for II.
This means that P ∅,∅(T ) fails. By Lemma 1.4.12, let W ∅ be a quasistrategy
for I in T such that P ∅,∅(W ∅) fails everywhere.

Let 〈βj,mj〉, m ∈ ω, be an enumeration of all pairs 〈β,m〉 with β even,
β < γ, and m ∈ ω.

We define a quasistrategy U for I in W ∅. Assume inductively that we
have defined {p | p ∈ U ∧ `h(p) ≤ j}. Let p ∈ U with `h(p) = j. Assume
inductively also that p ∈ W p, where W p is a quasistrategy for I in W ∅

p such
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that P ∅,∅(W p) fails everywhere. For each q ) p with `h(q) = j + 1, let
q ∈ U ↔ q ∈ W p. By Lemma 1.4.14, P 〈βj〉,〈mj〉(W p

q ) holds for all such q. Let

W q be a quasistrategy for I in W p
q strongly witnessing P 〈βj〉,〈mj〉(W p

q ).
We show that every play x ∈ dUe belongs to A, and so that U is a

winning quasistrategy for I for G(A;T ). Let x ∈ dUe. If x is finite, the fact
that x ∈ dW ∅e implies that x ∈ A. Assume then that x is infinite. Since
x ∈ dW x�j+1e for each j ∈ ω, it follows that

x ∈ A ∪
⋂
β<γ

β even

⋂
i∈ω

Aβ,i = A ∪
⋂
β<γ

β even

Aβ = A.

The last equality holds because γ is odd. �

Corollary 1.4.15. All ∆0
4 games in countable trees are determined.

Proof. The corollary is a direct consequence of Theorems 1.4.2 and 1.4.10.
�

Montalban and Shore demonstrate in [Montalban and Shore, 2012] the
unprovability in ZC−+ Σ1 Replacement−—indeed, in ZFC−—of the asser-
tion that all games in <ωω that are k-Π0

3 for some k ∈ ω are determined.
(Theorem 1.4.4 says only that k-Π0

3 determinacy is provable in ZC−+ Σ1

Replacement for each fixed k ∈ ω.) Hence neither Theorem 1.4.10 nor Corol-
lary 1.4.15 is provable in ZC−+ Σ1 Replacement.

As we will demonstrate, our proof of Theorem 1.4.10 does show that every
every wellfounded model of ZC−+ Σ1 Replacement satisfies “All Diff(Π0

3)
games are determined.” A model (M ;E) for the language of set theory is
wellfounded if E is a wellfounded relation. (See page 24 for the definition of
wellfoundedness for relations.) By a theorem of Mostowski, a model for the
language of set theory that satisfies Extensionality is wellfounded just in case
it is isomorphic to a transitive model, a model (M ;∈) with M a transitive
set.

Our proof of Theorem 1.4.10 also shows that γ-Π0
3 determinacy holds for

a certain infinite γ in all ω-models of ZC−+ Σ1 Replacement. Let us say that
a model (M ;E) for the language of set theory is an ω-model if ω ∪{ω} ⊆M
and

(∀x ∈M)(∀y ∈ ω ∪ {ω})(xEy ↔ x ∈ y).
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If (M ;E) satisfies a sufficient small fragment of ZF, then (M ;E) is an ω-
model just in case ω is the ω of (M ;E) and the natural numbers are the
natural numbers of (M ;E).

To prove the facts just mentioned, we need two more definitions. Let
(M ;E) be a model for the language of set theory. If x ∈ M , then the
transitive closure of x under E is the smallest set w such that x ∈ w and
such that yEz ∈ w → y ∈ w. The wellfounded part of (M ;E) is the set of
all x ∈ M such that E restricted to the transitive closure of x under E is a
wellfounded relation. It is not hard to see that the restriction of E to the
wellfounded part of (M ;E) is a well-founded relation.

If (M ;E) satisfies Extensionality and a small fragment of the Compre-
hension Schema, then the ordinals of (M ;E)—i.e., those x ∈ M such that
(M ;E) |= “x is an ordinal”—are linearly ordered by E. Thus an ordinal x of
(M ;E) belongs to the wellfounded part of (M ;E) if and only if E wellorders
{y | yEx}.

Theorem 1.4.16. Let (M ;E) be an ω-model of ZC−+ Σ1 Replacement. As-
sume that T is, in (M ;E), a game tree. Assume that T belongs to the well-
founded part of (M ;E). Assume that γ is an ordinal of (M ;E) and that γ
belongs to the wellfounded part of (M ;E). Then

(M ;E) |= “All γ-Π0
3 games are determined.”

Proof. By Mostowski’s theorem, we may assume that the wellfounded part
of (M ;E) is a transitive set on which E agrees with membership. This
implies, in particular, that γ is an ordinal number and that T is a game tree.

Let A be, in (M ;E), a γ-Π0
3 subset of dT e. Working in (M ;E), intro-

duce 〈Aα | α < γ〉, 〈Aα,n | α < γ ∧ n ∈ ω〉, and Q as in the proof of
Theorem 1.4.10.

For each n ∈ ω, define P r,s
n (S) for S ⊆ T , 〈r, s〉 ∈ Q and `h(r) = n as

P r,s(S) was defined for such objects in the proof of Theorem 1.4.10. The
theory ZC−+ Σ1 Replacement does not allow us to define, by a formula of
the language of set theory, the class relation P r,s(S). What we do instead
is use the inductive definition of the proof of Theorem 1.4.10 to define, for
each n ∈ ω, a three-place relation P r,s

n (S) for each n. Pn is thus the definable
restriction of the undefinable P to triples 〈S, r, s〉 with `h(r) = n.

Working in (M ;E) with ZC−+ Σ1 Replacement we cannot state Lemma 1.4.11.
But we can replace it with individual statements for each n, and our induc-
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tive proof of the Lemma shows that each of these individual statements is
true in (M ;E).

The statement of Lemma 1.4.12 also needs to be replaced by individual
statements for each n. The proof of Lemma 1.4.12 directly gives, for each n,
a proof of the statement for n from the Lemma 1.4.11 replacement statement
for n. Similarly the Lemma 1.4.13 replacement statement for n is proved
from the Lemma 1.4.12 replacement for n.

Finally, we get replacement statements for Lemma 1.4.14. The nth of
these asserts that at least one of P r,s

n+1(S) and P r�n,�n
n (S) holds for any S

and any r and s of length n. Assume that one of these assertions is false in
(M ;E). Let S, r, and s have the least value of r(`h(r)) attained by a triple
yielding a statement false in (M ;E). There is such a least value, since all
values r(i) are ordinals of M that are < γ. The proof of Lemma 1.4.14 shows
that if `h(r) = n + 1 and P r,s(S) nor P r�n,s�n(S) holds, then there some
P r_〈β〉,s_〈m〉(S ′) that does not hold and has β < r(n)〉. Thus that proof,
applied to (M ;E), contradicts the assumed minimality of r(`h(r)).

In the proof of Theorem 1.4.10, the determinacy of G(A;T ) is proved
using only the n = 0 case of Lemma 1.4.14. �

Corollary 1.4.17. Every wellfounded model of ZC−+ Σ1 Replacement sat-
isfies “All ∆0

4 games in countable trees are determined.”

Corollary 1.4.18. If let (M ;E) be an ω-model of ZC−+ Σ1 Replacement.
Assume that the wellfounded part of (M ;E) is a transitive set and that E
agrees with ∈ on the wellfounded part of (M ;E). Let γ be an ordinal such
that ∈� γ is isomorphic to a recursive wellordering of ω. Then γ belongs to
the wellfounded part of (M ;E) and

(M ;E) |= “All γ-Π0
3 games are determined.”

Proof. All recursive relations on ω belong to M , and recursive wellorderings
of ω belonging to M are wellorderings in (M ;E). �

Our next goal is to get an upper bound on the hypothesis needed to prove
Theorem 1.4.10.

As we have indicated, the point at which our proof of Theorem 1.4.10 goes
beyond the resources of ZC−+ Σ1 Replacement is in the definition of P r,s(S).
Our definition is by recursion on `h(r), and such recursive definitions are not
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licensed by ZC−+ Σ1 Replacement. Our plan is to formulate a theory that
does license these definitions.

Let LR be the language gotten from the language of set theory by adding
R as a two-place predicate symbol.

For k ≥ 1, let ψ(v1, . . . vk) be a formula of the language of set theory. Let
χ(v0, v1, . . . , vk) be a formula of LR in which every subformula of of the form
R(x, y) has the form R(v0, y). Let LRψ,χ be the language gotten from LR by
replacing R by a symbol Rψ,χ. Let χψ,χ be the be the result of replacing R
in χ by Rψ,χ. Let Lrec be the the union, in the obvious sense, of the LRψ,χ .

We define a theory Rec(ZC−+ Σ1 Replacement) in the language Lrec.
The axioms of Rec(ZC−+ Σ1 Replacement) are the same as the axioms of
ZC−+ Σ1 Replacement, with the following additions.

(1) The Comprehension and Σ1 Replacement Schemas apply to all formulas
ϕ(x, u, w1, . . . , wn) of the language Lrec.

(2) There are axioms, described below, for each Rψ,χ.

(a) Rψ,χ(x, y)→ (x ∈ ω ∧ (∃n ∈ ω)y is an n-tuple).

(b) Rψ,χ(0, 〈v1, . . . , vk〉)↔ ψ(v1, . . . , vk).

(c) (∀n ∈ ω)(Rψ,χ(n+ 1, 〈v1, . . . , vk〉)↔ χψ,χ(n, v1, . . . , vk).

The difference between ZC−+ Σ1 Replacement and Rec(ZC−+ Σ1 Replace-
ment) is, roughly speaking, that the latter allows formulas to be defined by
recursion from formulas of the language of set theory.

Theorem 1.4.19. (Rec(ZC−+ Σ1 Replacement)) All Diff(Pi03) games are
determined, and so all ∆0

4 games in countable trees are determined.

Proof. We specify formulas ψ(v1, v2, v3, v4, v5) and χ(v0, v1, v2, v3, v4, v5).
Each of these formulas will say the following:

(a) v2 is a countable game tree (which we will call) T .

(b) v3 is is a Diff(Π0
3) subset A of dT e.

(c) v4 is a function 〈Aα | α < γ〉 witnessing that A ∈ Diff(Π0
3).

(d) v5 is a function 〈Aα,i | α < γ ∧ i ∈ ω〉 witnessing that each Aα is a
countable intersection of Σ0

2 sets.

The formula ψ(v1, v2, v3, v4, v5) will also say the following.
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(a) v1 is a triple 〈∅, ∅, S〉.
(b) S is a game subtree of T .

(c) G(A;S) is a win for II.

Our axioms thus imply that Rψ,χ(0, 〈∅, ∅, S〉)↔ G(A;S) is a win for II.
The formula χψ,χ(n, v1, v2, v3, v4, v5) will say the following.

(a) v1 is a triple 〈r, s, S〉;
(b) 〈r, s〉 belongs to the set Q defined as on page 37;

(c) `h(r) = n+ 1.

(d) If n is even, then there is a quasistrategy U for I in S such that

(i) dUe ⊆ A ∪ Ar(n),s(n);

(ii) Rψ,χ(〈r � n, s � n, U〉) fails.

(e) If n is odd, then there is a quasistrategy U for II in S such that

(i) dUe ⊆ ¬A ∪ Ar(n),s(n);

(ii) Rψ,χ(〈r � n, s � n, U〉) fails.

Set
P r,s(S)↔ Rψ,χ(`h(r), 〈r, s, S〉).

It follows by induction from our axioms that P r,s(S) satisfies the definition
on page 38. Thus we may repeat the proof of Theorem 1.4.10. �

Richard Shore suggested—or, more accurately, pointed out—to the au-
thor that adding a satisfaction predicate to ZC−+ Σ1 Replacement does the
the same thing as Rec(ZC−+ Σ1 Replacement) does. This is indeed the case,
as we will explain briefly.

Fix some reasonable way of construing formulas as sets. We will define
a satisfaction predicate by recursion. The defining axioms will be in the
language LSat gotten from the language of set theory by adding a three-place
predicate symbol Sat. The base clause ρ0(x, y) says that Sat(0, x, y) if and
only if

(i) x is a a formula of the form vi = vj or vi ∈ vj (i.e., is a formula of the
language of set theory of length 3);

(ii) y is 〈z0, . . . , zk〉 for some sets z0, . . . , zk with k ≥ max(i, j).
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(iii) either x is vi = vj and and zi = zj or else x is vi ∈ vj and zi ∈ zj.

The recursion clause ρ(x, y) says that, for all n ∈ ω, Sat(n + 1, x, y) if and
only if

(a) x is a formula of the language of set theory of length ≤ n+ 4;

(b) y is 〈z0, . . . , zk〉 for some z0, . . . , zk with k ≥ max({i | vi is free in x});
(c) σn.

Here σn, which we leave to the reader, gives the definition of Sat(n+ 1, x, y)
in terms of the relation Sat(n,−,−)).

Let Sat(ZC−+ Σ1 Replacement) be the extension of ZC−+ Σ1 Replace-
ment (1) with added axioms ρ0, ρ, and (∀z)(∀x)(∀y)Sat(z, x, y)→ z ∈ ω and
(2) with Comprehension and Σ1 Replacement for all formulas of LSat.

We can define a satisfaction predicate Sat in Rec(ZC−+ Σ1 Replacement)
and prove the axioms of Sat(ZC−+ Σ1 Replacement). To do this, first let
ψ(v1) be

(∃x)(∃y)(v1 = 〈x, y〉 ∧ (i) ∧ (ii) ∧ (iii)),

where (i), (ii), and (iii) are the three clauses above. Next let χ(v0, v1) be

(∃x)(∃y)(v1 = 〈x, y〉 ∧ (a′) ∧ (b) ∧ (c′)),

where (a′) is (a) with n replaced by v0 and (c′) is (c) with Sat(n, x, y) replaced
by R(v0, 〈x, y〉). Finally define Sat(n, x, y) as Rψ,χ(n, 〈x, y〉).

We can also define predicates Rψ,χ in Sat(ZC−+ Σ1 Replacement) and
prove the axioms of Rec(ZC−+ Σ1 Replacement). Given ψ and χ, we define
by recursion a sequence 〈τn | n ∈ ω〉 of formulas of the language of set theory
as follows.

(1) τ0(v1) is the formula (∃k ∈ ω)(v1 is a k-tuple and ∧ ψ((v1)1, . . . , (v1)k).
(Here v1 = 〈(v1)1, . . . , (v1)k〉. We assume that we have a representation
of finite sequences that lets us define the (v1)i from v1.

(2) τn+1(v1) is (∃k ∈ ω)(v1 is a k-tuple and ∧ χ′((v1)1, . . . , (v1)k)), where
χ′ is the result of replacing each (R(v0, x) in χ(v0, (v1)1, . . . (v1)k)) by
τn(x).

Now we can define Rψ,χ(v0, v1) as v0 ∈ ω and Sat(v0, τn, v1).

We finish this section by extending Corollary 1.4.15 to uncountable trees.
This is work of the author, done in 1990.
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For classes Γ and ordinals α, we say that a set A ⊆ dT e belongs to the
class (α-Γ)∗, the αth level of the generalized difference hierarchy on Γ, just
in case there is a sequence 〈Aβ | β < α〉 with each Aβ ∈ Γ and there is a
function f : T → α such that both

(a) (∀x ∈ dT e)(x ∈ A ↔ µβ(x /∈ Aβ ∨ β = α) is odd);

(b) (∀x ∈ dT e)(∀β < α)(x /∈ Aβ → (∃n ∈ ω) β = f(x � n)).

Let Diff∗(Γ) =
⋃
α<|T |+(α-Γ)∗. Let T be a game tree. If A and Bj, j ∈ J ,

are subsets of dT e, then A is the fully open-separated union of {Bj | j ∈ J}
if

(a) A =
⋃
j∈J Bj;

(b) there are disjoint open sets Dj, j ∈ J , such that
⋃
j∈J Dj = dT e and

such that Bj ⊆ Dj for each j ∈ J .

If {Dj | j ∈ J} witnesses that A is the fully open-separated union of {Bj |
j ∈ J}, then each ¬Dj =

⋃
j′∈J\{j}Dj′ ; hence each Dj is in fact a clopen set.

We will use the following lemma in proving that Diff∗(Π0
ξ) ⊆∆0

ξ+1.

Lemma 1.4.20. (ZC−+ Σ1 Replacement) Let 1 ≤ ξ < ω1 and let A ⊆ dT e
be the fully open-separated union of {Bj | j ∈ J}. (1) If each Bj ∈ Σ0

ξ, then
A ∈ Σ0

ξ. (2) If each Bj ∈ Π0
ξ, then A ∈ Π0

ξ.

Proof. We prove the lemma by induction on ξ. Assume that the lemma
holds for every ξ′ < ξ. Let {Dj | j ∈ J} witness that A is the fully open-
separated union of {Bj | j ∈ J}.

To prove (1) for ξ, assume that each Bj ∈ Σ0
ξ . If ξ = 1 then the fact

that every union of open sets is open gives that A ∈ Σ0
1. Assume then that

ξ > 1. If ξ is a limit ordinal, let η0 < η1 < . . . be such that supk∈ωηk = ξ. If
ξ = η + 1, then let ηk = η for each k ∈ ω. For j ∈ J let Bj =

⋃
k∈ω Bj,k with

each Bj,k ∈
⋃
ξ′<ξ Π0

ξ′ . Using Lemma 1.1.1 and modifying each 〈Bj,k | k ∈ ω〉
by inserting ∅ where necessary, we may assume that each Bj,k ∈ Π0

ηk
. For

k ∈ ω, let Ak =
⋃
j∈J Bj,k. Now {Dj | j ∈ J} witnesses that each Ak is

the fully open-separated union of {Bj,k | j ∈ J}, so our induction hypothesis
gives that each Ak ∈ Π0

ηk
. Thus A =

⋃
k∈ω Ak belongs to Σ0

ξ .
Now assume that each Bj ∈ Π0

ξ . For each j ∈ J , Dj \ Bj ∈ Σ0
ξ . (1)

therefore gives that ¬A =
⋃
j∈J(Dj \Bj) ∈ Σ0

ξ . Hence A ∈ Π0
ξ , and we have

proved (2) for ξ. �
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Theorem 1.4.21. (ZC−+ Σ1 Replacement) For all T , Diff∗(Π0
ξ) = ∆0

ξ+1.

Proof. We first show that Diff∗(Π0
ξ) ⊆ ∆0

ξ+1. Let 〈Aβ | β < α〉 and f :
T → α witness that A ∈ Diff∗(Π0

ξ). Assume for definiteness that α is even.
It will also be convenient to assume that (∀p ∈ T )(`h(p) even↔ f(p) even).
Since by Theorem 1.4.2 we may certainly assume that α ≥ 2, we can modify
f if necessary to make this assumption hold.

For n ∈ ω let
Cn = {x ∈ dT e | x ∈ Af(x�n)}.

Each Cn is the fully open-separated union of

{Af(p) ∩ dTpe | p ∈ T ∧ `h(p) = n}.

By Lemma 1.4.20, each Cn ∈ Π0
ξ . Since α is even,

A =
⋃
n∈ω
n odd

(¬Cn ∩
⋂
m∈ω

(Cm ∪ {x | f(x �m) ≥ f(x � n)}))

=
⋃
n∈ω

¬Cn ∩
⋂
n∈ω
n even

(Cn ∪
⋃
m∈ω

(¬Cm ∩ {x | f(x �m) < f(x � n)}))

For each n and m, {x | f(x �m) ≥ f(x � n)} is clopen, so we can show as in
the first part of the proof of Theorem 1.4.2 that A ∈∆0

ξ+1.
Now let A ∈ ∆0

ξ+1. Repeating the second part of the proof of Theorem
1.4.2, we get 〈Aα | α ≤ 2γ〉, with γ < |T |+, such that each Aα ∈ Π0

ξ and
such that

(∀x ∈ dT e)(x ∈ A ↔ µβ(x /∈ Aβ ∨ β = α) is odd).

Moreover, in the notation of the proof of Theorem 1.4.2,

(∀x ∈ dT e)(∀α < γ)(x /∈ A2α ∩ A2α+1 →
(∃n ∈ ω)(∃t ∈ SII(Sn))(〈x � n, t〉 ∈ Un ∧ ord(x � n, t) = α)).

Let 〈ti | i ∈ ω〉 be an enumeration of
⋃
n∈ω SII(Sn) with the property that

each ti belongs to SII(Sn) for some n ≤ i. Define f : T → 2γ by

f(p) =


2 ord(p � n, ti) if `h(p) = 2i ∧ 〈p � n, ti〉 ∈ Un;
2 ord(p � n, ti) + 1 if `h(p) = 2i+ 1 ∧ 〈p � n, ti〉 ∈ Un;
0 otherwise.

Clearly f satisfies (b) in the definition of ((2γ + 1)-Π0
ξ)
∗. �
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Theorem 1.4.22. (Rec(ZC−+ Σ1 Replacement)) All Diff∗(Π0
3) games are

determined.

Proof. Let 〈Aα | α < γ〉 and f : T → γ witness that A ∈ Diff∗(Π0
3). In

the proof of Theorem 1.4.10—and so in the proof of Theorem 1.4.19—the
countability of T was used only in the proof of Lemma 1.4.14 and in the final
argument after the proof of that lemma. We can adapt the proof of Lemma
1.4.14 to the present situation as follows: For p ∈ T and `h(p) = 2k3m, let

βp =

{
f(p � k) if f(p � k) < r(n) ∧ f(p � k) is odd;
0 otherwise.

mp = m.

Repeat the proof of Lemma 1.4.14, except replace, in the definition of U , the
pairs 〈βj,mj〉 by 〈βq�j,mq�j〉. A similar change will adapt the final argument
in the proof of Theorem 1.4.10 to the present situation. �

Corollary 1.4.23. (Rec(ZC−+ Σ1 Replacement)) All ∆0
4 games are deter-

mined.

Theorem 1.4.16 holds for the generalized difference hierarchy, with essen-
tially the same proof as for the original theorem.

Theorem 1.4.24. Let (M ;E) be an ω-model of ZC−+ Σ1 Replacement. As-
sume that T is, in (M ;E), a game tree. Assume that T belongs to the well-
founded part of (M ;E). Assume that γ is an ordinal of (M ;E) and that γ
belongs to the wellfounded part of (M ;E). Then

(M ;E) |= “All (γ-Π0
3)∗ games are determined.”

Corollary 1.4.25. Every wellfounded model of ZC−+ Σ1 Replacement sat-
isfies “All ∆0

4 games are determined.”

Exercise 1.4.1. ZFC− is ZFC without the Axiom of Power Set. In other
words, ZFC− is ZC− + Replacement. Show that the determinacy of all Σ0

4

games in countable trees is not provable in ZFC−. This is a refinement, due
to the author, of a theorem of [Friedman, 1971]. Friedman’s theorem has Σ0

5

is instead of Σ0
4.
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Hint. Let β0 be the least ordinal number β such that Lβ |= ZC−+ Σ1

Replacement. Show that β0 is the least β such that Lβ |= Z and that it is
the least β such that Lβ |= ZFC−.

Show that there is no a ⊆ ω such that a ∈ Lβ0+1 \ Lβ0 , and show that β0

is the least ordinal with this property. Show that every set in Lβ0 is definable
in Lβ0 .

The plan is to prove that Lβ0 does not satisfy the determinacy of all Σ0
4

games in <ωω. This is to be done by defining a Σ0
4 game G in <ωω such that

G is a win for I but the set of Gödel numbers of sentences true in Lβ0 is
recursive uniformly in any winning strategy for I for G.

For a model (M ;E), WFP(M ;E), the wellfounded part of (M ;E), is the
union of all subsets N of M such that

(a) (∀x)(∀y)(xEy ∈ N → x ∈ N);

(b) the restriction of E to N is wellfounded.

It is easy to show the restriction of E to WFP(M ;E) is wellfounded, so that
WFP(M ;E) is the largest subset N of M satisfying (a) and (b).

It will be convenient, in the exercises that follow and those for §2.3, to
use “ω-model” to mean a model (M ;E) such that ω ∈WFP(M ;E) and the
restriction of E to WFP(M ;E) is the membership relation.

If S is a complete theory in the language of set theory and S extends
some weak fragment of ZFC and S ` V =L, then there is a canonical model
of S, the term model. The model consists of equivalence classes of formulas
ϕ(v). Formulas ϕ(v) and ψ(v) are equivalent if S ` “The <L-least v such
that either ϕ(v) or else v = 0 and (∀v′)¬ϕ(v′) is identical with the <L-least
v such that either ψ(v) or else v = 0 and (∀v′)¬ψ(v′).” The interpretation of
∈ is defined in the obvious way. Note that every element of the term model
of S is definable in the model.

Consider the following game G in <ωω : Gödel numbering all the sentences
of the language of set theory, we define, for each play x,

SI(x) = {ϕ | x(2 #(ϕ)) = 1}
SII(x) = {ϕ | x(2 #(ϕ) + 1) = 1}

If SI(x) is not the set of sentences true in an ω-model of ZFC− + “V = Lβ0 ,”
then I loses. Otherwise II loses unless SII(x) is also the set of sentences true in
an ω-model of ZFC− + “V = Lβ0 .” If neither player has lost for this reason,
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then the term models of SI(x) and SII(x) are isomorphic to ω-models. Let
MI and MII be such ω-models. Player I wins just in case one of the following
holds:

(1) The model MI is isomorphic to a initial segment of MII.

(2) There is an ordinal a of MI such that LMI
a is isomorphic to an initial

segment of MII but LMI
a+1 is not.

By an ordinal of MI we mean an a such that MI |= “a is an ordinal num-
ber.” By an initial segment of MII we mean

⋃
b∈X L

MII
b , where X is a (not

necessarily proper) initial segment of the ordinals of MII. It is not required
that X be the initial segment of any ordinal of MII.

G is a win for I, who can simply play as SI(x) the set of sentences true in
Lβ0 . But show that, as long as II simply copies I’s moves, I can maintain a
winning position only by following this strategy. Thus the set of Gödel num-
bers of sentences true in Lβ0 is recursive uniformly in any winning strategy
for I for G. It is fairly easy to see that this set of Gödel numbers does not be-
long to Lβ0 . Thus no winning strategy for G belongs to Lβ0 . By absoluteness,
Lβ0 |= “G is not determined.”

Show that G = G(A; <ωω) with A ∈ Σ0
4. There are two main points.

First, there is a fixed Π1
1 formula ϕ(X, Y ) of second order arithmetic such

that, for any ω-model N of (a weak fragment of ZFC +) V = L, for any
ordinal a of N, and for any subset b of ω belonging to LN

a+1 \ LN
a ,

(i) LN ∩ P(ω) |= (∃Y )ϕ(b, Y );

(ii) for all c∈LN
a+1 ∩P(ω), LN ∩P(ω) |= ϕ(b, c) if and only if c codes a

model (ω;E) isomorphic to LN
a .

It follows that, for ω-models N of V =L + “β0 does not exist,” N ∩ P(ω)
determines the isomorphism type of N. This implies, for example, that (1)
holds just in case the subsets of ω of MI are the same as those of some initial
segment of MII in the sense of the L-hierarchy of MII. The second main point
is that, for formulas ϕ(v) and ψ(v) whose equivalence classes correspond to
subsets of ω in MI and MII respectively, the condition that these subsets of
ω are the same is a Π0

1 condition. This enables one to show that (1) is a Π0
3

condition. Similarly, the condition (2) is Σ0
4.

Remark. In [Montalban and Shore, 2012], the authors prove a sharper
result than that of Exercise 1.4.1:

ZFC− 6` (∀n ∈ ω)All n-Π0
3 games are determined.
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See the remark after the hint for Exercise 1.4.2 for discussion of a still stronger
result of Montalban and Shore.

Exercise 1.4.2. Work in ZC−+ Σ1 Replacement. Assume that all Σ0
4 games

are determined. Prove that there is an ordinal β such that Lβ |= ZFC−; i.e.,
prove that β0 exists. Like the result of of Exercise 1.4.1, this is a refinement
by the author of a result of [Friedman, 1971], replacing Σ0

5 by Σ0
4. One of

its consequences is that the consistency of ZFC− can be proved in ZC−+ Σ1

Replacement + “all Σ0
4 games are determined.”

Hint. Show (in ZC−+ Σ1 Replacement) that there are arbitrarily large
admissible ordinals, i.e., ordinals α such that Lα |= Kripke–Platek set theory,
KP.

Let T be the theory KP + V =L + “β0 does not exist.”
Show that, for any ω-model M of KP, WFP(M) |= KP. This implies,

in particular, that if M is any ω-model of T and β is the least ordinal not
belonging to WFP(M), then β is admissible .

In order to derive a contradiction, assume that β0 does not exist.
Let Y be the set of ordinals α such that Lα |= T and every member of

Lα is definable in Lα. Prove that Y is unbounded in the ordinals. Do do so,
assume to the contrary that γ = sup(Y ). Let α be the least admissible greater
than γ. Let X be the elementary submodel of Lα consisting of the elements
of Lα definable in Lα. The ordinal γ belongs to X. The non-existence of β0

implies that there is some subset a of ω such that a ∈ Lγ+1\Lγ. The <L-least
such a belongs to X. Deduce that X = Lα. This gives the contradiction that
α ∈ Y .

Consider the following game G′ in <ωω: For x ∈ ωω, let SI(x) and SII(x)
be defined as in Exercise 1.4.1. If SI(x) is not the set of sentences true in an
ω-model of T then I loses. Otherwise II loses unless SII(x) is also the set of
sentences true in an ω-model of T . If neither player has lost for this reason,
then let MI and MII be ω-models isomorphic to the term models of SI(x)
and SII(x) respectively. Player I wins just in case one of the following holds:

(1) The model MI is isomorphic to an initial segment of MII not of the
form LMII

b for b an ordinal of MII.

(2) There is an ordinal a of MI such that LMI
a is isomorphic to an initial

segment of MII but LMI
a+1 is not.

Prove that G′ is not a win for I. To do so, assume that σ is a winning
strategy for I. By absoluteness, you may assume that σ ∈ L. Let II play
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against σ the set of sentences true in some Lα ∈ Y such that σ ∈ Lα. It is
easily seen that II’s part of the resulting play x belongs to Lα+2. It follows
that x belongs to Lα+2. Thus SI(x) ∈ Lα+2, and so P(ω) ∩MI ⊆ Lα+2. Let
β be the least ordinal not belonging to WFP(MI). The wellfoundedness of
MII implies that (1) can hold only if MI

∼= MII, i.e., if MI = Lα. But this
is impossible, for σ belongs to Lα, and II is simply copying as long as I is
playing the set of sentences true in Lα. Therefore (2) holds. This can happen
only if β > α. But β is admissible, so β > α + 2. Therefore Lα+3 ⊆ MI.
Because β0 does not exist, there is an a ⊆ ω such that a ∈ Lα+3 \Lα+2. This
gives the contradiction that a both belongs and does not belong to MI.

Now prove that the game G′ is not a win for II. For this assume that
τ ∈ L is a winning strategy for II. Let I play against τ the set of sentences
true in some Lα ∈ Y such that τ ∈ Lα. It follows that P(ω) ∩MII ⊆ Lα+2.
Let β be the least ordinal not belonging to WFP(MII). Since (1) fails, it
is impossible that β = α. Since (2) fails, it is also impossible that β < α.
Thus β > α. By an argument like that of the last paragraph, this gives a
contradiction.

Derive a contradiction by showing that G′ is Σ0
4 and therefore, by hypoth-

esis, determined.

Remark. In [Montalban and Shore, ], a strengthening of the result of
Exercise 1.4.2 is proved. In [Montalban and Shore, ], they improve this result
by showing that the consistency ZFC− is implied by the statement that, for
all n ∈ ω, all n-Π0

3 games are determined. (The latter statement is what they
call ω-Π0

3 determinacy.) This follows by an ultraproduct construction from
their theorem that, for all n ≥ 1, KP ` Π0

n+2 Determinacy → “There is a
wellfounded model of KP + ∆0

n+2 Comprehension.” The theorem is proved
using games similar to—but more complex than—the game used in the proof
of Exercise 1.4.2.

Exercise 1.4.3. Let D be the set of all degrees of unsolvability, i.e., of all
Turing degrees. A cone of Turing degrees is the set of all degrees greater than
or equal to some fixed degree, which is called the vertex of the cone. For
classes Γ of sets, Γ Turing determinacy is the assertion that, for all A ⊆ D
such that

⋃
A ∈ Γ, either A or D \ A contains a cone.

Work in ZC−+ Σ1 Replacement. Assume Σ0
5 Turing determinacy and

prove that β0 exists. This is another strengthening by the author of a result
of [Friedman, 1971], with Σ0

5 replacing the Σ0
6 of [Friedman, 1971].
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Hint. For elements y and z of ωω, let y⊕z ∈ ωω be such that (y⊕z)(2n) =
y(n) and (y ⊕ z)(2n + 1) = z(n) for all n ∈ ω. Let B be the set of all 〈y, z〉
such that I wins the play y ⊕ z of the game G′ of Exercise 1.4.2. Let

A = {a ∈ D | (∃z ∈ ωω)(d(z) ≤ a ∧ (∀y ∈ ωω)(d(y) ≤ a→ 〈y, z〉 /∈ B))}.

Note that
⋃
A ∈ Σ0

5.
Assume that β0 does not exist. Let b ∈ D ∩ L. Show that the cone with

vertex b is not contained in A. To do so, let α belong to the set Y defined
in the hint to Exercise 1.4.2 and let b ∈ Lα. Let S be the set of sentences
true in Lα. Let y be the characteristic function of the set of Gödel numbers
of members of S. Let a = d(y). Show that

(∀z)(d(z) ≤ a → 〈y, z〉 ∈ B).

(This is more than what is needed for a /∈ A.) Similarly show that the cone
with vertex b is not disjoint from A.

Exercise 1.4.4. Work in ZC−+ Σ1 Replacement. Let D be as in Exer-
cise 1.4.3.

(a) Let A ⊆ D. Prove that G(
⋃
A; <ωω) is determined if and only if

either A or D \ A contains a cone. This observation is from [Martin, 1968].
It implies that, for all classes Γ, Γ Turing determinacy follows from the
hypothesis that all Γ games are determined.

(b) Let α be a countable ordinal. Assume that all Σ0
α games in <ωω are

determined. Let A ⊆ ωω with A ∈ Σ0
α+1. Show that if A has members of

arbitrarily large degree then A meets each member of some cone of degrees.
This result appears in [Harrington and Kechris, 1975]; the authors report
that it was independently proved by Ramez Sami.

(c) Prove that, for every countable ordinal α, ∆0
α+2 Turing determinacy

follows from the determinacy of all Σ0
α games in <ωω. This consequence of

(b) is due to the author.
(d) Prove ∆0

5 Turing determinacy. (By Exercise 1.4.3, this is an optimal
result.)

Hint. For (b), let A ∈ Σ0
α+1 and let Bn, n ∈ ω, be Π0

α sets such that be
such that A =

⋃
n∈ω Bn. Let B = {〈n〉_x | x ∈ Bn}. Consider the game G

in which I plays x, II plays y, and I wins if x ∈ B and d(y) ≤ d(x). Show
that G is a win for I and use this to show that A meets all sufficiently large
degrees.
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For (c), use Theorem 1.4.2.

Remark. The result of Exercise 1.4.1 and those of parts (c) and (d)
of Exercise 1.4.4 were proved in 1974, and the proofs were circulated in
unpublished manuscripts. The same is true of the theorem that Σ0

5 Turing
determinacy is false Lβ0 . The result of Exercise 1.4.2 was proved somewhat
later, and that of Exercise 1.4.3 was noticed only in 1995.

Exercise 1.4.5. There are various ways to generalize Friedman-style results
on Borel games to the case of uncountable trees. Here is one generalization
of Exercise 1.4.1.

Let ρ be any ordinal. Let β(ρ) be the least ordinal β > ρ such that Lβ
|= ZFC−. Prove that Lβ(ρ) does not satisfy the determinacy of all Σ0

4 games
in <ωρ.

Hint. Relativize to arbitrary elements of ωω the argument of the hint for
Exercise 1.4.1. Now collapse ρ by forcing.

Exercise 1.4.6. Let ZFCRec− be the theory Rec(ZC−+ Σ1 Replacement)
introduced on page 47. Let ZFCRec− be the result of adding, to the axioms
of Rec(ZC−+ Σ1 Replacement), the Replacement Schema for all formulas of
the language Lrec. Show that the determinacy of all Σ0

4 games in countable
trees is not provable in ZFCRec−.

Hint. Replace the Lα hierarchy by the Lrec
α hierarchy, where Lrec

α+1 is the
set of subsets of Lrec

α defined over Lrec
α from parameters in Lrec

α by formulas
of Lrec. It is easy to see that Lrec

λ = Lλ for all limit ordinals λ.
Let βrec

0 be the least ordinal β such that Lrec
β satisfies ZFCRec−. Show

that Lrec
ω1

is such an ordinal. Show that Condensation holds for the Lrec
α

hierarchy as it does for the Lα hierarchy, and so βrec
0 is a countable ordinal.

Show also that βrec
0 is the least ordinal β such that no a ⊆ ω belongs to

Lrec
β+1 \ Lrec

β .
Continue to imitate the proof for Exercise 1.4.1.



Chapter 2

General Borel Games

In this chapter we introduce the technical concept of a covering of a game
tree, and we use this concept to prove the determinacy of all Borel games
and—in uncountable trees—the determinacy of all games in a larger class.

Borel determinacy is proved in §2.1. In countable trees, the Borel sets
are the same as the the ∆1

1 sets (to be defined in §2.2). In general, however,
∆1

1 is a larger class, the class of what we will call quasi-Borel sets. In §2.2
we prove this and also prove that all quasi-Borel games are determined. §2.1
and §2.2 depend only on §1.1 and §1.2 (and not on the rest of Chapter 1).

Readers interested only in main results may confine themselves to §2.1
(though §2.2 should present no extra difficulties).

In §2.3 we work again in the weak set theory of §§1.3–1.4. We use the
proofs of §2.1 and the results of §1.4 to get Σ0

α determinacy with the minimal
possible amount of Power Set and Replacement (allowed by refinements—
given in the exercises—of results of Harvey Friedman).

In §2.4 we consider a class of infinite games of imperfect information called
Blackwell games after David Blackwell, who initiated their study. We intro-
duce the basic theory of imperfect information games, and then we prove the
determinacy of Borel Blackwell games by showing that it follows from ordi-
nary Borel deteminacy. This is done by proving a general theorem reducing
the the determinacy of Blackwell games of any reasonably closed class to the
determinacy of ordinary games of that class. Thus all our determinacy results
in later chapters will imply corresponding determinacy results for Blackwell
games.

59
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2.1 Borel Determinacy

Almost all the determinacy results in the remainder of this book will be
proved by the technique of auxiliary games: To prove G(A;T ) determined,
we will associate with G(A;T ) another game G(A∗;T ∗). This auxiliary game
we will know to be determined. Moreover the two games will be so related
that the determinacy of G(A;T ) will follow from that of G(A∗;T ∗). In a sense
we have already seen this technique. To prove Theorem 1.3.1, for example,
we made use of the closed games G(C;T ) occurring in the proof of Lemma
1.3.2. Such games were used also in proving Theorems 1.3.3, 1.4.10, and
1.4.22. The auxiliary game technique as we will use it later differs from these
examples in two important ways: (1) The determinacy of the given game
G(A;T ) will be reduced to the determinacy of a single game G(A∗;T ∗). (2)
T ∗ will be larger than T , whereas the auxiliary game trees in the earlier
examples were all subtrees of the given T . Indeed the results of Friedman
[1971] show that (for, e.g., T = <ωω) some use of existence principles for sets
larger than T is necessary to prove the determinacy of Borel games in T .
(See Exercises 1.4.1–1.4.5 and Exercises 2.3.2–2.3.12.)

In using the auxiliary game technique, one can think of moves in the
auxiliary tree as being moves in T together with extra components. In later
chapters the extra components will be elements of measure spaces. Winning
strategies for the main game will be derived from winning strategies for the
auxiliary game by integration. In this chapter the extra components of moves
in the auxiliary tree will be, in the basic case, (a) subtrees of T and (b)
decisions about whether the element of dT e being produced will belong to
certain subsets of dT e. Exercise 2.1.2 illustrates this technique, reproving
Theorem 1.3.1 with the help of an auxiliary game. However, components of
the form (b) do not appear in this example. In more general cases, auxiliary
trees will come from iterations of the process that gives the basic case.

Remark. The first proof of Σ0
4 determinacy, that in [Paris, 1972], used an

auxiliary game technique modeled on the one we will present in Chapter 4.
James Baumgartner had earlier found, adapting the method of Chapter 4, a
new proof of Σ0

3 determinacy,

Our proof of Borel determinacy will be like that in [Martin, 1985] in
that we will prove inductively that all Borel sets have a certain property,
the property of being reducible in a certain way to a clopen set of plays
in a different tree. The determinacy of a set with this property will follow
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easily from the determinacy of a set related to the clopen set. In the details
there we will be several differences between the proof in [Martin, 1985] and
the proof as we will present it below. Our presentation will be similar to
that in [Hurkens, 1993]. This similarity is partly coincidental and partly
by choice. When the first draft of this section was written around 1990, it
was influenced by an idea of Moschovakis (found in the proof of Theorem
6F.1 of [Moschovakis, 1980]). Moschovakis’ idea eliminates from the original
proof of Borel determinacy (the proof in [Martin, 1975]) part of its use of
quasistrategies and subsidiary games. In writing the present chapter, the
author wished to go further: (a) to combine Moschovakis’ idea with the purely
inductive proof in [Martin, 1985] and (b) to eliminate from the proof every
vestige of the use of quasistrategies. To accomplish these aims, the author
introduced game trees with taboos, game trees in which each terminal position
is automatically lost for one player or the other—is taboo for one player or
the other—independently of the payoff set. (In the first draft of the section,
non-taboo terminal positions were also permitted.) Hurkens, who explicitly
had aim (a), produced a proof that has essentially all the ingredients in the
author’s draft (which Hurkens had not seen). Hurkens’ proof introduces one
additional idea, an idea that both simplifies and helps motivate the main
construction of the proof. Although the author had in his possession a copy
of [Hurkens, 1993], he learned about this idea only indirectly, in conversation
with Marco Vervoort. Afterwards he actually consulted [Hurkens, 1993] and
discovered the similiarities between Hurkens’ proof and his own. Hurkens’
additional idea seemed too valuable to omit, so the author has revised his
draft to incorporate that idea (and to make some other modifications). In
the course of giving the proof, we will explain Hurkens’ idea and we will
comment on relations between the two proofs.

A game tree with taboos is a triple T = 〈T, TI, TII〉, where

(1) T is a game tree;

(2) TI and TII are disjoint sets of terminal positions in T ;

(3) every terminal position in T belongs to TI or to TII.

Recall that terminal positions in T are members of T that are also finite plays
in T . Infinite plays are not positions, and so are not terminal positions.

Convention. We always use boldface letters, perhaps with other mark-
ings, for game trees with taboos. For the underlying game trees, we use
the corresponding italic lightface letters, with the same markings; for the
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other two components, we use the corresponding calligraphic letters, with
the same markings and with subscripts “I” and “II.” For example, T̃i will
be 〈T̃ i, T̃ iI , T̃ iII〉.

If T is a game tree with taboos, then positions, moves, plays, strategies,
etc. in T are just positions, moves, plays, strategies, etc. in T . If p ∈ T , then
Tp is the game tree with taboos 〈Tp, TI ∩ Tp, TII ∩ Tp〉.

For any game tree T , we let [T ] be the set of all infinite plays in T . Note
that [T ] is a closed subset of dT e.

Let T be a game tree with taboos. Plays belonging to TI are taboo for I
in T, and plays belonging to TII are taboo for II in T. Hence [T ] is the set
of all plays that are not taboo for either player in T, i.e., that are not taboo
in T. For A ⊆ [T ], we define the game G(A; T) as follows: A finite play of
G(A; T) is lost by the player for whom it is taboo. A play x ∈ [T ] is won by
I if and only if x ∈ A. Thus G(A; T) is the same game as G((A∪TII)\TI;T ).
The notions, for G(A; T), of winning strategy and being determined are the
same as those for G((A ∪ TII) \ TI;T ).

Remark. [Hurkens, 1993] does not have game trees with taboos, but it
has a device that does the same work. It has a move function of the sort we
discussed on page 2. The move function is defined even in terminal positions,
and whichever player has the impossible task of moving in a terminal position
loses the that play of the game.

We could have omitted clause (3) from the definition of game trees with
taboos, i.e., we could have permitted the existence of finite non-taboo plays.
Indeed, this would have been the more natural definition, since we permitted
finite plays throughout Chapter 1. The reason why we include clause (3) is
that without it many of our definitions and proofs would have been more
complicated, since we would have had to worry about whether any given
finite play was taboo or not.

Remark. While Hurkens’ use of a move function does all the work done
by game trees with taboos, it would not in a straightforward way do the work
of game trees with taboos in the more liberal sense just discussed.

It is important to make sure that proving determinacy results only for
game trees with taboos in our restricted sense involves no loss of generality.
First note that, for ordinary game trees (without taboos), nothing is lost by
considering only trees without finite plays. To see this, let T be a game tree.
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Consider the tree

T ′ = T ∪ {p_〈0, . . . , 0︸ ︷︷ ︸
n

〉 | n ∈ ω ∧ p is terminal in T}.

The tree T ′ has no terminal postions. The obvious bijection f : dT ′e → dT e
is a homeomorphism such that, for each A ⊆ dT e, G(A;T ) is determined if
and only if G(f−1(A);T ′) is determined. Similarly, let T be an game tree
with taboos in the unrestricted sense (possibly not satifying clause (3)). Set

T ′ = T ∪ {p_〈0, . . . , 0︸ ︷︷ ︸
n

〉 | n ∈ ω ∧ p is terminal in T and not taboo in T}.

Let T′ = 〈T ′, TI, TII〉. Then T′ is a game tree with taboos. Furthermore, the
obvious homeomorphism f : dT ′e → dT e restricts to a homeomorphism (in
the sense of the definition below, adapted to allow for game trees with taboos
in the unrestricted sense) from [T ′] to the set of all non-taboo plays in T.
Moreover, for any set A of non-taboo plays in T, G(A; T) is determined if
and only if G(f−1(A); T′) is determined (under the obvious definition).

We give [T ] the relative topology: A subset A of [T ] is open just in case
there is an open B ⊆ dT e such that A = B ∩ [T ]. We will construe our
topological definitions as making sense even in the case [T ] is empty, so that
the unique subset ∅ of [T ] is open, Borel, etc. The following easy lemma
will allow us usually not to worry about the distinction between the Borel
hierarchy on [T ] and that on dT e.

Lemma 2.1.1. Let T be a game tree with taboos. For all ordinals α ≥ 1
and all subsets A of [T ], A belongs to Π0

α as a subset of [T ] if and only if A
belongs to Π0

α as a subset of dT e. For all ordinals α > 1 and all subsets A
of [T ], A belongs to Σ0

α as a subset of [T ] if and only if A belongs to Σ0
α as

a subset of dT e.

Proof. We prove the lemma by induction on α ≥ 1.
By definition of the relative topology, every subset of [T ] closed as a subset

of dT e is closed as a subset of [T ]. Since [T ] is closed as a subset of dT e,
every subset of [T ] closed as a subset of [T ] is closed as a subset of dT e.

Let α > 1 and assume that the lemma holds for all β < α. The fact that
any subset of [T ] belongs to Σ0

α as subset of [T ] if and only if it belongs to Σ0
α

as a subset of dT e follows directly from the definition of Σ0
α and our induction
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hypothesis. Suppose that A ∈ Π0
α as a subset of [T ]. Thus [T ] \ A ∈ Σ0

α as
a subset of [T ] and so also as a subset of dT e. dT e \ [T ] ∈ Σ0

1 ⊆ (by Lemma
1.1.1) Σ0

α. By Lemma 1.1.1 again, dT e \ A = ([T ] \ A) ∪ (dT e \ [T ]) belongs
to Σ0

α. By the definition of Π0
α, A ∈ Π0

α as a subset of dT e. Suppose now
that A ⊆ [T ] and that A ∈ Π0

α as a subset of dT e. Thus dT e \ A ∈ Σ0
α. By

Lemma 1.1.1, the closed set [T ] belongs to Σ0
α as a subset of dT e. By Lemma

1.1.1 again, [T ] \A = (dT e \A)∩ [T ] belongs to Σ0
α as a subset of dT e. Thus

[T ] \ A ∈ Σ0
α as a subset of [T ], and so A ∈ Π0

α as a subset of [T ]. �

There is another way to characterize the topology on [T ]. Note that
[T ] = dT̄ e, where T̄ = {p ∈ T | (∃x ⊇ p)x ∈ [T ]}. If [T ] is nonempty, then
T̄ is a game tree, and our topology for [T ] is the same as the topology it has
as dT̄ e. Thus Lemma 1.1.1 holds for the Borel hierarchy on [T ]. (One can
also see this using Lemma 2.1.1.)

Let us now show that determinacy for games in game trees with taboos is
level by level equivalent to determinacy for games in ordinary game trees. By
the remark above, determinacy in ordinary game trees is equivalent level by
level to determinacy in ordinary game trees that have no terminal positions,
so we need only consider the latter. In one direction, note that any game tree
without terminal nodes can be considered a game tree with taboos by setting
TI = TII = ∅. In the other direction, let T be a game tree with taboos. If
G(dT e \ TI;T ) is a win for II, then all games in T are wins for II. Assume
otherwise and let R be I’s non-losing quasistrategy for G(dT e \ TI;T ). If
G(TII;R) is a win for I, then all games in T are wins for I. Assume otherwise
and let S be II’s non-losing quasistrategy for G(TII;R). The game subtree S
of T satisfies dSe ⊆ [T ]. Moreoever, for any A ⊆ [T ], the games G(A∩dSe;S)
and G(A; T) are completely equivalent; in particular, the latter is determined
if the former is. Finally, we have that A∩dSe is as simple topologically as A.
One consequence of this is that our previous determinacy results hold also
for game trees with taboos:

Lemma 2.1.2. Theorems 1.2.4, 1.3.1, 1.3.3, 1.4.10, and 1.4.22 and Corol-
laries 1.2.3, 1.4.15, and 1.4.23, hold for games in game trees with taboos.

Proof. The argument given in the paragraph preceding the statement of
the lemma goes through in ZC− + Σ1 Replacement. Thus the Theorems
listed in the statement of the lemma holds for games in trees with taboos.
Corollary 1.2.3 follows from Theorem 1.2.4. To see that Corollaries 1.4.15
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and 1.4.23 follow, it is suffices to show that Theorems 1.4.2 and 1.4.21 hold
in each [T ]. This in turn follows from the original Theorems 1.4.2 and 1.4.21
for dT̄ e, where T̄ is as above. �

Remark. Since games in T are equivalent to games in the S defined above,
we could avoid dealing with game trees with taboos by replacing each T with
the corresponding S. In a sense, that is what is done in [Martin, 1975] and
[Martin, 1985]. Here, however, we are interested in avoiding the nuisance of
quasistrategies, and so we put up with the nuisance of taboos.

If T̃ and T are game trees with taboos, we write π : T̃⇒ T to mean that

(i) π : T̃ → T ;

(ii) p̃ ⊆ q̃ → π(p̃) ⊆ π(q̃) for all p̃ and q̃ belonging to T̃ ;

(iii) `h(π(p̃)) = `h(p̃) for all p̃ ∈ T̃ .

(iv) π(p̃) ∈ TI → p̃ ∈ T̃I for all p̃ ∈ T̃ ;

(v) π(p̃) ∈ TII → p̃ ∈ T̃II for all p̃ ∈ T̃ ;

Note that it is allowed that p̃ be terminal in T̃ (and so taboo in T̃) even
though π(p̃) is not terminal in T .

Let π : T̃⇒ T. If x̃ is a play in T̃ , then clause (ii) implies that
⋃
p̃⊆x̃ π(p̃)

is either a position or a play in T . If x̃ is finite, then
⋃
p̃⊆x̃ π(p̃) = π(x̃). Thus

we can extend π to a function, which we also denote by “π,” from T̃ ∪ dT̃ e
to T ∪ dT e. By clause (iii), `h(π(x̃)) = `h(x̃) for all plays x̃, where we recall
that `h(x̃) = ω if x is infinite. If x̃ is an infinite play in T̃ , then π(x̃) is an
infinite play in T . Thus π induces a function

π : [T̃ ]→ [T ].

The function π is continuous and satisfies a “Lipschitz condition,” i.e. π(x̃)�n
depends only on x̃ � n.

If T̃ and T are game trees with taboos, we write φ : T̃
S⇒ T to mean that

(i) φ : S(T̃ )→ S(T );

(ii) each φ(σ̃) is a strategy for the same player as is σ̃;

(iii) for each n ∈ ω, the restriction of φ(σ̃) to positions of length < n
depends only on the restriction of σ̃ to positions of length < n.



66 CHAPTER 2. GENERAL BOREL GAMES

If T is a game tree and k ∈ ω, let

kT = {p ∈ T | `h(p) ≤ k}.

By clause (iii) of the definition, we can think of a φ such that φ : T̃
S⇒ T as

acting on
⋃
k∈ω S(kT̃ ) so that, for each k, φ � S(kT̃ ) : S(kT̃ )→ S(kT ).

We are now ready to give the main technical definition of this chapter. If
T is a game tree with taboos, then a covering of T is a quadruple 〈T̃, π, φ,Ψ〉
such that

(a) T̃ is a game tree with taboos;

(b) π : T̃⇒ T;

(c) φ : T̃
S⇒ T;

(d) Ψ : {〈σ̃, x〉 | σ̃ ∈ S(T̃ ) ∧ x ∈ dT e ∧ x is consistent with φ(σ̃)} → dT̃ e,
and, for all 〈σ̃, x〉 ∈ domain (Ψ),

(i) Ψ(σ̃, x) is consistent with σ̃;

(ii) π(Ψ(σ̃, x)) ⊆ x;

(iii) either π(Ψ(σ̃, x)) = x or Ψ(σ̃, x) is taboo for the player for whom
σ̃ is a strategy.

With regard to clause (d)(iii), note that π(Ψ(σ̃, x)) = x implies `h(Ψ(σ̃, x)) =
`h(x); and this in turn implies that Ψ(σ̃, x) and x are both finite or both
infinite. Note also that if both are finite then, by clauses (iv) and (v) of the
definition of π : T̃⇒ T, both are taboo for the same player.

Remarks:

(a) A variant definition, and one that has some advantages which we
will point out later, would replace the quadruple 〈T̃, π, φ,Ψ〉 by the triple
〈T̃, π, φ, 〉 and replace clause (d) by

(d′) if σ̃ ∈ S(T̃ ) and x is consistent with σ̃, then there is an x̃ ∈ dT̃ e such
that

(i) x̃ is consistent with σ̃;

(ii) π(x̃) ⊆ x;

(iii) either π(x̃) = x or x̃ is taboo for the player for whom σ̃ is a
strategy.
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(b) Although the fact will not be directly used by us, the π of a covering
is a surjection. Indeed, every play in T is in the range of the extended π.
(Exercise 2.1.4). For an example and an almost-example of coverings, see
Exercises 2.1.3 and 2.1.5.

We say that a covering 〈T̃, π, φ,Ψ〉 unravels a subset A of [T ] if the
preimage π−1(A) is a clopen subset of [T̃ ].

We prove at once the basic lemma connecting coverings and unraveling
with determinacy:

Lemma 2.1.3. Let T be a game tree with taboos. If there is a covering of
T that unravels A ⊆ [T ], then G(A; T) is determined.

Proof. Let 〈T̃, π, φ,Ψ〉 be a covering of T that unravels A ⊆ [T ]. By Lemma
2.1.2 (as applied to Corollary 1.2.3), G(π−1(A); T̃) is determined. Let us call
the player for whom G(π−1(A); T̃) is a win the good player and let us call
the other player the bad player. Let σ̃ be a winning strategy for the good
player for G(π−1(A); T̃). We show that φ(σ̃) is a winning strategy for the
good player for G(A; T). Let x be a play in T consistent with φ(σ̃). We must
prove that x is a win for the good player in G(A; T). We may assume that
x is not taboo for the bad player.

It is enough to show that π(Ψ(σ̃, x)) = x and that Ψ(σ̃, x) is infinite. If
this is true then, since π = π � [T̃ ] and π : [T̃ ]→ [T ],

Ψ(σ̃, x) ∈ π−1(A)↔ π(Ψ(σ̃, x)) ∈ A↔ x ∈ A.

Because Ψ(σ̃, x) is a win for the good player in G(π−1(A); T̃), it follows that
x is a win for the good player in G(A; T).

By clause (d)(i) in the definition of a covering, Ψ(σ̃, x) is a play in T̃ that
is consistent with σ̃. Since σ̃ is a winning strategy, Ψ(σ̃, x) cannot be taboo
for the good player. Thus clause (d)(iii) gives that π(Ψ(σ̃, x)) = x. By the
observations after the definition of a covering, x and Ψ(σ̃, x) are both finite
or both taboo for the same player. They cannot both be taboo for the same
player, for Ψ(σ̃, x) is not taboo for the good player, and we are assuming
that x is not taboo for the bad player. �

In the proof of Lemma 2.1.3, the fact that π−1(A) is clopen was used
only to get that G(π−1(A); T̃) is determined. Thus we have the following
generalization of that Lemma.
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Lemma 2.1.4. Let T be a game tree with taboos, and let A ⊆ [T ]. If there
is a covering 〈T̃, π, φ,Ψ〉 of T such that G(π−1(A); T̃) is determined, then
G(A; T) is determined.

Borel determinacy will be proved if we can show that every Borel set
is unraveled by a covering. To do this, we need to do two things: (i) We
must show that every open set can be unraveled. (ii) We must find some
operations on coverings corresponding to the operations that generate the
Borel sets from the open sets. (i) is the heart of the proof. We begin with
the more routine (ii).

Let T be a game tree with taboos and let C = 〈T̃, π, φ,Ψ〉 be a covering
of T. For k ∈ ω, C is a k-covering of T if

(i) kT̃ = kT , kT̃ ∩ T̃I = kT ∩ TI, and kT̃ ∩ T̃II = kT ∩ TII;

(ii) π � kT̃ is the identity;

(iii) φ � S(kT̃ ) is the identity.

Suppose that C1 = 〈T1, π1, φ1,Ψ1〉 is a covering of T0 and that C2 =
〈T2, π2, φ2,Ψ2〉 is a covering of T1. We define the composition C1 ◦ C2 of C1

and C2 to be
〈T2, π1 ◦ π2, φ1 ◦ φ2,Ψ〉,

where Ψ(σ, x) = Ψ2(σ,Ψ1(φ2(σ), x)). We omit the routine proof of the fol-
lowing lemma.

Lemma 2.1.5. The composition of coverings is a covering. For natural
numbers k1 and k2, the composition of a k1-covering and a k2-covering is
a min{k1, k2}-covering.

The next lemma gives us a sufficient condition that the limit of a sequence
of k-coverings exist and be a k-covering. It is for constructing such limits
that the concept of k-covering was introduced.

Lemma 2.1.6. Let k ∈ ω, let Ti, i ∈ ω, be game trees with taboos, and let
〈kj,i, πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉 be such that

(1) if i ≤ j ∈ ω then Cj,i = 〈Tj, πj,i, φj,i,Ψ
i,j〉 is a kj,i-covering of Ti;

(2) if i1 ≤ i2 ≤ i3 ∈ ω then Ci3,i1 = Ci2,i1 ◦ Ci3,i2;

(3) infi≤j∈ωkj,i ≥ k;
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(4) limj∈ωinfj′≥jkj′,j =∞; i.e., for all n ∈ ω there is an i ∈ ω such that
kj′, j ≥ n for all j′ ≥ j ≥ i.

Then there is a T∞ with |T∞| ≤
∑

i∈ω |Ti| and there is a system

〈π∞,i, φ∞,i,Ψi,∞ | i ∈ ω〉

such that each C∞,i = 〈T∞, π∞,i, φ∞,i,Ψi,∞〉 is a k-covering of Ti and such
that, for i ≤ j ∈ ω, C∞,i = Cj,i ◦ C∞,j.

Proof. The idea is that, because of (4), what is in essence the inverse limit
exists. For n ∈ ω, let in be the least number i such that, for all j′ ≥ j ≥ i,
kj′,j ≥ n. Thus nTj, nTj ∩ (Tj)I, and nTj ∩ (Tj)II, are independent of j for
j ≥ in. For any finite sequence p, let

p ∈ T∞ ↔ p ∈ Ti`h(p)
;

p ∈ (T∞)I ↔ p ∈ (Ti`h(p)
)I;

p ∈ (T∞)II ↔ p ∈ (Ti`h(p)
)II.

Clearly T∞ is a game tree with taboos and |T∞| ≤
∑

i∈ω |Ti|. Since (3) gives
that in = 0 for n ≤ k, we have that kT∞ = kTj, kT∞ ∩ (T∞)I = kTj ∩ (Tj)I,
and kT∞ ∩ (T∞)II = kTj ∩ (Tj)II for each j, as required by clause (i) of the
definition of a k-covering.

For p ∈ nT∞, we let

π∞,j(p) =

{
p if j ≥ in;
πin,j(p) if j < in.

It is routine to check that each π∞,j is well-defined, that π∞,j : T∞ ⇒ Tj,
and that π∞,j = πj′,j ◦ π∞,j′ whenever j ≤ j′ ∈ ω. Clearly π∞,j � nT∞ is the
identity for each j ≥ in, and so the fact that in = 0 for n ≤ k guarantees that
every π∞,j � kT∞ is the identity, as required by clause (ii) of the definition of
a k-covering.

Similarly, for σ ∈ S(nT∞), we let

φ∞,j(σ) =

{
σ if j ≥ in;
φin,j(σ) if j < in.

We omit the verifications that each φ∞,j is well-defined, that each φ∞,j :

T∞
S⇒ Tj, and that φ∞,j = φj′,j ◦φ∞,j′ for all j ≤ j′ ∈ ω. Since φ∞,j �S(nT∞)
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is the identity whenever j ≥ in, the fact that in = 0 for n ≤ k guarantees
that clause (iii) of the definition of a k-covering holds.

It remains to define the Ψj,∞ and to verify clause (d) in the definition of
a covering.

First note that we always have (Ψj,j′(σ, x))�kj′,j = x�kj′,j; for (Ψj,j′(σ, x))�
kj′,j = πj′,j((Ψ

j,j′(σ, x)) � kj′,j) ⊆ x � kj′,j, and (Ψj,j′(σ, x)) � kj′,j ( x � kj′,j
is impossible. Let j ∈ ω and let σ ∈ S(T∞). For x ∈ dTje and x consistent
with φ∞,j(σ), we can set

Ψj,∞(σ, x) = limj′→∞Ψj,j′(φ∞,j′(σ), x),

since, for each n ∈ ω,

limj′→∞((Ψj,j′(φ∞,j′(σ), x)) � n) =

{
x � n if j ≥ in;
(Ψj,in(φ∞,in(σ), x)) � n if j < in.

If some (Ψj,∞(σ, x))�n is not consistent with σ, then, for any j′ such that j ≤
j′ and in ≤ j′, the same position (Ψj,j′(φ∞,j′(σ), x)) �n is not consistent with
φ∞,j′(σ), which agrees with σ on positions of length < n. This contradicts
property (d)(i) of the covering Cj′,j, so and property (d)(i) is verified for C∞,j.
For (d)(ii) and (d)(iii), note that we have, for each n ∈ ω, for each j′ such
that j ≤ j′ and j′ ≥ in, for each σ ∈ S(T∞), and for each x ∈ dTje consistent
with φ∞,j(σ), that

(π∞,j(Ψ
j,∞(σ, x))) � n = (πj′,j(Ψ

j,j′(φ∞,j′(σ), x))) � n.

Property (d)(ii) for C∞,j thus follows from property (d)(ii) for Cj′,j. Moreover,
since j′ ≥ in implies that (Ψj,∞(σ, x)) � n = (Ψj,j′(φ∞,j′(σ), x)) � n, property
(d)(iii) for C∞,j also follows from property (d)(iii) for Cj′,j. We omit the
verification that Ψj,∞(σ, x) = Ψj′,∞(σ,Ψj,j′(φ∞,j′(σ), x)) for all j ≤ j′ and all
〈σ, x〉 in domain (Ψj,∞). �

Remark. One advantage of adopting the alternative definition of covering
considered in remark (a) on page 66 would be that the construction of the
proof of Lemma 2.1.6 would literally be the construction of the inverse limit
of the given system of coverings.

Lemma 2.1.7. Let T be a game tree with taboos. If A ⊆ [T ] is open or
closed and k ∈ ω, then there is a k-covering of T that unravels A.



2.1. BOREL DETERMINACY 71

Proof. Since any covering that unravels a set also unravels its complement,
it is enough to prove that every closed subset of [T ] is, for each k ∈ ω,
unraveled by some k-covering of T. Let then A ⊆ [T ] be closed. Recall that
A is also closed as a subset of dT e. Let k ∈ ω and, since every (k+1)-covering
is also a k-covering, assume without loss of generality that k is even.

We will define C = 〈T̃, π, φ,Ψ〉 and show that C is a k-covering and that
C unravels A.

We begin with T̃. Because we have to make C a k-covering, we let kT̃ =

kT , kT̃ ∩ T̃I = kT ∩TI, and kT̃ ∩ T̃II = kT ∩TII. All moves in T̃ will be moves
in T , except for move k and move k+1. Each of these two moves will consist
of a move in T together with one or two extra components.

To describe move k, let p ∈ T̃ with `h(p) = k. Thus p ∈ T also. If p is
terminal in T—and so taboo in T—then p is taboo in T̃—and so terminal
in T̃ ; and hence there is no move k. Assume therefore that p is not terminal
in T . Since k is even, it is I’s turn to move at p. We stipulate that I’s move
at p in T̃ must be of the form

〈a,X〉,

where a is a move legal in T at p and X is a subset of the set Z of all q ∈ T
satisfying the following conditions:

(i) p_〈a〉 ( q.

(ii) q is not terminal in T .

(iii) [Tq] ∩ A = ∅.
(iv) (∀r)(p_〈a〉 ( r ( q → [Tr] ∩ A 6= ∅).

Remark. Here is how to think of the move X. Suppose that the players
are considering playing some game G(B; T). Player I is asserting that he
can win G(B; Tq) for every q ∈ X and is conceding that II can win G(B; Tq)
for every q ∈ Z \ X. If x ∈ [T ]p_〈a〉 then x /∈ A if and only if x extends
some q ∈ Z. I is proposing that if and when a position q ∈ Z is reached the
play be terminated immediately, with I declared the winner if q ∈ X and
II declared the winner otherwise. In proposing this, I is proposing that the
players should play out an infinite play only when that play belongs to A.
The idea of having I play subsets of Z, rather than quasistrategies for I in
Tp_〈a〉 or subtrees of Tp_〈a〉 is the idea of Hurkens mentioned on page 61.

If p_〈a〉 is taboo in T, then we must let p_〈〈a,X〉〉 be taboo for the same
player in T̃. Suppose that p_〈a〉 is not taboo in T, and so is not terminal,
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in T . Then we make p_〈〈a,X〉〉 not terminal in T̃ . We allow II, in principle,
two options for move k + 1 in T̃ , though the second option is available only
if X 6= ∅.

Option (1). II may accept X. If II accepts X, then II’s move in T̃ at
p_〈〈a,X〉〉 must be of the form

〈1, b〉,

where b is a legal move for II in T at p_〈a〉. We stipulate that the positions
in T̃ that extend the resulting position p_〈〈a,X〉〉_〈〈1, b〉〉 are an initial
seqment of the finite sequences of the form

p_〈〈a,X〉〉_〈〈1, b〉〉_s

with p_〈a〉_〈b〉_s ∈ T . A position of this form is to be terminal in T̃ if and
only if one of the following holds.

(i) p_〈a〉_〈b〉_s is terminal in T .

(ii) p_〈a〉_〈b〉_s ∈ Z.

If (i) holds, then we make p_〈〈a,X〉〉_〈〈1, b〉〉_s is taboo in T̃ for the player
for whom p_〈a〉_〈b〉_s is taboo in T. If (ii) holds, then we let p_〈〈a,X〉〉_〈〈1, b〉〉
be taboo in T̃ for II if p_〈a〉_〈b〉 ∈ X and for I otherwise. Note that (i) and
(ii) cannot both hold, and note that either might hold for s = ∅.

Option (2). II may challenge X. If II challenges X, then II’s move in T̃
at p_〈〈a,X〉〉 must be of the form

〈2, r, b〉,

where r ∈ X and b = r(k + 1) (so that p_〈a〉_〈b〉 ∈ Tr). The positions in T̃
that extend p_〈〈a,X〉〉_〈〈2, r, b〉〉 are to be precisely those of the form

p_〈〈a,X〉〉_〈〈2, r, b〉〉_s

with p_〈a〉_〈b〉_s ∈ Tr. Such a position in T̃ is taboo for a player in T̃ if
and only if p_〈a〉_〈b〉_s is taboo for that player in T̃.)

Remark. Here is the way to think about II’s two options. If II accepts
X, then II accepts the proposal of I that was described in the remark on
page 71. If II challenges X and makes the move 〈2, r, b〉, then II is denying
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I’s contention that I can win the game G(B; Tr). The players then play that
game to decide who is right. (Remember, of course, that the set B is entirely
imaginary. We imagine it only to motivate the definition of T̃.)

The definition of π is the obvious one:

(π(p̃))(i) =


p̃(i) if i 6= k and i 6= k + 1;
a if i = k and p̃(k) = 〈a,X〉;
b if i = k + 1 and p̃(k + 1) = 〈1, b〉;
b if i = k + 1 and p̃(k + 1) = 〈2, r, b〉.

In other words, π(p̃) is obtained from p̃ by deleting the components X, 1, 2,
and r that occur in p̃.

Before defining the rest of our covering, let us pause to verify that π−1(A)
is clopen, so that our covering will unravel A. If a x̃ is an infinite play in T̃
in which II accepts I’s X, then no position in π(x̃) belongs to the associated
Z. Hence dT eq ∩ A 6= ∅ for all q ⊆ π(x̃). Since A is closed, π(x̃) ∈ A. If x̃ is
any play in T̃ of length > k + 1 in which II challenges I’s X, then π(x̃) /∈ A,
for π(x̃) must extend the r played by II at move k+ 1, and this r belongs to
X and so to Z. Define Ã ⊆ dT̃ e by stipulating, for x̃ ∈ dT̃ e, that

x̃ ∈ Ã ↔ (`h(x̃) > k + 1 ∧ II accepts I’s X).

Clearly Ã is clopen. Moreover Ã ∩ [T̃ ] = π−1(A), as required for unraveling.
Next we define φ and Ψ simultaneously. It will be clear from the defini-

tions that clauses (c) and (d) in the definition of a covering and clause (iii)
in the definition of a k-covering are satisfied.

First let σ̃ ∈ SI(T̃ ). Here is the idea: The strategy σ̃ supplies us with
values of (φ(σ̃))(p) for `h(p) ≤ k. Furthermore σ̃ supplies us with an X, and
thus we have a clear choice for Ψ(σ̃, x)�k+1. As long as no position is reached
that belongs toX, we get subsequent values of φ(σ̃) from values of σ̃ gotten by
assuming that II accepts X. If no position belonging to X is ever reached,
then this assumption gives us Ψ(σ̃, x) also. Suppose we reach a position
r ∈ X. If we were to define Ψ(σ̃, x) using the assumption that II accepts X,
then we would make Ψ(σ̃, x) taboo for II, in violation of clause (d)(iii) in the
definition of a covering. But we can avoid such a violation, for 〈2, r, r(k+ 1)〉
is a legal move k + 1 in T̃ in the position Ψ(σ̃, x) � k + 1. We get subsequent
values of φ(σ̃), and we get Ψ(σ̃, x), by assuming that this move is made.

Here are the formal details. We describe φ(σ̃) = σ by describing an
arbitrary play x consistent with σ. We thus omit the definition of σ(p) for p
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inconsistent with σ. Such values can be assigned arbitrarily, except for the

easily met constraints from clause (iii) in the definition of φ : T̃
S⇒ T and

clause (iii) in the definition of a k-covering.
At each position p ⊆ x, either we will have a guess ψ(p) for Ψ(σ̃, x)�`h(p)

or else there will be a q ( p such that ψ(q) is taboo for I in T̃ and we will
have already set Ψ(σ̃, x) = ψ(q). Each ψ(p) will be such that ψ(p) ∈ T̃ , ψ(p)
is consistent with σ̃, and π(ψ(p)) = p. At most once during the construction
we will contradict our previous guesses: for at most one p ⊆ x, ψ(p) will be
defined but will not be an extension of the ψ(p � i) for i < `h(p).

We will arrange that ψ(p) is taboo for II in T̃ only if p is taboo for II in T.
If we reach a p such that ψ(p) is terminal in T̃ , then we set Ψ(σ̃, x) = ψ(p).
In such a case, if p is not terminal then we define σ on extensions of p to
agree with some fixed (independent of x) strategy σp in Tp.

To begin, we let σ agree with σ̃ and ψ(p) = p until (if ever) we have
reached a position p of length k. At this point we still let ψ(p) = p. If p is not
terminal and σ̃(p) = 〈a,X〉, then set σ(p) = a and ψ(p_〈a〉) = p_〈〈a,X〉〉.
If the position p_〈a〉 is not terminal, let b be II’s next move.

As long as no position is reached that belongs to X, we proceed as follows.
For positions q = p_〈a〉_〈b〉_s, let q̃ = p_〈〈a,X〉〉_〈〈1, b〉〉_s. If q̃ ∈ T̃ , then
let ψ(q) = q̃ and, if q̃ is non-terminal and of even length, let σ(q) = σ̃(q̃). If
there is a last q ⊆ x such that the associated q̃ belongs to T̃ , then there are
two possibilities for this last q.

(a) q is terminal. Then q = x and we let Ψ(σ̃, x) = ψ(q).

(b) q ∈ Z \X. Then ψ(q) is taboo for I and we let Ψ(σ̃, x) = ψ(q).

If there is no last q such that the associated q̃ ∈ T̃ , then the play x is infinite.
In this case we set Ψ(σ̃, x) =

⋃
q⊆x ψ(q).

Suppose that there is a position r ⊆ x that belongs to X. For some s,
r = p_〈a〉_〈b〉_s. We let r̃ = p_〈〈a,X〉〉_〈〈2, r, b〉〉_s. Note that r̃ is a
legal postion in T̃ . Note also that r̃_t ∈ T̃ for any t such that r_t ∈ T .
For positions r_t, we set ψ(r_t) = r̃_t and, for r_t of even length and not
terminal, we let σ(r_t) = σ̃(r̃_t). If the play x is infinite, we let Ψ(σ̃, x) =⋃
n≥`h(r) ψ(x � n).

Next let τ̃ ∈ SII(T̃ ). Here is the idea: When we reach a position p_〈a〉
in T of length k+ 1, there is a subset Y of the Z associated with p_〈a〉 such
that

(i) τ calls for II to accept Y ;
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(ii) for any r ∈ Z \ Y , there is an X ⊆ Z such that τ(p_〈〈a,X〉〉) =
〈2, r, r(k + 1)〉.

As long as no position is reached that belongs to Z \ Y , we get subsequent
values of φ(τ̃) from valuses of τ̃ gotten by assuming that I plays 〈a, Y 〉. If
no position belonging to Z \ Y is ever reached, then this assumption gives
us Ψ(τ̃ , x) also. Suppose we reach a position r ∈ Z \ Y . If we were to define
Ψ(τ̃ , x) using the assumption that I plays 〈a, Y 〉, then we would make Ψ(τ̃ , x)
taboo for I, in violation of clause (d)(iii) in the definition of a covering. We
can avoid such a violation by using property (ii) of Y . If X is as given by (ii),
then we get subsequent values of φ(τ̃), and we get Ψ(τ̃ , x), by assuming that
the moves 〈a,X〉 and 〈2, r, r(k + 1)〉 are made.

Now we give the formal details. As in the preceding case, we describe
φ(τ̃) = τ by describing an arbitrary play x consistent with τ . At each
position p ⊆ x, either we will have a guess ψ(p) for Ψ(τ̃ , x) � `h(p) or else
there will be q ( p such that ψ(q) is taboo for II in T̃ and we will have
already set Ψ(τ̃ , x) = ψ(q). Each ψ(p) will be such that ψ(p) ∈ T̃ , ψ(p) is
consistent with τ̃ , and π(ψ(p)) = p. As before, there will be at most one
p ⊆ x such that ψ(p) is defined but is not an extension of the ψ(p � i) for
i < `h(p).

We will arrange that ψ(p) is not taboo for I in T̃ unless p is taboo for I
in T. If we reach a p such that ψ(p) is terminal, then we set Ψ(τ̃ , x) = ψ(p).
We use the same method as we used before for σ to define τ on extensions
of p when ψ(p) is terminal in T̃ but p is not terminal in T .

To begin, we let τ agree with τ̃ and ψ(p) = p until (if ever) we have
reached a position p of length k. For this p also, we let ψ(p) = p. If p is not
terminal, let a be I’s move at p. Let Z be the set associated with p_〈a〉, the
set of which the second component of move k must be a subset. Let

Y = {r ∈ Z | (∀X ⊆ Z) τ̃(p_〈〈a,X〉〉) 6= 〈2, r, r(k + 1)〉}.

The move 〈a, Y 〉 is legal for I in T̃ at p, and so we can let ψ(p_〈a〉) =
p_〈〈a, Y 〉〉. Assume that p_〈a〉 is not terminal in T . Then p_〈〈a, Y 〉〉 is not
terminal in T̃ .

It is obvious from the definition of Y that Y has property (ii) above. Let
us show that Y has property (i), i.e., that τ̃ cannot call for II to challenge Y
at p_〈〈a, Y 〉〉. Assume the contrary and let τ̃(p_〈〈a, Y 〉〉) = 〈2, r, r(k + 1)〉.
By the definition of Y , we have that r /∈ Y . But challenging Y requires that
r ∈ Y , so we have a contradiction.
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Thus τ̃(p_〈〈a, Y 〉〉) = 〈1, b〉 for some b with p_〈a〉_〈b〉 ∈ T . We let
τ(p_〈a〉) = b.

As long as no position is reached that belongs to Z \ Y , we proceed as
follows. For positions q = p_〈a〉_〈b〉_s, let q̃ = p_〈〈a, Y 〉〉_〈〈1, b〉〉_s. If
q̃ ∈ T̃ , then let ψ(q) = q̃ and, if q̃ is non-terminal and of odd length, let
τ(q) = τ̃(q̃). If there is a last q ⊆ x such that the associated q̃ belongs to T̃ ,
then there are two possibilities for this last q.

(a) q is terminal. Then q = x and we let Ψ(τ̃ , x) = ψ(q).

(b) q ∈ Y . Then ψ(q) is taboo for II and we let Ψ(τ̃ , x) = ψ(q).

If there is no last q such that the associated q̃ ∈ T̃ , then the play x is infinite.
In this case we set Ψ(τ̃ , x) =

⋃
q⊆x ψ(q).

Suppose that there is a position r ⊆ x that belongs to Z \ Y . By prop-
erty (ii) of Y , let X ⊆ Z be such that τ̃(p_〈〈a,X〉〉) = 〈2, r, r(k + 1)〉.
For some s, r = p_〈a〉_〈b〉_s. We let r̃ = p_〈〈a,X〉〉_〈〈2, r, b〉〉_s. Note
that r̃ is a legal postion in T̃ . Note also that r̃_t ∈ T̃ for any t such that
r_t ∈ T . For positions r_t, we set ψ(r_t) = r̃_t and, for r_t of odd length
and not terminal, we let τ(r_t) = τ̃(r̃_t). If the play x is infinite, we let
Ψ(τ̃ , x) =

⋃
n≥`h(r) ψ(x � n). �

Theorem 2.1.8. ([Martin, 1985]) Let T be a game tree with taboos. If A ⊆
[T ] is Borel and k ∈ ω, then there is a k-covering of T that unravels A.

Proof. By induction on countable ordinals α ≥ 1, we prove

(†)α For all T, for all A ⊆ [T ] such that A ∈ Σ0
α, and for all k ∈ ω, there

is a k-covering of T that unravels A.

(†)1 is equivalent with Lemma 2.1.7. Assume then that α > 1 and that
(†)β holds for all β with 1 ≤ β < α. Let k ∈ ω and let A ⊆ [T ] with A ∈ Σ0

α.
By the definition of Σ0

α, there are Bn, n ∈ ω, such that each Bn belongs to
Π0
βn

for some βn < α and such that A =
⋃
n∈ω Bn.

Let T0 = T. By induction on j′ ∈ ω, we define Tj′ and

Cj′,j = 〈Tj′ , πj′,j, φj′,j,Ψ
j,j′〉

for j ≤ j′ such that Cj′,i = Cj,i ◦ Cj′,j for all i ≤ j ≤ j′. We do this in such a
way that each Cj′,j is a (k + j)-covering of Tj and Cj′,0 unravels Bj for each
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j ≤ j′. Note that Cj′,j′ must be the trivial covering, with πj′,j′ and φj′,j′ the
identities and Ψj′,j′(σ, x) = x for all σ and x.

Suppose that we have defined Tj′ and the Cj′,j for all j′ ≤ n. By the
continuity of πn,0, we have that πn,0

−1(Bn) ∈ Π0
βn

. By (†)βn , let Cn =

〈T̃, π, φ,Ψ〉 be a (k + n)-covering of Tn that unravels πn,0
−1([T ] \ Bn) and

so unravels πn,0
−1(Bn). Let Tn+1 = T̃. For j ≤ n, let Cn+1,j = Cn,j ◦ Cn; let

Cn+1,n+1 be the trivial covering. The required properties of the Cn+1,j follow
directly from Lemma 2.1.5 and the continuity of the πn,j.

If we let kj,i = k + i, then the hypotheses of Lemma 2.1.6 hold. Let T∞
and, for i ∈ ω, C∞,i = 〈T∞, π∞,i, φ∞,i,Ψi,∞〉 be given by that lemma. For
each n, π∞,0

−1(Bn) is clopen, by the continuity of π∞,n+1. Thus π∞,0
−1(A) is

open. By Lemma 2.1.7, let C̃ be a k-covering of T∞ that unravels π∞,0
−1(A).

C∞,0 ◦ C̃ is a k-covering of T that unravels A. �

Theorem 2.1.9. ([Martin, 1975]) All Borel games are determined.

Proof. The theorem follows immediately from Lemma 2.1.3 and Theorem
2.1.8. �

Exercise 2.1.1. Consider the following two strengthenings of AD.

(1) ADR, the assertion that all games in <ω(ωω) are determined;

(2) AD(ω2), the assertion that all games of length ω2 with moves in ω
are determined.

Prove that ADR and AD(ω2) are equivalent.

Hint. In the non-trivial direction, consider a game of length ω in which
I’s individual moves are strategies for games in <ωω and II’s moves are plays
consistent with these strategies.

Remarks:

(a) This result was proved independently by Andreas Blass and Jan My-
cielski. (See [Blass, 1975].) Until the author learned of it in 1974, his and
others’ attempts to prove Borel determinacy involved auxiliary games with
individual moves that were ordinal numbers. (See [Paris, 1972] for a partial
success.) The Blass–Mycielski proof suggested trying games with individual
moves that were strategies (or something similar). In [Martin, 1975] and
[Martin, 1985], there are individual moves that are quasistrategies. In the
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version of the proof we have just presented, however, the quasistrategies have
disappeared.

(b) Oddly enough, the determinacy of all games of countable length, with
real or natural number moves, follows from ADR. This fact is a consequence
of a theorem independently proved by Hugh Woodin and the author, together
with another theorem of Woodin. See [Martin, 2015].

Exercise 2.1.2. Let A ⊆ dT e and suppose that A =
⋃
i∈ω Ai, with each Ai

closed. Consider the following game G∗ = G(A∗;T ∗). I begins by picking a
strategy σ0 for I in T . II then chooses a position p0 ∈ T consistent with σ0. If
the position in T ∗ is not terminal (as defined below), I next picks a strategy
σ1 for I in Tp0 ; II picks p1 ∈ Tp0 consistent with σ1 such that p1 ⊇ p0; etc. If
some dTpie is not disjoint from Ai, then the position just after II has picked
pi is terminal. This is the only way terminal positions in G∗ arise. A play of
G∗ is a win for I if and only if the play is finite. Prove using G∗ and Theorem
1.2.4 that G(A;T ) is determined.

Exercise 2.1.3. Modify the T ∗ of Exercise 2.1.2 to get a covering of T =
〈T, ∅, ∅〉 that unravels the A of Exercise 2.1.2.

Exercise 2.1.4. Let 〈T̃, π, φ,Ψ〉 be a covering of T. Show that the extended
π : T̃ ∪ dT̃ e → T ∪ dT e is a surjection.

Hint. Let x ∈ dT e. Consider the game in T̃ that I wins unless someone
makes a Move p̃ such that π(p̃) 6⊆ x and I is the first player to do so. Prove
that this game is a win for I. Prove that the analogous game with the roles
of the players reversed is a win for II.

Exercise 2.1.5. Work in ZF and assume AD. Let T = <ωω. Let games in
T̃ be played as follows:

I 〈σ, n0〉 n2 n4 . . .
II 〈x, n1〉 n3 n5 . . .

Here σ must be a strategy for I in T with σ(∅) = n0, and x must be a play in
T consistent with σ. Each ni must be x(i). (Thus only σ and x matter.) Use
T̃ to get a (T̃, π, φ,Ψ) that fails to be a covering of T = 〈T, ∅, ∅〉 unraveling
every subset of ωω only in that φ is not single-valued.

In [Martin, 1985] it is asserted that a certain uniformization hypothe-
sis permits one to get a single-valued φ. The hypothesis is mistated in
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[Martin, 1985], but the intended one does not work. In [Neeman, 2000] it
is shown that every Π1

1 subset of ωω can be unraveled by a covering of
〈<ωω, ∅, ∅〉.

Exercise 2.1.6. Under the hypotheses of Lemma 2.1.6, let T∞ and 〈C∞,i |
i ∈ ω〉 be the tree and sequence of coverings constructed in the proof of that
lemma. Suppose that T′ and 〈C ′∞,i | i ∈ ω〉 are such that each C ′∞,i is a k-
covering of Ti with first component T′ and such that, for i ≤ j ∈ ω, C ′∞,i =
C ′j,i ◦ C ′∞,j. Show that there are π′,φ′, and Ψ′ such that C ′ = 〈T′, π′, φ′,Ψ′〉 is
a k-covering of T∞ and, for each i ∈ ω, C ′∞,i = C∞,i ◦ C ′.

2.2 Uncountable Trees

The Souslin Theorem (see Theorem 2E.2 of [Moschovakis, 1980]) asserts that,
in countable trees, the Borel sets are the same as the ∆1

1 sets (which will be
defined below). For uncountable trees, the ∆1

1 sets form a larger class than
the Borel sets. In this section, we will define the class of quasi-Borel sets.
We will prove that the quasi-Borel subsets of dT e are the same as the ∆1

1

subsets of dT e for every T . This is the special case for spaces of the form dT e
of a theorem of R.W. Hansell ([Hansell, 1973a] and [Hansell, 1973b].) We
will prove general ∆1

1 determinacy by proving that all quasi-Borel games are
determined. This determinacy result is from [Martin, 1990].

Remark. In [Martin, 1990], the author credited the concept of quasi-
Borel sets to himself. After the publication of [Martin, 1990], Alberto Mar-
cone pointed out to the author that the concept had been introduced by
R.W. Hansell in Hansell [1972]. In [Hansell, 1973a] and [Hansell, 1973b],
what we call quasi-Borel sets were called extended Borel sets. In [Martin, 1990]
the author also wrongly credited to himself the fact that the quasi-Borel sets
are the same as the ∆1

1 sets.

The definition of the quasi-Borel sets is like that of the Borel sets, except
that an additional operation, besides those of forming countable unions and
complements, is required to generate them from the open sets. Our proof of
quasi-Borel determinacy will be a minor modification of our proof of Borel
determinacy, with extra lemmas to take care of the extra operation. This
result is relevant even for games in countable trees: we will use it later §5.2
in getting as strong a determinacy result as possible from the assumption
that a measurable cardinal exists.
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We begin by defining the quasi-Borel sets and studying their properties.
To do so we must define the extra operation needed to generate them. Let
T be a game tree. If A and Bj, j ∈ J , are all subsets of dT e, then A comes
from {Bj | j ∈ J} by the operation of open-separated union, or, equivalently,
A is the open-separated union of {Bj | j ∈ J}, if

(a) A =
⋃
j∈J Bj;

(b) there are disjoint open sets Dj, j ∈ J , such that Bj ⊆ Dj for each
j ∈ J .

A set is quasi-Borel if it belongs to the smallest class containing the
open sets and closed under countable unions, open-separated unions, and
complements.

There is no clearly best way to define a quasi-Borel hierarchy. The one
in [Martin, 1990] is different from the one we are about to give here.

Recall from §1.4 that A is the fully open-separated union of {Bj | j ∈ J}
if some {Dj | j ∈ J} witnessing that A is the open-separated union of
{Bj | j ∈ J} satisfies

⋃
j∈J Dj = dT e. Recall also that if {Dj | j ∈ J}

witnesses that A is the fully open-separated union of {Bj | j ∈ J}, then each
Dj is clopen.

If α is a limit ordinal, then cf (α), the cofinality of α, is the least ordinal
ρ such that some f : ρ → α has unbounded range. The cofinality of α is
always a regular cardinal ≤ α.

We define the quasi-Borel hierarchy (of subsets of dT e) as follows:

(1) Σ∗1 is the class of open sets;

(2) Π∗α is the set of complements of members of Σ∗α;

(3) if α > 1 is a successor ordinal or if α is a limit ordinal and cf (α) = ω,
then Σ∗α is the set of countable unions of members of

⋃
β<α Π∗β;

(4) if α is a limit ordinal and cf (α) 6= ω (so cf (α) is uncountable), then Σ∗α
is the set of all fully open-separated unions of members of

⋃
β<α Π∗β.

The following lemma gives some properties of the quasi-Borel hierarchy
and of quasi-Borel sets. The important ones for us are (1)(f) and (2). The
latter is non-trivial, because our definition of the Σ∗α uses fully open-separated
unions.

Lemma 2.2.1. (1) The following assertions hold for every α ≥ 1:



2.2. UNCOUNTABLE TREES 81

(a) (∀β > α) Σ∗α ∪Π∗α ⊆∆∗β.

(b) If α is a limit ordinal of uncountable cofinality, then Σ∗α = Π∗α, i.e.
Σ∗α is closed under complements.

(c) If α is a successor ordinal or a limit ordinal of cofinality ω, then Σ∗α
is closed under countable unions.

(d) If α is a successor ordinal or a limit ordinal of cofinality ω, then Π∗α
is closed under countable intersections.

(e) Σ∗α is closed under finite unions and finite intersections.

(f) If α is a limit ordinal of uncountable cofinality and A is any subset
of dT e, then A belongs to Σ∗α if and only if there is a set D ⊆ T
and there are Bd, d ∈ D, such that

⋃
d∈DdTde = dT e, such that any

two elements of D are incomparable with respect to ⊆, such that each
Bd ⊆ dTde, such that each Bd ∈

⋃
β<α Π∗β, and such that A =

⋃
d∈D Bd.

In other words, we can replace “fully open-separated unions” by “fully
basic-open-separated unions” in clause (4) of the definition of the quasi-
Borel hierarchy.

(2) If T is infinite, then a subset of dT e is quasi-Borel if and only if it
belongs to

⋃
α<|T |+ Σ∗α. Thus, in particular, the Borel sets and the quasi-Borel

sets are the same for countable T .

Proof. (1)(a). If A ∈ Π∗α, then A =
⋃
{A}. Since this trivial union is both

countable and fully open-separated, it follows that A ∈ Σ∗β for every β > α.
Thus Π∗α ⊆ Σ∗β whenever 1 ≤ α < β. From this we have also that Σ∗α ⊆ Π∗β
whenever 1 ≤ α < β. If 1 ≤ α < β and β > α + 1, then we have that

Σ∗α ⊆ Π∗α+1 ⊆ Σ∗β.

It remains then only to show that Σ∗α ⊆ Σ∗α+1 for all α ≥ 1. The proof of
(1)(a) of Lemma 1.1.1 showed that that every element of Σ∗1 (= Σ0

1) is a
countable union of Π∗1 sets, and so that Σ∗1 ⊆ Σ∗2. If α is a successor or
has cofinality ω, then it is immediate from clause (3) of the definition that
Σ∗α ⊆ Σ∗α+1. If α is a limit ordinal of uncountable cofinality, then it follows
from (1)(b)—which is proved below using only the part of (1)(a) already
proved—that Σ∗α = Π∗α ⊆ Σ∗α+1.

(1)(b). Let α be a limit ordinal of uncountable cofinality and suppose
that {Dj | j ∈ J} witnesses that A is the fully open-separated union of
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{Bj | j ∈ J}, where each Bj ∈
⋃
β<α Π∗β. Then {Dj | j ∈ J} also witnesses

that ¬A is the fully open-separated union of {Dj \ Bj | j ∈ J}. Moreover
each (Dj \Bj) ∈

⋃
β<α Σ∗β ⊆

⋃
β<α Π∗β+1 ⊆

⋃
β<α Π∗β.

(1)(c) is immediate as in Lemma 1.1.1, and (1)(d) follows directly from
(1)(c).

(1)(e). We prove by induction on α that Σ∗α is closed under finite in-
tersections. (1)(e) then follows by (1)(b) and (1)(c). The case α = 1 is
immediate. For α a successor or a limit of cofinality ω, we argue as in the
proof of part (1)(b) of Lemma 1.1.1, except that the last step of the argument
now comes by our induction hypothesis. Assume then that α is a limit of
uncountable cofinality and suppose that, for each i < n ∈ ω, {Di

j | j ∈ Ji}
witnesses that Ai is the fully open-separated union of {Bi

j | j ∈ Ji}, with
each Bi

j ∈
⋃
β<α Π∗β. Then

{
⋂
i<n

Di
s(i) | s ∈

∏
i<n

Ji}

witnesses that
⋂
i<nA

i is the fully open-separated union of

{
⋂
i<n

Bi
s(i) | s ∈

∏
i<n

Ji}.

(1)(a) and our induction hypothesis give that each
⋂
i<nB

i
s(i) ∈

⋃
β<α Π∗β.

(1)(f). The “if” direction is trivial, so we prove only the other direction.
Let α be a limit ordinal of uncountable cofinality. Let {D′j | j ∈ J} witness
that A is the fully open-separated union of {B′j | j ∈ J}, where each B′j ∈⋃
β<α Π∗β. For each j ∈ J , let Dj be the set of all p ∈ T such that dTpe ⊆ D′j

but (∀q ( p) dTqe 6⊆ D′j. Clearly
⋃
p∈DjdTpe ⊆ D′j. To see that the reverse

inclusion also holds, suppose that x ∈ D′j. Since D′j is open, there is an
n ∈ ω such that dTx�ne ⊆ D′j. For the least such n, x � n ∈ Dj. Let
D =

⋃
j∈J Dj. By the definition of the Dj and by the disjointness of the D′j,

any two elements of D are incomparable with respect to ⊆. Furthermore,⋃
d∈DdTde =

⋃
j∈JdD′je = dT e. For j ∈ J and d ∈ Dj, let Bd = B′j ∩ dTde.

Then
A =

⋃
j∈J

B′j =
⋃
j∈J

⋃
d∈Dj

Bd =
⋃
d∈D

Bd.

Each Bd is the intersection of a clopen set with a member of
⋃
β<α Π∗β, and

so (1)(e) gives that each Bd ∈
⋃
β<α Π∗β.
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(2). We may suppose that T is infinite, since otherwise every subset of
dT e is clopen and so belongs to Σ∗1. As in the proof of Lemma 1.1.1, we
get that

⋃
α<|T |+ Σ∗α is a class containing the open sets and closed under

countable unions and complements. To see that this class is closed under
open-separated unions as well, and so that every quasi-Borel set belongs to
it, suppose that {D′j | j ∈ J} witnesses that A is the open-separated union
of {B′j | j ∈ J} ⊆

⋃
α<|T |+ Σ∗α. We may assume that J is uncountable, since

otherwise A ∈
⋃
α<|T |+ Σ∗α, by closure under countable unions. For each

j ∈ J , define Dj as in the proof above of (1)(f). Similarly define D and Bd,
d ∈ D. We have that any two elements of D are incomparable with respect
to ⊆, that A =

⋃
d∈D Bd, and that each Bd ∈

⋃
α<|T |+ Σ∗α. Since D ⊆ T and

cf (|T |+) > |T | ≥ |D| ≥ |J | > ℵ0, there is limit ordinal α < |T |+ such that
cf (α) > ω and such that each Bd belongs to

⋃
β<α Σ∗β and so to

⋃
β<α Π∗β.

Our problem is that we may not have that
⋃
d∈DdTde = dT e. To deal with

this problem, let
Dn = {d ∈ D | `h(d) = n}.

Let An =
⋃
d∈Dn Bd. Let Dn+ = {p ∈ T | `h(p) = n}. For each n, {dTde | d ∈

Dn+} witnesses that An is the fully open-separated union of {Bd | d ∈ Dn} =
{Bd | d ∈ Dn} ∪ ∅. Hence each An ∈ Σ∗α. Since A =

⋃
n∈ω A

n, we get that
A ∈ Σ∗α+1.

The fact that every member of
⋃
α<|T |+ Σ∗α is quasi-Borel is proved by an

easy induction on α. �

Remarks:

(a) In general, the quasi-Borel sets form a larger class than the Borel sets.
For example, let T = {〈α〉_p | p ∈ <ωω ∧ α < ω1}. For α < ω1, let Bα ⊆ ωω
with Bα ∈ Π0

α \ Σ0
α. Let A = {〈α〉_y | y ∈ Bα}. A is quasi-Borel but not

Borel. See Exercise 2.2.1.

(b) Parts (1)(f) and (2) of Lemma 2.2.1 shows that, in the definition of
quasi-Borel, we could replace “open-separated union” by “(fully) basic-open-
separated union.” What if we made replacements in the other direction,
broadening rather than narrowing the class of allowable separating sets? Un-
fortunately, this would trivialize the concept: All points in dT e are closed,
so every subset of dT e is a closed-separated union of closed sets.

(c) If T is a game tree with taboos and [T ] is nonempty, then, as we
remarked in §2.1, the topological space [T ] is the same as the space dT̄ e,
where T̄ is the set of all p ∈ T such that some infinite play in T extends
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p. Thus Lemma 2.2.1 applies to [T ]. In addition, we have the following
generalization of Lemma 2.1.1.

Lemma 2.2.2. Let T be a game tree with taboos. For all ordinals α, a subset
A of [T ] belongs to Π∗α if and only if A ∈ Π∗α as a subset of dT e. For all
ordinals α > 1, a subset A of [T ] belongs to Σ∗α if and only if A ∈ Σ∗α as a
subset of dT e.

Proof. We prove the lemma by induction on α. The cases other than that
of α a limit ordinal of uncountable cofinality are handled as in the proof of
Lemma 2.1.1. Assume then that α is a limit ordinal and that cf (α) > ω.
Suppose first that A ⊆ [T ] belongs to Σ∗α as a subset of dT e. Let {Dj | j ∈ J}
witness that A is the fully open-separated union of {Bj | j ∈ J}, with each
Bj ∈

⋃
β<α Π∗β as a subset of dT e and so, by induction, as a subset of [T ].

Then {Dj ∩ [T ] | j ∈ J} witnesses for the space [T ] that A is the fully open-
separated union of {Bj | j ∈ J}. Thus A ∈ Σ∗α as a subset of [T ]. Now
suppose that A ∈ Σ∗α as a subset of [T ]. Let {Dj | j ∈ J} witness that A
is the fully open-separated union of {Bj | j ∈ J}, with each Bj ∈

⋃
β<α Π∗β.

For each j ∈ J let D′j be open in dT e with Dj = D′j ∩ [T ]. Let J ′ = J ∪ {j′},
where j′ /∈ J , and let D′j′ = dT e \

⋃
j∈J D

′
j. Since all members of D′j′ are

finite, D′j′ is open. Let Bj′ = ∅. Then {Dj | j ∈ J ′} witnesses that A is the
fully open-separated union of {Bj | j ∈ J ′}. Hence A ∈ Σ∗α as a subset of
dT e. �

If T is a game tree and A ⊆ dT e, then A ∈ Σ1
1 if and only if there is a

closed C ⊆ dT e × ωω (= dT e × d<ωωe) such that

(∀x ∈ dT e)(x ∈ A ↔ (∃y ∈ ωω) 〈x, y〉 ∈ C).

If A ⊆ dT e then A ∈ Π1
1 if and only if dT e \A ∈ Σ1

1. We let ∆1
1 = Σ1

1 ∩Π1
1.

(In Part 1 of Rogers et al. [1980], elements of Σ1
1 are called Souslin-F sets.)

The following theorem generalizes the Souslin Theorem.

Theorem 2.2.3. ([Hansell, 1973a] and [Hansell, 1973b]) For every game tree
T , the class of quasi-Borel sets coincides with ∆1

1.

Proof. In the proof of Lemma 1.1.1, we showed that every open set is a
countable union of clopen sets: If A is open then A =

⋃
n∈ω An, where

An =
⋃
{dTpe | p ∈ T ∧ `h(p) = n ∧ dTpe ⊆ A}.
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Thus the quasi-Borel sets form the smallest class that contains the clopen
sets and is closed under complements, countable unions, and open-separated
unions. To prove that all quasi-Borel sets belong to ∆1

1, it then suffices to
show (a) that every clopen set belongs Σ1

1 (and so that every clopen set
belongs to Π1

1) and (b) that both Σ1
1 and Π1

1 are closed under (i) countable
unions and (ii) open-separated unions.

(a). If A is clopen (or even just closed), then let C = A×ωω. C witnesses
that A ∈ Σ1

1.
(b)(i). Suppose that, for each n ∈ ω, Cn witnesses that An ∈ Σ1

1. Hence
each Cn is closed, and An = {x | (∃y ∈ ωω) 〈x, y〉 ∈ Cn}. Let C be defined
by

〈x, 〈n〉_y〉 ∈ C ↔ 〈x, y〉 ∈ Cn,
where (〈n〉_y)(0) = n and, for each i, (〈n〉_y)(i+ 1) = y(i). It is easy to see
that C witnesses that

⋃
n∈ω An ∈ Σ1

1.
Now suppose that, for each n ∈ ω, Cn witnesses that ¬An ∈ Σ1

1. For
y ∈ ωω and n ∈ ω, let (y)n ∈ ωω be defined by

(y)n(k) = y(pn
k),

where 〈pn | n ∈ ω〉 is the sequence of all prime numbers in increasing order.
Let

〈x, y〉 ∈ C ↔ (∀n ∈ ω) 〈x, (y)n〉 ∈ Cn.
C witnesses that

⋂
n∈ω ¬An ∈ Σ1

1, and so that
⋃
n∈ω An ∈ Π1

1.
For (b)(ii), first assume that {Dj | j ∈ J} witnesses that A is the open-

separated union of {Bj | j ∈ J} with each Bj ∈ Σ1
1. Let Bj = {x | (∃y ∈

ωω) 〈x, y〉 ∈ Cj}, with each Cj closed. Let

〈x, y〉 ∈ C ↔ (∀j ∈ J)(x ∈ Dj → 〈x, y〉 ∈ Cj).

C witnesses that A∪(dT e\
⋃
j∈J Dj) ∈ Σ1

1. (a) and (b)(i) imply that A ∈ Σ1
1.

(We could also have applied parts (1)(f) and (2) of Lemma 2.2.1 to get our
{Dj | j ∈ J} such that

⋃
j∈J Dj = dT e.)

Next assume that {Dj | j ∈ J} witnesses that A is the open-separated
union of {Bj | j ∈ J}, with each Bj ∈ Π1

1. Let dT e \ Bj = {x | (∃y ∈
ωω) 〈x, y〉 ∈ Cj}, with each Cj closed. Let

〈x, y〉 ∈ C ↔ (∀j ∈ J)(x ∈ Dj → 〈x, y〉 ∈ Cj).

C witnesses that A ∈ Π1
1.
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For the other half of the theorem we repeat the proof of the result of
[Lusin, 1927] (Theorem 2E.1 of [Moschovakis, 1980] and §35 III of [Kuratowski, 1958]),
for the case of countable T , that any two disjoint Σ1

1 sets can be separated
by a Borel set; we just replace “Borel” by “quasi-Borel.” Let A = {x | (∃y ∈
ωω) 〈x, y〉 ∈ C}, with C closed, and let A′ = {x | (∃y ∈ ωω) 〈x, y〉 ∈ C ′}, with
C ′ closed. Assume that A and A′ are not separated by any quasi-Borel set,
i.e. assume that there is no quasi-Borel B such that A ⊆ B and A′ ∩B = ∅.
We will prove that A ∩ A′ 6= ∅. For q ∈ T , r ∈ <ωω, and r′ ∈ <ωω, let

Aq,r = dTqe ∩ {x | (∃y ∈ ωω)(r ⊆ y ∧ 〈x, y〉 ∈ C)}
A′q,r′ = dTqe ∩ {x | (∃y ∈ ωω)(r′ ⊆ y ∧ 〈x, y〉 ∈ C ′)}

Assume inductively that n ∈ ω and that we have defined qn, rn, and r′n, all
of length n, such that Aqn,rn and A′qn,r′n are not separated by any quasi-Borel
set. First note that there are k and k′ such that Aqn,rn_〈k〉 and A′qn,r′n_〈k′〉 are
not separated by any quasi-Borel set, since if sets Bk,k′ , k, k

′ ∈ ω, contradict
this then ⋃

k∈ω

⋂
k′∈ω

Bk,k′

separates Aqn,rn and Aqn,r′n . Choose such k and k′ and let rn+1 and r′n+1, be
rn_〈k〉 and r′n

_〈k′〉 respectively. Now Aqn,rn+1 is the open-separated union
of {As,rn+1 | qn ⊆ s ∧ `h(s) = `h(qn) + 1} and A′qn,rn+1

is the open-separated
union of {A′s,r′n+1

| qn ⊆ s ∧ `h(s) = `h(qn) + 1}. If for each s ⊇ qn with

`h(s) = `h(qn) + 1 there were a quasi-Borel set Bs separating As,rn+1 and
A′s,r′n+1

, then
⋃
s(Bs ∩ dTse) would be a quasi-Borel set separating Aqn,rn+1

and A′qn,r′n+1
. Thus we can let qn+1 be some s ⊇ qn with `h(s) = `h(qn) + 1

such that no quasi-Borel set separates As,rn+1 and A′s,r′n+1
. This completes

the induction step. Now let x =
⋃
n qn, let y =

⋃
n rn, and let y′ =

⋃
n r
′
n.

Then y and y′ witness that x ∈ A ∩B. �

Remarks:

(a) Of course, Hansell’s theorem is not about spaces of the form dT e but
about a wider class that includes these spaces.

(b) The separation theorem, which is what the second half of our proof
of Theorem 2.2.3 actually proves, is in [Hansell, 1973a] and [Hansell, 1973b].

(c) If T is a game tree with taboos, it is easy to see that any subset A of
[T ] belongs to Σ1

1 as a subset of [T ] if and only if it belongs to Σ1
1 as a subset
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of dT e. By the first part of Theorem 2.2.3 and by the closure properties of
Σ1

1 and Π1
1 demonstrated in the proof, this also holds for Π1

1 and ∆1
1.

Our proof of quasi-Borel determinacy will parallel that of Borel determi-
nacy. For the analogue of Lemma 2.1.8, we will prove the analogue (†)∗α of
(†)α, for all ordinals α. For α of uncountable cofinality, where Σ∗α is gotten
by the new operation of open-separated union, we will need an additional
method of combining coverings.

If we are considering T, a game tree with taboos, and S a subtree of T
or S = ∅, let us denote by S the triple 〈S, TI ∩ S, TII ∩ S〉. If S is a game
subtree of T , then S is a game tree with taboos.

Suppose that T is a game tree with taboos and that p ∈ T . Let

(p)T = {q ∈ T | ¬(p ( q)}.

Let T be a game tree with taboos and let C = 〈T̃, π, φ,Ψ〉 be a covering
of T. For p ∈ T , C is a (p)-covering of T if

(i) (p)T̃ = (p)T;

(ii) π � (p)T̃ is the identity;

(iii) (φ(σ̃))(q) = σ̃(q), for all σ̃ and all q 6⊇ p;

(iv) φ(σ̃) � {q ∈ T | q ⊇ p} depends only on σ̃ � {q̃ ∈ T̃ | q̃ ⊇ p}.

Lemma 2.2.4. Let T be a game tree with taboos and let p ∈ T . Every `h(p)-
covering of Tp induces a unique (p)-covering of T; i.e., if 〈T̃′, π′, φ′,Ψ′〉 is
a `h(p)-covering of Tp, then there is a unique (p)-covering 〈T̃, π, φ,Ψ〉 of T
such that T̃p = T̃′, π�T̃ ′ = π′, φ(σ̃)�{q∈T | q ⊇ p} = (φ′(σ̃′))�{q∈T | q ⊇ p}
for all σ̃ ∈ S(T̃ ), and Ψ(σ̃, x) = Ψ′(σ̃′, x) for all 〈σ̃, x〉 ∈ domain (Ψ) with
p ⊆ x, where in the last two clauses σ̃′ is the unique element of S(T̃ ′) agreeing
with σ̃ on {q ∈ T̃ | q ⊇ p}.

Proof. The proof is quite routine, so we verify only the uniqueness of Ψ.
Suppose that x ∈ d(p)T e is consistent with φ(σ̃), with σ̃ ∈ S(T̃ ). We show

that we must have Ψ(σ̃, x) = x. First note that Ψ(σ̃, x) ∈ d(p)T̃ e, since
otherwise clause (d)(ii) of the definition of a covering and (ii) above imply
that x ⊇ π(Ψ(σ̃, x)) ) p. Hence (d)(ii) and (ii) give that x ⊇ π(Ψ(σ̃, x)) =
Ψ(σ̃, x). But then (i) implies that Ψ(σ̃, x) = x. �

Remark. It is also true that every (p)-covering of T induces a unique
`h(p)-covering of Tp. (See Exercise 2.2.3.) Thus a (p)-covering of T is essen-
tially the same thing as a `h(p)-covering of Tp.
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Lemma 2.2.5. Let T be a game tree with taboos and let D ⊆ T be such
that

⋃
d∈DdTde = dT e and such that any two distinct elements of D are

incomparable with respect to ⊆. Suppose that k ∈ ω and, for each d ∈ D,
that Cd = 〈Td, πd, φd,Ψd〉 is both a k-covering and a (d)-covering of T. Then
there is a k-covering C = 〈T̃, π, φ,Ψ〉 of T and, for each d ∈ D, there are π̃d,
φ̃d, and Ψ̃d such that

(i) C̃d = 〈T̃, π̃d, φ̃d, Ψ̃d〉 is a k-covering of T d;

(ii) C = Cd ◦ C̃d.

Proof. We get T̃ from T by replacing each Td, d ∈ D, by Td
d:

p̃ ∈ T̃ ↔
{

(∃d ∈ D)(d ⊆ p̃ ∧ p̃ ∈ T d)
or p̃ ∈ T ∧ (∀d ∈ D) d 6⊆ p̃;

p̃ ∈ T̃I ↔
{

(∃d ∈ D)(d ⊆ p̃ ∧ p̃ ∈ T dI )
or p̃ ∈ TI ∧ (∀d ∈ D) d 6⊆ p̃;

p̃ ∈ T̃II ↔
{

(∃d ∈ D)(d ⊆ p̃ ∧ p̃ ∈ T dII )
or p̃ ∈ TII ∧ (∀d ∈ D) d 6⊆ p̃.

In the notation introduced on page 87, clause (i) in the definition of a k-
covering says that kT̃ = kT. That this is true follows from the fact that the
Cd are k-coverings.

We define π and π̃d, for d ∈ D, by

π(p̃) =

{
πd(p̃) if d ∈ D ∧ d ⊆ p̃;
p̃ if (∀d ∈ D) d 6⊆ p̃;

π̃d(p̃) =

{
πd′(p̃) if d′ ∈ (D \ {d}) ∧ d′ ⊆ p̃;
p̃ if (∀d′ ∈ (D \ {d})) d′ 6⊆ p̃.

It is easy to check that π : T̃⇒ T and that each π̃d : T̃⇒ Td. The fact that
π and the π̃d are the identity on kT̃ = kT follows from the fact that the Cd are
k-coverings. To verify that π = πd ◦ π̃d for each d ∈ D, let p̃ ∈ T̃ and d ∈ D.
If (∀d′ ∈ D) d′ 6⊆ p̃, then π(p̃) = πd(π̃d(p̃)) = p̃. So assume that d′ ∈ D and
d′ ⊆ p̃. By definition, π(p̃) = πd′(p̃). Assume first that d′ = d. By definition,
π̃d(p̃) = p̃. Thus πd(π̃d(p̃)) = πd(p̃) = π(p̃). Assume now that d′ 6= d. We
have that π̃d(p̃) = πd′(p̃) and, since πd′(p̃) ⊇ d′ 6= d, that πd(πd′(p̃)) = πd′(p̃).
Hence πd(π̃d(p̃)) = πd′(p̃) = π(p̃).
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For σ̃ ∈ S(T̃ ) and d ∈ D, let σ̃d be any element of S(T d) that agrees with
σ̃ on {q∈T̃ | q ⊇ d}. Clause (iv) in the definition of a (p)-covering guarantees
that the following definitions of φ and φ̃d, for d ∈ D, are independent of the
choices of the σ̃d.

(φ(σ̃))(p) =

{
(φd(σ̃d))(p) if d ∈ D ∧ d ⊆ p;
σ̃(p) if (∀d ∈ D) d 6⊆ p;

(φ̃d(σ̃))(p) =

{
(φd′(σ̃d′))(p) if d′ ∈ (D \ {d}) ∧ d′ ⊆ p;
σ̃(p) if (∀d′ ∈ (D \ {d})) d′ 6⊆ p.

It is easy to verify that φ : T̃
S⇒ T. The fact that φ and the φ̃d are the identity

on kS(T̃ ) follows from the fact that the Cd are k-coverings. The proof that
φd ◦ φ̃d = φ for every d ∈ D is like the proof above that πd ◦ π̃d = π, and we
omit it.

We define Ψ and Ψ̃d, for d ∈ D, as follows:

Ψ(σ̃, x) = Ψd(φ̃d(σ̃), x), where d ∈ D ∧ d ⊆ x;

Ψ̃d(σ̃, x) =

{
Ψd′(φ̃d′(σ̃), x) if d′ ∈ D \ {d} ∧ d′ ⊆ x;
x if d ⊆ x.

Let us check clause (d) in the definition of a covering for C. (Clause (d) for
the C̃d has a similar proof.) Let σ̃ ∈ S(T̃ ) and let x ∈ dT̃ e be consistent with
σ̃. Let d ∈ D be such that d ⊆ x. Since x is consistent with φ(σ̃) = φd(φ̃d(σ̃)),
it follows that Ψd(φ̃d(σ̃), x) is consistent with φ̃d(σ̃). Now Ψd(φ̃d(σ̃), x) ⊇ d,
since otherwise we would have x ⊇ πd(Ψd(φ̃d(σ̃), x)) = Ψd(φ̃d(σ̃), x) 6⊇ d.
But σ̃ and φ̃d(σ̃) agree on T̃d, so Ψd(φ̃d(σ̃), x) is consistent with σ̃. The fact
that Ψd(φ̃d(σ̃), x) ⊇ d implies that π(Ψd(φ̃d(σ̃), x)) = πd(Ψd(φ̃d(σ̃), x)), and
so we have that π(Ψ(σ̃, x)) = π(Ψd(φ̃d(σ̃), x)) = πd(Ψd(φ̃d(σ̃), x)) ⊆ x. For
clause (d)(iii), suppose for definiteness that σ̃ is a strategy for I. If Ψ(σ̃, x) is
not taboo for I in T̃, then this same play Ψd(φ̃d(σ̃), x) is not taboo for I in
Td. By clause (d)(iii) for Cd, πd(Ψd(φ̃d(σ̃), x)) = x. Thus π(Ψ(σ̃, x)) = x.

Finally, we must verify that Ψ(σ̃, x) = Ψ̃d(σ̃,Ψd(φd(σ̃), x)). If d ⊆ x,
then Ψ(σ̃, x) = Ψd(φd(σ̃), x) = (since Ψd(φd(σ̃), x) ⊇ d) Ψ̃d(σ̃,Ψd(φd(σ̃), x).
If x ⊇ d′ 6= d, then Ψ(σ̃, x) = Ψd′(φd′(σ̃), x) = Ψ̃d(σ̃, x) = (since Cd is a
d-covering) Ψ̃d(σ̃,Ψd(φd(σ̃), x). �
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Remark. Lemma 2.2.5 is the basic new step in the proof of quasi-Borel
determinacy. Its proof turns on the fact that the non-trivial parts of the Cd
are separated, and so these coverings can be combined without interference.
We have given most of the details of the proof, but the proof really should
be obvious. The significance of the lemma is that all subsets of [T ] unraveled
by any of the given coverings are simultaneously unraveled by C.

Theorem 2.2.6. ([Martin, 1990]) Let T be a game tree with taboos. If A is
a quasi-Borel subset of [T ] and k ∈ ω, then there is a k-covering of T that
unravels A.

Proof. By induction of ordinals α ≥ 1, we prove

(†)∗α For all T, for all A ⊆ [T ] such that A ∈ Σ∗α, and for all k ∈ ω, there
is a k-covering of T that unravels A.

Since Σ∗1 = Σ0
1, (†)∗1 is equivalent with Lemma 2.1.7. Assume then that

α > 1 and that (†)β holds for all β with 1 ≤ β < α. If α is a successor
ordinal or if cf (α) = ω, then the proof of Lemma 2.1.8 gives (†)∗α. We may
then assume that α has uncountable cofinality. Let k ∈ ω and let A ⊆ [T ]
with A ∈ Σ∗α. By Lemma 2.2.2 and part (1)(f) of Lemma 2.2.1 there is
a set D ⊆ T such that

⋃
d∈DdTde = dT e and any two elements of D are

incomparable with respect to ⊆, and there are Bd, d ∈ D, such that each
Bd ⊆ dTde, such that each Bd ∈

⋃
β<α Π∗β, and such that A =

⋃
d∈D Bd. By

our induction hypothesis, for each d ∈ D there is a max {k, `h(d)}-covering
C ′d of Td that unravels Bd. For d ∈ D, let Cd = 〈Td, πd, φd,Ψ

′
d〉 be the (d)-

covering of T given by Lemma 2.2.4. Each Cd is a k-covering and unravels
Bd. Let C and C̃d, d ∈ D, be given by Lemma 2.2.5. Since C = Cd ◦ C̃d for
each d ∈ D, it follows that C unravels each Bd. Thus π−1(A) is open. Let Ĉ
be a k-covering of T̃ that unravels π−1(A). Then C ◦ Ĉ is a k-covering of T
that unravels A. �

Theorem 2.2.7. ([Martin, 1990]) All quasi-Borel games are determined.

Proof. The theorem follows immediately from Lemma 2.1.3 and Theorem
2.2.6 �

Theorem 2.2.8. All ∆1
1 games are determined.
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Proof. The theorem follows immediately from Theorem 2.2.3 and Theorem
2.2.7 �

Exercise 2.2.1. Show that the set A defined in Remark (a) following the
proof of Lemma 2.2.1 is quasi-Borel but not Borel.

Exercise 2.2.2. Prove the remark following the proof of Theorem 2.2.3.

Exercise 2.2.3. Let 〈T̃, π, φ,Ψ〉 be a (p)-covering of T. Show that there
is a unique `h(p)-covering 〈T̃′, π′, φ′,Ψ′〉 of Tp such that the conditions of
Lemma 2.2.4 are met.

2.3 Optimal Hypotheses

Results of [Friedman, 1971] show that more and more of the strength of the
Power Set and Replacement Axioms is needed to prove Σ0

α determinacy for
larger and larger countable α. (See Exercises 2.3.2–2.3.5.) Our aim in this
section is to show that Σ0

α determinacy follows from essentially the weakest
Power Set and Replacement assumptions permitted by slight refinements of
Friedman’s theorems. Throughout the section, we work again in ZC−+ Σ1

Replacement.
Note first that the proof of Lemma 2.1.6 goes through in our weak set

theory, provided we take the given i 7→ Ti to be a genuine function (i.e. a
set) rather than just a (class) operation.

The proofs of Lemmas 2.1.3 and 2.1.4 also go through in the weak set
theory. Here are some results that come from combining Lemma 2.1.4 with
facts proved in Chapter 1.

Lemma 2.3.1. (ZC−+ Σ1 Replacement) Let T be a game tree with taboos
and let A ⊆ [T ]. If there is a covering 〈T̃, π, φ,Ψ〉 of T such that π−1(A) ∈
Σ0

3, then G(A; T) is determined.

Proof. This follows from Lemmas 2.1.4 and Corollary 1.3.4. �

Using Theorem 1.4.9, the Montalban-Shore theorem, we can get a stronger
result, at least in countable trees:

Lemma 2.3.2. For all k ∈ ω, ZC−+ Σ1 Replacement ` “ For all count-
able game trees with taboos T, and for all A ⊆ [T ], if there is a covering
〈T̃, π, φ,Ψ〉 of T such that π−1(A) ∈ k-Π0

3, then G(A; T) is determined.”
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If we strengthen ZC−+ Σ1 Replacement to Rec(ZC−+ Σ1 Replacement),
then Corollary 1.4.23 lets us can strengthen the conclusion to ∆0

4.

Lemma 2.3.3. (Rec(ZC−+ Σ1 Replacement)) Let T be a game tree with
taboos and let A ⊆ [T ]. If there is a covering 〈T̃, π, φ,Ψ〉 of T such that
π−1(A) ∈∆0

4, then G(A; T) is determined.

We will mainly use the first of the three lemmas just stated, but we will
occasionally mention the consequences of the others.

From Lemma 2.1.6 and the proof of Lemma 2.1.7 we can extract the
following fact.

Lemma 2.3.4. (ZC− + Σ1 Replacement) Let T be a game tree with taboos.
If k ∈ ω, if A is a countable set of open or closed subsets of [T ], and if P(T )
(the power set of T ) exists, then there is a k-covering C of T that unravels
every member of A and is such that if T is infinite then

|T̃ | ≤ |P(T )|.

Proof. The proof of Lemma 2.1.7 gives an operation

〈T, A, k〉 7→ C(T, A, k),

defined on triples consisting of (1) a game tree with taboos T such that the
power set of T exists, (2) a closed subset A of [T ], (3) and an even k ∈ ω.
Let T̃(T, A, k) be the first component of C(T, A, k) and let π(T, A, k) be its
second component. The main properties of this operation are the following,
where we suppress (T, A, k):

(i) C is a k-covering of T that unravels A;

(ii) if T is infinite, then |T̃ | ≤ |P(T )|;
(iii) if p̃ ∈ T̃ and `h(p̃) ≥ k + 2, then every move in T̃ at p̃ is a move in T

at π(p̃).

(i) and (iii) are clear. (ii) holds because the two extra components (other
than the numbers 1 and 2) of moves in T̃ are subsets or members of T .
Because we are working in the weak set theory, it will simplify matters if we
change T̃ so that we have
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(iv) if T is infinite, if p̃ ∈ T̃ , and if `h(p̃) ∈ {k, k + 1}, then every move in
T̃ at p̃ is a subset of Tπ(p̃).

For example, we can make move k be a subset of Tπ(p̃) = Tp by having I
play {p_〈a〉} ∪ X instead of 〈a,X〉. We leave it to the reader the problem
of finding an appropriate modification of the rules for move k + 1.

Assume that P(T ) exists and, without loss of generality, assume that T is
infinite. Let k and A be as in the statement of the lemma. We may assume
that k is even, and we may assume that all members of A are closed. Let
then A = {Ai | i ∈ ω}, with each Ai closed. Let T0 = T. Inductively define
Ci = 〈Ti+1, πi+1, φi+1,Ψi+1〉 by

Ci = C(Ti, (π1 ◦ · · · ◦ πi)−1(Ai), k + 2i).

For i < j ∈ ω, let
Cj,i = Ci+1 ◦ · · · ◦ Cj.

For j ∈ ω, let Cj,j be the trivial covering of Ti. It follows by induction using
(iii) and (iv) that, for all i ∈ ω, (iii) holds with “Ti” replacing “T̃” and
“k + 2i” replacing “k + 2,” and

(∀p̃ ∈ Ti)(∀m< `h(p̃))(k ≤ m < k + 2i → p̃(m) ∈ P(T )).

Thus we can set kj,i = k + 2i, and the hypotheses of Lemma 2.1.6 will be
satisfied. Applying Lemma 2.1.6, we get, in particular, a covering C∞,0 =
〈T∞, π∞,0, φ∞,0,Ψ0,∞〉, a (k + 2i)-covering of T that unravels all the Ai and
is such that |T∞| ≤

∑
i∈ω |Ti| ≤ |ωP(T )| = |P(T )|. �.

We next prove a standard fact about Borel sets that will be useful in deriv-
ing a fact related to Theorem 2.1.8 as Lemma 2.3.4 is related to Lemma 2.1.7.
Let us call a set A of Borel subsets of [T ] self-sufficient if, whenever β > 1
and A ∈ A∩(Σ0

β \
⋃
γ<β Σ0

γ), there are Ai, i ∈ ω, with each Ai ∈ A∩
⋃
γ<β Σ0

γ

and with A =
⋃
i∈ω ¬Ai.

Lemma 2.3.5. (ZC−+ Σ1 Replacement) Every countable set of Borel sub-
sets of [T ] can be extended to a countable, self-sufficient set.

Proof. For every countable set A of Borel sets, there is a countable ordinal
α such that A ⊆ Σ0

α. Thus we may assume inductively that A is a countable
subset of Σ0

α with α countable and ≥ 1, and that for each β < α every
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countable subset of Σ0
β can be extended to a countable self-sufficient set.

The case α = 1 is trivial, so assume that α > 1. For each A ∈ A \
⋃
β<α Σ0

β,

let 〈Bi,A | i ∈ ω〉 be such that each Bi,A ∈
⋃
β<α Σ0

β and A =
⋃
i∈ω ¬Bi,A. By

induction, for each β < α let Bβ be a countable self-sufficient set extending
{Bi,A | i ∈ ω ∧ A ∈ A \

⋃
β<α Σ0

β ∧ Bi,A ∈ Σ0
β} ∪ {A ∈ A | A ∈ Σ0

β}. Let

B = A ∪
⋃
β<α

Bβ.

It is easy to see that B is self-sufficient. �

For sets X and ordinals α, we define Pα(X) inductively as follows:

P0(X) = X;

Pα+1(X) = P(Pα(X)) ∪ Pα(X);

Pλ(X) =
⋃
β<λ

Pβ(X) for β a limit ordinal.

Of course, it does not follow in our weak set theory that Pα(X) always exists,
even for α = 1.

Lemma 2.3.6. (ZC−+ Σ1 Replacement) Let α be any countable ordinal ≥ 1.
Let

α∗ =

{
α− 1 if α is finite;
α if α is infinite.

Let k ∈ ω, and let T be a game tree with taboos. Let A be a be countable set
of subsets of [T ] such that A ⊆

⋃
1≤β<α Σ0

β. If Pα∗(T ) exists then there is

a k-covering C = 〈T̃, π, φ,Ψ〉 of T such that C unravels every member of A
and such that if T is infinite then |T̃ | ≤ |Pα∗(T )|.

Proof. We prove the lemma by induction on α. The case α = 1 is trivial.
Let α > 1 and assume that the lemma holds for all non-zero ordinals smaller
than α. Fix T and assume that Pα∗(T ) exists. Let k ∈ ω and let A be a
countable set of subsets of [T ] such that A ⊆

⋃
β<α Σ0

β. By Lemma 2.3.5,
we may assume that A is self-sufficient. Clearly we may assume that T is
infinite.

First suppose that α = β + 1 for some β. If β > 1, then by induction
let C ′ = 〈T′, π′, ψ′, φ′〉 be a k-covering of T that unravels every member of
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A ∩
⋃
γ<β Σ0

γ and is such that |T ′| ≤ |Pβ∗(T )|. If β = 1, let C ′ be the trivial

covering, with T′ = T, etc. Note that in this case |T ′| = |T | = |P0(T )| =
|Pβ∗(T )|.

Let A ∈ A\
⋃
γ<β Σ0

γ. If β > 1 then, since A ∈ Σ0
β and A is self-sufficient,

there are Ai, i ∈ ω, such that A =
⋃
i∈ω ¬Ai and each Ai ∈ A ∩

⋃
γ<β Σ0

γ.

Hence π′−1(A) =
⋃
i∈ω π

′−1(¬Ai), and therefore π′−1(A) is open. If β = 1
then π′−1(A) = A, which is Σ0

1, i.e. open.
Since Pα∗(T ) = P(Pβ∗(T )) ∪ Pβ∗(T ), we have the existence of P(T ′).

Applying Lemma 2.3.4 to T′ and A′ = {π′−1(A) | A ∈ A}, we get a covering
Ĉ = 〈T̂, π̂, φ̂, Ψ̂〉 of T′ that unravels every member of A′ and satisfies

|T̂ | ≤ |P(T ′)| ≤ |Pα∗(T )|.

Let C = C ′ ◦ Ĉ.
Now suppose that α is a limit ordinal. Let 〈βn | n ∈ ω〉 be an increasing

sequence of ordinals < α such that supn∈ωβn = α and such that β0 = 1.
Inductively we define Tj, j ∈ ω, and Cj,i = 〈Tj, πj,i, φj,i,Ψ

i,j〉, i ≤ j ∈ ω,
so that

(i) the hypotheses of Lemma 2.1.6 are satisfied with kj,i = k + i.

(ii) T0 = T;

(iii) for all n ∈ ω, every move in Tn belongs to Pβ∗n(T );

(iv) for all n ∈ ω, Cn,0 unravels every element of An = A ∩
⋃
γ<βn

Σ0
γn .

Let Amn = {πm,0−1(A) | A ∈ An}. Clause (iv) says that each Ann is a set of
clopen sets.

Assume that the Tj and the Cj,i are defined for i ≤ j ≤ n and have the
stated properties. (This is trivial for n = 0.)

Let γ be such that βn + γ∗ = βn+1. Now Ann+1 is readily seen to be
self-sufficient, and Ann+1 ∩ {πn,0−1(A) | A ∈

⋃
δ<βn

Σ0
δ} = Ann, a set of clopen

sets. It follows by an easy inductive argument that Ann+1 ∈
⋃
δ<γ Σ0

δ . Now

Pγ∗(Pβ∗n(T )) = Pβ∗n+1(T ). It follows by (iii) that Pγ∗(Tn) exists. Since Ann+1

is a countable subset of dTne ∩
⋃
δ<γ Σ0

δ and γ ≤ βn+1 < α, it follows by
induction that there is a (k + n)-covering C ′ = 〈T′, π′, φ′,Ψ′〉 of Tn that
unravels every member of Ann+1 and satisfies |T ′| ≤ |Pγ∗(Tn)| ≤ |Pβ∗n+1(T )|.
Modifying T′ to make clause (iii) hold, we get our Cn+1,n; we get the Cn+1,j

for j < n by composition.
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Lemma 2.1.6 yields, in particular, a k-covering

C∞ = 〈T∞, π∞,0, φ∞,0,Ψ0,∞〉

of T that unravels every member of A and satisfies |T∞| ≤ |Pα(T )|. Since
α∗ = α, we can let C = C∞,0. �

Theorem 2.3.7. (ZC−+ Σ1 Replacement) Let T be a game tree with taboos.
(a) If n ∈ ω and Pn(T ) exists, then all Σ0

n+3 games in T are determined.
(b) If α is an infinite countable ordinal and Pα(T ) exists, then all Σ0

α+2

games in T are determined.

Proof. (a) Assume that Pn(T ) exists and let A ⊆ [T ] with A ∈ Σ0
n+3. By

Lemma 2.3.5, let B be countable and self-sufficient with A ∈ B. By Lemma
2.3.6, let 〈T̃, π, φ,Ψ〉 be a covering of T that unravels every member of B∩Σ0

n.
We have that π−1(A) ∈ Σ0

3. By Lemma 2.3.1, G(A; T) is determined.
The proof of (b) is similar to that of (a), and we omit it. �

Corollary 2.3.8. (ZC−+ Σ1 Replacement) If Pα(T ) exists for every count-
able α, then all Borel games in T are determined.

Corollary 2.3.9. (ZC + Σ1 Replacement) For all n ∈ ω, every Σ0
n game is

determined.

Proof. Since Zermelo Set Theory (ZC) gives the existence of Pn(T ) for
every n ∈ ω, the Corollary follows by Theorem 2.3.7. �

Remarks:

(i) “Σ1 Replacement” can be dropped from the statements of Corollar-
ies 2.3.8 and 2.3.9. Though we cannot then use (von Neumann) ordinal
numbers, we can replace them by wellordered sets, making use of Zermelo’s
theorem that every set can be wellordered. If we restrict ourselves to, say,
the tree <ωω, then “+ Σ1 Replacement” can be dropped from the statements
of all our other results as well, though—since we don’t have in general the
existence of cartesian products—we must exercise some care in formulating
these results.

(ii) For countable trees and for any fixed k ∈ ω, “Σ0
n+3” can be replaced

in Theorem 2.3.7 by “k-Π0
3,” and “Σ0

α+2” can be replaced there by “k-Π0
α+2.”

This follows by Lemma 2.3.2.
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(iii) If “ZC−+ Σ1 Replacement” is replaced by in Theorem 2.3.7 by
“Rec(ZC−+ Σ1 Replacement),” then “Σ0

n+3” and “Σ0
α+2” can be replaced

by “∆0
n+4” and “∆0

α+3” respectively. This follows by Lemma 2.3.3.

For elements x of ωω and countable ordinals α, let βxα be the least ordinal
β such that Lβ[x] |= ZC−+ Σ1 Replacement + “Pα(ω) exists” (provided, of
course, that such a β exists).

Theorem 2.3.10. (ZC−+ Σ1 Replacement)
(a) If n ∈ ω and βxn exists for every x ∈ ωω, then all ∆0

n+4 games in <ωω
are determined.

(b) If α is an infinite countable ordinal and βxα exists for every x ∈ ωω,
then all ∆0

α+3 games in <ωω are determined.

Proof. (a) Assume that βxn exists for every x ∈ ωω. Let A be a ∆0
n+4 subset

of ωω. Let x be such that A is ∆0
n+4 in x. Fix a definition witnessing that A

is ∆0
n+4 in x.

During this paragraph, we work in Lβxn [x] and we write “A” for the set
satisfying in Lβxn [x] our chosen definition of A. By Lemma 2.3.5, let B be

countable and self-sufficient with A ∈ B. By 2.3.6, let 〈T̃, π, φ,Ψ〉 be a
covering of T that unravels every member of B∩Σ0

n. The set π−1(A) belongs
to ∆0

4. By Theorem 1.4.2 (which holds in Lβxn [x]), π−1(A) ∈ Diff(Π0
3).

We have just shown that Lβxn [x] satisfies “π−1(A) ∈ Diff(Π0
3).” By The-

orem 1.4.16, Lβxn [x] |= “All Diff(Π0
3 games in T̃ are determined.” Thus

Lβxn [x] |= “G(π−1(A); T̃) is determined.” By Lemma 2.1.4, Lβxn [x] |= “G(A; <ωω)
is determined.” By absoluteness, G(A; <ωω)) is determined.

The proof of (b) is similar. �

As in the exercises at the end of §1.4, in the exercises below we will use
“ω-model” to mean a model (M ;E) such that ω ∈ WFP(M ;E) and the
restriction of E to WFP(M ;E) is the membership relation.

Exercise 2.3.1. This exercise extends the results of the the present section
to the quasi-Borel hierarchy introduced in §2.2.

Work in ZC−+ Σ1 Replacement. Let α be any infinite ordinal. Prove
that, for every game tree with taboos T, for every countable set A of subsets
of [T ] such that A ⊆

⋃
1≤β<α Σ∗β, and for every k ∈ ω, if Pα(T ) exists then

there is a k-covering C = 〈T̃, π, φ,Ψ〉 of T such that C unravels every member
of A and such that if T is infinite then |T̃ | ≤ |Pα(T )|.
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Deduce that, if T is a game tree with taboos and Pα(T ) exists, then all
Σ∗α+2 games in T are determined.

Hint. Adapt the proof of Lemma 2.3.6, using the proof of Lemma 2.2.5 to
handle the case that α is the successor of an ordinal of uncountable cofinality.

Exercise 2.3.2. This exercise and the four that follow it are, like Exer-
cises 1.4.1 and 1.4.2, refinements by the author of results of [Friedman, 1971].

Show that, for each ordinal α < ω1, there is a model (M ;∈) of ZC−+ Σ1

Replacement such that M is a transitive set, α ∈ M , and (M ;∈) |= “Pα(ω)
exists,” and (a) Σ0

α+4 determinacy for games in <ωω fails in (M ;∈) if α is
finite and (b) Σ0

α+3 determinacy for games in <ωω fails for α infinite.

Hint. Proceed as with Exercise 1.4.1, except—for α < ω1
L—replace β0

by βα, where βα is the least ordinal number β such that Lβ |= ZC−+ Σ1

Replacement + “Pα(ω) exists.” A key fact about βα for α < ω1
L is that it is

the least ordinal β such that there is no a ⊆ Pα(ω) such that a ∈ Lβα+1\Lβα .
For α ≥ ω1

L, first generically add an f : ω → α and then define βα using
Lβ[f ] instead of Lβ.

Exercise 2.3.3. Work in ZC−+ Σ1 Replacement. Let α be a small enough
countable ordinal that α is definable and the lightface class Σ0

α makes sense
(e.g., let α < ωCK

1 ). Assume that (a) all Σ0
α+4 games in <ωω are determined

if α is finite and that all Σ0
α+3 games in <ωω are determined if α is infinite.

Prove that βα exists. It follows that the consistency of ZFC− + “Pα(ω)
exists” can be proved in ZC−+ Σ1 Replacement + “either all Σ0

α+4 games
are determined or α is infinite and all Σ0

α+3 games are determined.”

Hint. Combine the hints to Exercises 1.4.2 and 2.3.2.

Exercise 2.3.4. Show that, for each limit ordinal λ < ω1, there is a model
(M ;∈) of ZC−+ Σ1 Replacement such that M is a transitive set, (∀α <
λ)Pα(ω)∩M ∈M , and Σ0

λ+1 determinacy for games in countable trees fails
in (M ;∈). Your (M ;∈) should also be a model of the Power Set Axiom,
and so you can deduce that the determinacy of all Σ0

ω+1 games in <ωω is not
provable in ZC + Σ1 Replacement.

Exercise 2.3.5. Work in ZC−+ Σ1 Replacement. Let λ be a small enough
countable limit ordinal that λ is definable and the Σ0

λ makes sense. Assume
that all Σ0

λ+1 games in <ωω are determined. Let βλ be the least ordinal γ,
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if one exists, such that Lγ |= ZC−+ Σ1 Replacement + “(∀α < λ)Pα(ω)
exists.” Prove that βλ exists.

In particular, this means that in ZC−+ Σ1 Replacement the determinacy
of all Σ0

ω+1 games in <ωω implies the consistency of ZC.

Exercise 2.3.6. Work in ZC−+ Σ1 Replacement. Prove the following gen-
eralization of the result of Exercise 1.4.3. Let α be a countable ordinal and
assume that Σ0

α+5 Turing determinacy holds if α is finite and that Σ0
α+4 Tur-

ing determinacy holds if α is infinite. Show that βxα exists for every x ∈ ωω.

Hint. Combine the hints for Exercises 2.3.3 and 1.4.3. In the game,
require that the models satisfy V = L[x] instead of V = L.

Exercise 2.3.7. Work in ZC−+ Σ1 Replacement. Show that, for every
countable ordinal α, Σ0

α+5 Turing determinacy implies the determinacy of
all ∆0

α+4 games in <ωω. Note that a consequence of this is that Borel Turing
determinacy implies the determinacy of all Borel games in <ωω.

Hint. Use Theorem 2.3.10.

Exercise 2.3.8. This and the following four exercises give a a proof due
to Ramez Sami of a non-level-by-level form of of Friedman’s result on the
strength of Borel determinacy. Sami’s proof has more in common with the
proof in [Friedman, 1971] than with the proof sketched in our hints to earlier
exercises. In particular, Friedman and Sami use Turing degrees in similar
ways. But Sami’s proof has ingredients not in either Friedman’s proofs or
ours, principally the result of the present exercise.

In order that the result of this exercise will be applicable to Exercise 2.3.12,
work in the theory ZFC−. Assume that all ∆1

1 games in <ωω are determined.
Let A ∈ Σ1

1. Show that at least one of the following holds.

(1) There is a strategy σ for I such that, if x ∈ ∆1
1(σ) is any play

consistent with σ, then x ∈ A.

(2) There is a winning strategy for II for G(A; <ωω).

Hint. Assume that (1) fails and show that (1) fails for some B ⊇ A with
B ∈ ∆1

1. Then use Borel determinacy.

Exercise 2.3.9. Once again work in ZFC−. Assume, say, that ν < ωCK
1 .

Let Tν be the theory KP + V = L + “there is no ordinal α such that Lα |=
(ZFC− + ℵν exists).”
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Let M and N be ω-models of Tν . Let d be an ordinal of M and let e1

and e2 be ordinals of N . Suppose that f1 : LMd
∼= LNe1 and f2 : LMd

∼= LNe2 .
Prove that f1 = f2.

Hint. It is enough to show that f1 and f2 agree on the ordinals ofM that
are less than d. Show that the order type of the infinite cardinals of LMd is
≤ ν + 1. Prove by induction on infinite cardinals b of M that f1(a) = f2(a)
for every ordinal a of M such that |a|M ≤ b.

Exercise 2.3.10. Once again work in the theory ZFC−. Let ν and Tν be
as in Exercise 2.3.9. Assume V = L and assume that there is no ordinal α
such that Lα |= ZFC− + “ℵν exists.” Prove that the set of Turing degrees
of complete extensions of Tν with wellfounded term models is unbounded.

Hint. Under the assumptions it is enough to prove that there are arbi-
trarily large countable ordinals α such that Lα |= KP and every member of
Lα is definable in Lα. See Exercise 1.4.2.

Exercise 2.3.11. Once again work in the theory ZFC−. Let ν and Tν be as
in the preceding two exercises. Say that the term model M of a complete
extension S of Tν is pseudo-wellfounded if every non-empty subset of the
universe of M that is ∆1

1 in S has an element that is minimal with respect
to ∈M. Let Sν be the set of all complete extensions S of Tν whose term
models are pseudo-wellfounded. Note that Sν is Σ1

1. Prove that two distinct
members of Sν cannot be ∆1

1 in one another.

Hint. Assume this is false and let M and N be the term models of
theories witnessing its falsity. For d and e ordinals ofM and N respectively,
say that d ∼ e if LMd

∼= LNe . Use Exercise 2.3.9 to prove that ∼ is ∆1
1 in

M and in N . Deduce that either M ∼= LNe for some ordinal e of N or else
N ∼= LMd for some ordinal d of M. Get a contradiction as in the analogous
parts of the proofs for Exercises 1.4.2, 2.3.3, and 2.3.5.

Exercise 2.3.12. Work again in ZFC−. Let ν be as in the preceding three
exercises. Prove that the determinacy of all ∆1

1 games in <ωω implies that
there is an ordinal α such that Lα |= ZFC− + “ℵν exists.”

Hint. By absoluteness, you may assume V = L. Assume that what you
are trying to prove is false. Use Exercises 2.3.8 and 2.3.10 to prove that there
is a Turing degree d such that, for any d′ ≥ d and ∆1

1 in d, there is a member
of Sν of degree d′. Use Exercise 2.3.11 to obtain a contradiction.
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Exercise 2.3.13. If A and B are subsets of ωω, we say that A is Wadge
reducible to be, or A ≤w B, if there is a continuous f : ωω → ωω such that
A = f−1B. If A ≤w B then, in a strong sense, A is at least as simple a set
as B. Prove that, for any Borel A and B, either A ≤w B or B ≤w ¬A.

Hint. Say that A is Lipschitz reducible to B, or A ≤` B, if there is a
winning strategy τ for II for the game Gw(A,B; <ωω) = G(C; <ωω), where
〈ai | i ∈ ω〉 ∈ C if and only if

〈a2i | i ∈ ω〉 ∈ A ↔ 〈a2i+1 | i ∈ ω〉 ∈ B.

Note that A ≤` B → A ≤w B. Use Borel determinacy.

Remarks:

(a) This fundamental result (announced in Wadge [1972]) was proved
by William Wadge in about 1967. Wadge used determinacy as a hypoth-
esis. Borel determinacy had not been proved at the time. In the papers
[Louveau and Saint-Raymond, 1987] and [Louveau and Saint-Raymond, 1988],
it is shown that the result, unlike Borel determinacy, can be proved in, say,
ZC−. They do this by proving in the weak theory that the Wadge game
G(A,B; <ωω) is determined for Borel sets A and B.

(b) Clearly Wadge’s result still holds if we replace ωω by dT e, where T
is any game tree, and if we replace “Borel” by “quasi-Borel.” Clearly also,
determinacy hypotheses for larger classes imply Wadge’s result for larger
classes. For example, the determinacy of all projective games in <ωω implies
that Wadge’s result holds for all projective subsets of ωω. (See Chapter 8
for the definition of “projective.”) Moreover AD implies that Wadge’s result
holds for all subsets of ωω.

Exercise 2.3.14. This exercise show that Wadge reducibility stratifies the
Borel subsets of ωω into a wellordered hierarchy.

If A and B are subsets of ωω, say that A ∼w B if both A ≤w B and
B ≤w A. Similarly define A ∼` B. Exercise 2.3.13 and the argument of the
hint show that ≤w and ≤` give linear orderings of the equivalence classes
with respect to ∼w and ∼` respectively of Borel sets, except that the classes
of a set and its complement may be incomparable. Show that these linear
orderings are well-orderings.

Hint. Let A be such that every continuous preimage of A in ω2 is mea-
surable with respect to the product of the measure on {0, 1} that gives each
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point measure 1/2. Show that for any 〈Ai | i ∈ ω〉 such that A0 = A,
there is an i ∈ ω such that I does not have winning strategies for both
Gw(Ai, Ai+1; <ωω) and Gw(Ai,¬Ai+1; <ωω). To do this, assume for a contra-
diction that winning strategies σi0 for I for Gw(Ai, Ai+1; <ωω) and σi1 for I
for Gw(Ai,¬Ai+1; <ωω) exist. For z ∈ ω2, we get a sequence 〈xiz | i ∈ ω〉
of elements of ωω by letting I follow the strategies σiz(i) to produce simulta-

neously the plays xiz(0), xi+1
z (0), xiz(1), xi+1

z (1), . . .. Consider the probability
that xzi ∈ Ai. Show that the 0–1 law is contradicted.

Remarks:

(a) This result is due to Martin, but the basic idea of using the 0–1 law
was introduced by Leonard Monk, who proved a partial result.

(b) Remark (b) for Exercise 2.3.13 applies to the result of this exercise as
well.

2.4 Blackwell Games

In [Blackwell, 1969], David Blackwell introduced a class of infinite games of
imperfect information. These games differ in one basic way from the ones we
have been studying. Instead of taking turns moving, the players make their
nth moves simultaneously. The fact that moves are made simultaneously
rules out, even for games where each player makes only a single move, deter-
minacy theorems of the kind we have been studying. To make determinacy
theorems possible, the strategies we have considered heretofore have to be re-
placed by mixed strategies, strategies that involve randomization. Moreover
determinacy has to be defined in terms of having a value.

Another other difference between Blackwell’s games and the ones we have
been studying is a restriction: in each position, each player can have only
finitely many legal moves. We will explain the reason for this restriction
later, and we will also weaken the restriction. A third difference from our
perfect information games is that we will allow payoff functions, not just
payoff sets. Payoff functions make sense for perfect information games also,
but their introduction adds little to the theory or applications of such games.

The concepts (mixed strategies, values of games, and payoff functions) we
have just mentioned and will shortly explain in detail are among the basic
concepts of ordinary game theory. What [Blackwell, 1969] proposes is that
these concepts be studied in the context of games of infinite length.
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From the fundamental von Neumann Minimax Theorem of [von Neumann, 1928],
it follows that all Blackwell games of finite length are determined. [Blackwell, 1969]
proves that all Σ0

2 (Fσ) Blackwell games with payoff sets are determined.
[Orkin, 1972] extends this result to Boolean combinations of Fσ’s. Determi-
nacy for what we will consider the general class of Σ0

2 Blackwell games (“gen-
eral” in that payoff functions are allowed) is proved in [Maitra and Sudderth, 1992].
[Vervoort, 1996] betters Blackwell’s result by a whole level of the Borel hier-
archy, proving the determinacy of all Σ0

3 (Gδσ) Blackwell games with payoff
sets.

In this section, we present a result from [Martin, 1998] showing that the
determinacy of any given Blackwell game is implied by the determinacy of
perfect information games of roughly the same complexity. This result yields,
in particular, a level-by-level reduction of Borel Blackwell determinacy to
ordinary Borel determinacy. Blackwell conjectured in [Blackwell, 1969] that
all Borel Blackwell games are determined, and so his conjecture is confirmed.
(Blackwell did not, of course, use the word “Blackwell.”)

We now turn to the formal introduction of Blackwell games. A game
tree T is a Blackwell game tree if

(a) the members of T are finite sequences of ordered pairs;

(b) if p ∈ T is non-terminal and has length i, then there are non-empty
sets Xp and Yp such that

(i) at least one of Xp and Yp is finite;

(ii) the length i+ 1 extensions of p that belong to T are precisely the
p_〈〈a, b〉〉 with a ∈ Xp and b ∈ Yp.

If T is a Blackwell game tree, then Blackwell games in T are played as
follows.

I a0 a1 a2 . . .
II b0 b1 b2 . . .

In other words, for each i the moves ai and bi are made simultaneously. It is
required that all positions 〈〈ai, bi〉 | i < n〉 belong to T .

Remark. If clause (b) is relaxed to allow both players to have countably
infinitely many moves, then determinacy fails even for games in which each
player makes only a single move. See Exercise 2.4.1.

Let T be a Blackwell game tree. A mixed strategy for player I or II in
T is a function σ that assigns to each position in T a discrete probability
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distribution on the set of legal moves for that player in the position. To see
what we mean by this, assume for definiteness that σ is a strategy for I. Let
Xp be as in the definition of Blackwell game trees. Then, for each p ∈ T ,

(i) σ(p) : Xp → [0, 1];

(ii)
∑

a∈Xp(σ(p))(a) = 1.

Note that (i) and (ii) imply that the set of a ∈ Xp such that (σ(p))(a) > 0 is
countable. We are not, then, considering the more general case in which the
sum of (ii) is replaced by an integral.

Let T be a Blackwell game tree. Let σ and τ be mixed strategies for I and
II respectively in T . The strategies σ and τ give, in the following manner, a
probability measure µσ,τ on the set of all plays in T . If p = 〈〈ai, bi〉 | i < n〉
is a position in T then set

µσ,τ (dTpe) =
∏
i<n

(σ(p � i))(ai) · (τ(p � i))(bi).

By a standard construction and argument, there is a unique probability mea-
sure defined on the Borel subsets of dT e that has the specified values on the
dTpe. The µσ,τ -measurable sets are defined in the usual way, as the set of all
A ⊆ dT e such that A the symmetric difference of A and some Borel set is
contained in a Borel set B with µσ,τ (B) = 0. A function f : dT e → R is
µσ,τ -measurable if the f -preimage of each open set is µσ,τ -measurable.

A payoff function for a game tree T is a function f from the set of all
plays in T into a bounded subset of the real numbers. For each Blackwell
game tree T and each payoff function f for T , there is a Blackwell game
which we call Γ(f ;T ).

If Γ(f ;T ) is a Blackwell game and f is µσ,τ -measurable, then set

Eσ,τ (f) =

∫
f dµσ,τ .

For for Blackwell games Γ(f, T ) with arbitrary payoff functions f , set

E−σ,τ (f) = sup{Eσ,τ (g) | g is Borel measurable ∧ (∀x) g(x) ≤ f(x)} ;
E+
σ,τ (f) = inf{Eσ,τ (g) | g is Borel measurable ∧ (∀x) g(x) ≥ f(x)} .

If f is µσ,τ -measurable, then E−σ,τ (f) = E+
σ,τ (f) = Eσ,τ (f).
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Let Γ(f ;T ) be a Blackwell game. If σ is a mixed strategy for I in T then
the value of σ in Γ(f ;T ) is

inf{E−σ,τ (f) | τ is a mixed strategy for II} .

If τ is a mixed strategy for II in T then the value of τ in Γ(f ;T ) is

sup{E+
σ,τ (f) | σ is a mixed strategy for I} .

Let val↓(Γ(f ;T )) be the supremum over all mixed strategies σ for I in T
of the value of σ in Γ(f ;T ) and let val↑(Γ(f ;T )) be the infinum over all
mixed strategies τ for II in T of the value of τ in Γ(f). The game Γ(f ;T ) is
determined if

val↓(Γ(f ;T )) = val↑(Γ(f ;T )) .

If Γ(f ;T ) is determined, then

the value of Γ(f ;T ) = val(Γ(f ;T )) = val↓(Γ(f ;T )) = val↑(Γ(f ;T )) .

Remarks:

(a) We are using the term “Blackwell games” to cover a rather wide class.
It might be more accurate to reserve the term “Blackwell games” for infinite
length games. Moreover Blackwell considered only measurable payoff func-
tions. The definitions for the non-measurable case are from [Vervoort, 1996].

Somewhat artificially, we say that a Blackwell game Γ(f ;T ) is open,
closed, Borel, etc., if for all rationals y the set of all plays x such that y ≤ f(x)
is open, closed, Borel, etc. Note that a Blackwell game is Borel just in case
its payoff function is Borel measurable, i.e., just in case the f -preimage of
each Borel set is Borel.

Suppose that T is a Blackwell game tree and that A is a set of plays in
T . Let χ(A) be the characteristic function of A, the function f such that
f(x) = 1 for x ∈ A and f(x) = 0 for x /∈ A. According to the definition of
the preceding paragraph, Γ(χ(A);T ) is open, closed, Borel, etc., just in case
A is open, closed, Borel, etc.

Say that a mixed strategy σ for I for a Blackwell game Γ(f ;T ) is an
optimal strategy if the value of σ in Γ(f ;T ) is val↓(Γ(f ;T )). Similarly say
that a mixed strategy τ for II is an optimal strategy if the value of τ is
val↑(Γ(f ;T )). We say that Γ(f ;T ) is determined in optimal strategies if
Γ(f ;T ) is determined and each player has an optimal strategy. Note that
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this means that each player has a mixed strategy whose value is the value of
Γ(f ;T ).

The basic form of the von Neumann Minimax Theorem of [von Neumann, 1928]
is as follows.

Theorem 2.4.1 (Minimax Theorem) Let T be a Blackwell game tree in
which all plays have length 1 and for which both X∅ and Y∅ are finite. Then
all Blackwell games in T are determined in optimal strategies.

A proof of this theorem may be found in [Vervoort, 2000] (and, of course,
in [von Neumann, 1928] and in many other places).

Corollary 2.4.2. Let T be a Blackwell game tree in which all plays have
length ≤ some fixed natural number n. Assume that all the sets Xp and Yp
associated with T are finite. Then all Blackwell games in T are determined
in optimal strategies.

Proof. We proceed by induction on n. The case n = 0 is trivial. Let n ≥ 0
and assume that the corollary holds for n. Let T be a Blackwell game tree
in which all plays have length ≤ n + 1. For each non-terminal position p in
T of length n, let

T p = {∅} ∪ {〈w〉 | p_〈w〉 ∈ T}.

Let fp be the payoff function for T p given by

fp(〈w〉) = f(p_〈w〉).

By the theorem, each Γ(fp;T p) is determined in optimal strategies.
Let

T ′ = {p ∈ T | `h(p) ≤ n}.

Define a payoff function f ′ for T ′ by

f ′(p) =

{
f(p) if p is terminal in T ;
val(Γ(fp;T p)) otherwise.

By our induction hypothesis, Γ(f ′;T ′) is determined in optimal strategies.
It is easy to see that one gets optimal strategies witnessing that the

corollary holds for Γ(f ;T ) by combining in the obvious way optimal strategies
for Γ(f ′;T ′) with optimal strategies for the Γ(fp;T p). �
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Corollary 2.4.3. Let T be a Blackwell game tree in which all plays have
length ≤ some fixed natural number n. Then all Blackwell games in T are
determined.

Proof. First consider the case of a T in which all plays have length 1. By
symmetry, we may assume that X∅ is finite. For any finite subset u of Y∅, let

T u = {∅} ∪ {〈〈a, b〉〉 | a ∈ X∅ ∧ b ∈ u}

and let fu = f � dT ue. By the theorem, for each u let σu and τu be optimal
strategies for I and II respectively for Γ(fu;T u). Let

v = inf
u

val(Γ(fu;T u)).

It is easy to see, using the τu, that val↑(Γ(f ;T )) ≤ v. To finish the
proof, we show that val↓(Γ(f ;T )) ≥ v. Let ε > 0. We will show that
val↓(Γ(f ;T )) ≥ v − ε.

Since the range of a payoff function is required to be bounded, let s ∈ R
with s > |f(x)| for all plays x in T .

First we prove that there are ra, a ∈ X∅, such that each ra ∈ [0, 1], such
that

∑
a∈X∅ ra = 1, and such that for every finite u ⊆ Y∅ there is a finite

u′ ⊆ Y∅ such that, for all a ∈ X∅,

u ⊆ u′ ∧
∣∣∣(σu′(∅))(a)− ra

∣∣∣ ≤ ε

2s|X∅|
.

Let X∅ = {a1, . . . ak}. Let 0 ≤ j < k and assume that we have r̄ai for i < j
such that

(∀u)(∃u′ ⊇ u′)(∀i < j)
∣∣∣(σu′(∅))(a)− r̄a

∣∣∣ ≤ ε

4s|X∅|
.

If there were no r̄aj that made this hold with “j + 1” replacing “j,” then
we could generate an infinite sequence of elements of [0, 1] any two of which
would differ by more than ε

4s|X∅|
, and there can be no such sequence. Since∣∣∣∣∣∣1−

∑
a∈X∅

r̄a

∣∣∣∣∣∣ ≤ |X∅|
ε

4s|X∅|
,

we can get our ra by adding to or subtracting from each r̄a some number
≤ ε

4s|X∅|
.
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Define a mixed strategy σ for I in T by

(σ(∅))(a) = ra.

We show that the value of σ in Γ(f ;T ) is ≥ v − ε. Let τ be any mixed
strategy for II in T . There is a non-empty finite subset u of Y∅ such that∑

b/∈u

(τ(∅))(b) < ε

2s
.

Let u′ ⊇ u be given by the property of the ra. Let b0 ∈ u′. Let τ ′ be the
mixed strategy for II in T u

′
given by

τ ′(b) =

{
τ(b) if b 6= b0;
τ(b) +

∑
b/∈u′(τ(∅))(b) if b = b0.

We have that

Eσu′ ,τ ′(f
u′)− Eσ,τ (f) ≤ ε

2s
s+

∑
a∈X∅

ε

2s|X∅|
s

=
ε

2
+
ε

2
= ε.

Since
Eσu′ ,τ ′(f

u′) ≥ val(Γ(fu
′
;T u

′
)) ≥ v,

this completes the proof of the determinacy of Γ(f ;T ).
The corollary can now be proved by an induction similar to the proof of

Corollary 2.4.2. �

Remark. For simplicity’s sake, in proving determinacy theorems we will
work mainly with Blackwell game trees that have no terminal nodes and with
payoff funtions whose range is a subset of [0, 1]. Arguments like those given
in §2.1 for the perfect information case show that Blackwell determinacy is
level-by-level equivalent to Blackwell determinacy in trees without terminal
nodes. It is easy to see that restricting to payoff functions bounded to [0, 1]
similarly makes no difference for determinacy.

Announcement. Until further notice, let T be a Blackwell game tree
with no terminal positions and let f be a payoff function for T such that
0 ≤ f(x) ≤ 1 for every x ∈ [T ].
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For each v ∈ (0, 1], we define a perfect information game Gv.
Play in the game Gv is as follows:

I h0 h1 h2 . . .
II p1 p2 p3 . . .

Set p0 = ∅, the starting position in T . For i ≥ 1, pi must a position in T of
length i. It is required that p0 ⊆ p1 ⊆ . . . . For each i, hi must be a function
into [0, 1] from the set of positions in T that are length i + 1 extensions of
pi. Let v0 = v and for i ≥ 0 let

vi+1 = hi(pi+1).

For each i, let T i be the Blackwell game tree in which the players start at
pi and simultaneously make one move legal in T . I’s move hi is a payoff
function for T i. By Corollary 2.4.3, the game Γ(hi;T

i) is determined. The
final requirement on hi is that

val(Γ(hi;T
i)) ≥ vi.

Note that I always has a legal move that fulfills this requirement. For exam-
ple, I may set hi(q) = 1 for all q. The final requirement on pi+1 is that

vi+1 > 0 .

By induction on i, we can see that II always has a legal move that fulfills
this requirement; for if hi(q) = 0 for all q, then vi ≤ val(Γ(hi;T

i)) = 0.
For each position p∗ in Gv, let π(p∗) be the union of all the moves made

by II in arriving at p∗. (If `h(p∗) ≤ 1, then π(p∗) = ∅; otherwise π(p∗) is the
last move made by II.) For any play x∗ of Gv, let π(x∗) =

⋃
i π(x∗ � i), i.e.,

let π(x∗) be the play of Γ extending all the pi. A play x∗ is a win for I if and
only if

lim sup i vi ≤ f(π(x∗)) .

One way to think of the game Gv is to imagine that player I is trying
to show that val(Γ(f ;T )) ≥ v. This account takes I to be asserting, at the
point when pi has been chosen, that val(Γ(f ;Tpi)) ≥ vi. To substantiate this
assertion, I chooses the hi(q). If val(Γ(f ;Tq)) ≥ hi(q) for each q, then the
fact that val(Γ(hi;T

i)) ≥ vi shows that I’s assertion is correct. Player II
is therefore required to choose some q as pi+1, thus asking I to show that
val(Γ(f ;Tq) ≥ hi(q).
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Remark. The motivation just given for Gv might suggest that Gv is a
win for I if and only if val↓(Γ(f ;T )) ≥ v. But the “if” part of this statement
is not true in general, even in when both games are determined. Suppose
that the Xp and Yp for T are all {0, 1}. Suppose also that f(x) = 0 if 1
is never played or if the two players first play 1 simultaneously and that
f(x) = 1 otherwise. This game has value 1, but II has a winning strategy
for G1. ([Vervoort, 1996] uses this Γ(f ;T ) to illustrate a different, though
related, point. There are other choices for T and f such that I has a winning
strategy for Gval(Γ(f ;T )).) The “only if” part of the statement is true, as is
the anlogous assertion about II. Both will be proved below.

Theorem 2.4.4. If I has a winning strategy for Gv, then val↓(Γ(f ;T )) ≥ v.

Proof. Suppose that σ∗ is a winning strategy for I for Gv. Let δ > 0. We
will prove that val(Γ(f ;T )) ≥ v − δ.

We simultaneously define

(i) a mixed strategy σ for I in T ;

(ii) the notion of an acceptable position in T ;

(iii) for each acceptable position p in T , a position ψ(p) in Gv such that
`h(ψ(p)) = 2`h(p) + 1, ψ(p) is consistent with σ∗, and π(ψ(p)) = p.

The function p 7→ ψ(p) will satisfy the condition

p ⊆ q → ψ(p) ⊆ ψ(q) .

Thus for each play x in T that contains only acceptable positions, we will
have a play Ψ(x) =

⋃
p⊆x ψ(p) of Gv such that Ψ(x) is consistent with σ∗

and π(Ψ(x)) = x.
The starting position ∅ is acceptable. Every position extending an unac-

ceptable position is unacceptable.
For unacceptable positions p, define σ(p) in an arbitrary fashion.
Let ψ(∅) = 〈h0〉, where h0 is given by σ∗.
Suppose inductively that we are given an acceptable p of length i and

that either (a) i = 0 or else (b) i > 0 and we have defined

ψ(p) = 〈h0, . . . , pi, hi〉 ,

a position in Gv consistent with σ∗ and with pi = p. Let vi and T i be the vi
and the Ti associated with ψ(p).
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For positions q of length i+ 1 that extend p, define q to be acceptable if
and only if hi(q) > 0.

Because val(Γ(hi;T
i)) ≥ vi, there is a mixed strategy for I in T i whose

value in Γ(hi;T
i) is ≥ vi − δ/2i+1. Let σ(p) be the probability distribution

given by such a mixed strategy. Given any acceptable q of length i+ 1 that
extends p, set ψ(q) = ψ(p)_〈pi+1, hi+1〉, where pi+1 = q and where hi+1 is
given by σ∗.

For acceptable positions p in T , let hp be the last move made in reaching
the position ψ(p), i.e., let hp be the h`h(p) of ψ(p). For acceptable p, also let
T p be the T `h(p) of ψ(p) and let vp be the v`h(p) of ψ(p). For unacceptable p,
let vp = 0.

Lemma 2.4.5. Let τ be a mixed strategy for II in T and let µ = µσ,τ . Let
p ∈ T with `h(p) = i. Then

vpµ([Tp]) ≤
∑
p ⊆ q

`h(q) = i+ 1

(vq + δ/2i+1)µ([Tq]).

Proof of Lemma. Since vp = 0 for unacceptable p, we may assume that p is
acceptable. Because σ(p) is the probability distribution of a mixed strategy
in T p whose value in Γ(hp;T p) is ≥ vp − δ/2i+1, we have that

vp − δ/2i+1 ≤
∑
p ⊆ q

`h(q) = i+ 1

hp(q)
µ([Tq])

µ([Tp])
.

Using the facts that hp(q) = vq and that µ([Tp]) =
∑

q µ([Tq]), we get the
desired inequality. �

For plays x in T , set

g(x) = lim sup i v
x�i.

Note that g is Borel measurable and that range(g) ⊆ [0, 1]. Note also that
g(x) ≤ f(x) for every play x in T . This is trivially true for those x such
that g(x) = 0. For any other x, Ψ(x) is a play consistent with the winning
strategy σ∗, and so g(x) ≤ f(π(Ψ(x))) = f(x).

Lemma 2.4.6. For any mixed strategy τ for II in T , Eσ,τ (g) ≥ v − δ.
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Proof of Lemma. Given τ , let µ = µσ,τ . Assume that Eσ,τ (g) < v − δ.
Thus

∫
g dµ < v − δ. Let ε > 0 be such that

∫
g dµ < v − δ − ε. Then∫

(1− g) dµ > 1− v+ δ+ ε. There is a closed set C such that g is continuous
on C and

∫
C

(1− g) dµ > 1− v+ δ+ ε. (See Kechris [1994], Theorem 17.12.)
We will define a play x in T such that, for all i, x � i is acceptable and∫

C∩[Tx�i]

(1− g) dµ > (1− vx�i + δ/2i + ε)µ([Tx�i]) .

Suppose that x�i has been defined so that x�i is acceptable and the inequality
just stated holds. If there is an acceptable q of length i+ 1 that extends x � i
and is such that

∫
C∩[Tq ]

(1 − g) dµ > (1 − vq + δ/2i+1 + ε)µ([Tq]), then let

x � i + 1 be such a q. Assume, in order to derive a contradiction, that the
inequality ∫

C∩[Tq ]

(1− g) dµ ≤ (1− vq + δ/2i+1 + ε)µ(Tq])

holds for every acceptable q of length i+ 1 that extends x � i. This inequality
holds also for unacceptable q, since for them vq = 0. Thus∫

C∩[Tx�i]

(1− g) dµ =
∑
q

∫
C∩[Tq ]

(1− g) dµ

≤
∑
q

(1− vq + δ/2i+1 + ε)µ(Tq])

≤ (1− vx�i + δ/2i + ε)µ([Tx�i]) ,

where the last inequality is by Lemma 2.4.5. This contradicts our induction
hypothesis for i.

We next observe that for any i there is a yi ∈ C ∩ [Tx�i] such that

g(yi) < vx�i − δ/2i − ε .

Assume to the contrary that g(y) ≥ vx�i − δ/2i − ε for every y ∈ C ∩ [Tx�i].
Then ∫

C∩[Tx�i]

(1− g) dµ ≤ (1− vx�i + δ/2i + ε)µ([Tx�i]) ,

contradicting what we have just proved by induction about our play x.
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Since x = limi yi, we have that x ∈ C and so that g(x) = limi g(yi). Let
j be such that

(∀i ≥ j) |g(x)− g(yi)| < ε/2 .

Then
(∀i ≥ j) g(x) < g(yi) + ε/2 < vx�i − δ/2i − ε/2 .

Therefore
g(x) ≤ lim sup i v

x�i − ε/2 = g(x)− ε/2 .

This contradiction completes the proof of the lemma. �

Lemma 2.4.7. The value of σ in Γ(f ;T ) is ≥ v − δ.

Proof of Lemma. By the fact that g(x) ≤ f(x) for all x, the value of σ in
Γ(f ;T ) is ≥ the value of σ in Γ(g;T ), which is ≥ v − δ by Lemma 2.4.6. �

Since δ was an arbitrary positive real number, the theorem is proved. �

Theorem 2.4.8. If II has a winning strategy for Gv, then val↓(Γ(f ;T )) ≤ v.

Proof. Suppose that τ ∗ is a winning strategy for II for Gv. Let δ > 0. We
will prove that val(Γ(f ;T )) ≤ v + δ.

We simultaneously define

(i) a mixed strategy τ for II in T ;

(ii) the notion of an acceptable position in T ;

(iii) for each acceptable position p in T , a function up into [0, 1] from the
set of all q extending p such that `h(q) = `h(p) + 1;

(iv) for each acceptable position p in T , a position ψ(p) in Gv such that
`h(ψ(p)) = 2`h(p), ψ(p) is consistent with τ ∗, and π(ψ(p)) = p.

The function p 7→ ψ(p) will satisfy the condition

p ⊆ q → ψ(p) ⊆ ψ(q) .

Thus for each play x in T that contains only acceptable positions, we will
have a play Ψ(x) =

⋃
p⊆x ψ(p) of Gv such that Ψ(x) is consistent with τ ∗ and

π(Ψ(x)) = x.
The starting position ∅ is acceptable. Every position extending an unac-

ceptable position is unacceptable.
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For unacceptable positions p, define τ(p) in an arbitrary fashion.
Let ψ(∅) = ∅.
Suppose inductively that we are given an acceptable p of length i and

that either (a) i = 0 or else (b) i > 0 and we have defined

ψ(p) = 〈h0, . . . , pi〉 ,

a position in Gv consistent with τ ∗ and with pi = p. Let vi and T i be the vi
and the Ti associated with ψ(p).

For positions q of length i+1 that extend p, define q to be acceptable if and
only if there is a legal move h for I in Gv at ψ(p) such that τ ∗(ψ(p)_〈h〉) = q.

For acceptable q, set

up(q) = inf{h(q) | h is legal in Gv at ψ(p) ∧ τ ∗(ψ(p)_〈h〉) = q} .

For unacceptable q, set up(q) = 1.

Lemma 2.4.9. val(Γ(up;T
i)) ≤ vi.

Proof of Lemma. Assume that val(Γ(up;T
i)) > vi. Let ε > 0 be such that

val(Γ(up;T
i)) ≥ vi + ε. Define a function h, with the same domain as up, by

h(q) =

{
up(q)− ε if up(q) > ε;
0 if up(q) ≤ ε.

Then val(Γ(h;T i)) ≥ val(Γ(up;T
i)) − ε ≥ vi, and therefore h is a is a

legal move for I at the position ψ(p). Hence there is some q such that
τ ∗(ψ(p)_〈h〉) = q. If up(q) ≤ ε then h(q) = 0, and so q is not a legal
move. If up(q) > ε then h(q) < up(q), and this contradicts the definition of
up(q). �

Let τ(p) be the probability distribution given by some mixed strategy for
II in T i whose value in Γ(up;T

i) is ≤ vi + δ/2i+2.
For each acceptable q of length i + 1 and extending p, we define ψ(q) as

follows. Pick a legal move hi for I at ψ(p) such that hi(q) ≤ up(q)+δ/2i+2 and
such that τ ∗(ψ(p)_〈hi〉) = q . Set ψ(q) = ψ(p)_〈hi, pi+1〉 , where pi+1 = q.

For acceptable positions p in T with `h(p) > 0, let hp be the next to last
move made in reaching the position ψ(p), i.e., let hp be the h`h(p)−1 of ψ(p).
For acceptable p ∈ T of any length, let T p be the T `h(p) of ψ(p) and let vp be
the v`h(p) of ψ(p). If p is unacceptable, set vp = 1.
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Lemma 2.4.10. Let σ be a mixed strategy for I in T and let µ = µσ,τ . Let
p ∈ T with `h(p) = i. Then

vpµ([Tp]) ≥
∑
p ⊆ q

`h(q) = i+ 1

(vq − δ/2i+1)µ([Tq]).

Proof of Lemma. Since vp = 1 for unacceptable p, we may assume that p is
acceptable. Because τ(p) is the probability distribution of a mixed strategy
in T p whose value in Γ(up;T

p) is ≤ vp + δ/2i+2, we have that

vp + δ/2i+2 ≥
∑
p ⊆ q

`h(q) = i+ 1

up(q)
µ([Tq])

µ([Tp])
.

Since µ([Tp]) =
∑

q µ([Tq]), we get that

vpµ([Tp]) ≥
∑
p ⊆ q

`h(q) = i+ 1

(up(q)− δ/2i+2)µ([Tq]).

For acceptable q, vq = hq(q) ≤ up(q) + δ/2i+2. For unacceptable q, vq =
1 = up(q). In either case, vq − δ/2i+2 ≤ up(q), and this gives us the desired
inequality. �

For plays x in T , set

g(x) = lim sup i v
x�i.

Note that g is Borel measurable and that range(g) ⊆ [0, 1]. Note also that
g(x) ≥ f(x) for every play x in T . This is trivially true for those x such
that g(x) = 1. For any other x, Ψ(x) is a play consistent with the winning
strategy τ ∗, and so g(x) ≤ f(π(Ψ(x))) = f(x).

Lemma 2.4.11. For any strategy σ for I for Γ,

Eσ,τ (g) ≤ v + δ .

Proof of Lemma. Given σ, let µ = µσ,τ . Assume that Eσ,τ (g) > v+ δ. Let
ε > 0 be such that Eσ,τ (g) > v + δ + ε. Then

∫
g dµ > v + δ + ε. Let C be a

closed set such that g is continuous on C and such that
∫
C
g dµ > v + δ + ε.
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We will define a play x in T such that, for all i, x � i is acceptable and∫
C∩[Tx�i]

g dµ > (vx�i + δ/2i + ε)µ([Tx�i]) .

Suppose that x�i has been defined so that x�i is acceptable and the inequality
just stated holds. If there is an acceptable q such that

∫
C∩[Tq ]

g dµ > (vq +

δ/2i+1 + ε)µ([Tq]), then let x � i+ 1 be such a q. If, for every acceptable q,∫
C∩[Tq ]

g dµ ≤ (vq + δ/2i+1 + ε)µ([Tq]) ,

then ∫
C∩[Tx�i]

g dµ =
∑
q

∫
C∩[Tq ]

g dµ

≤
∑
q

(vq + δ/2i+1 + ε)µ([Tq])

≤ (vx�ii + δ/2i + ε)µ([Tx�i]) ,

where the last inequality is by Lemma 2.4.10. This contradicts our induction
hypothesis for i.

We next observe that for any i there is a yi ∈ C ∩ [Tx�i] such that

g(yi) > vx�i + δ/2i + ε .

Assume to the contrary that g(y) ≤ vx�i + δ/2i + ε for every y ∈ C ∩ [Tx�i].
Then ∫

C∩[Tx�i]

g dµ ≤ (vx�i + δ/2i + ε)µ([Tx�i]) ,

contradicting what we have just proved by induction about our play x.
Since x = limi yi, we have that x ∈ C and so that g(x) = limi g(yi). Let

j be such that
(∀i ≥ j) |g(x)− g(yi)| < ε/2 .

Then
(∀i ≥ j) g(x) > g(yi)− ε/2 > vx�ii + δ/2i + ε/2 .

Therefore
g(x) ≥ lim sup iv

x�i
i + ε/2 = g(x) + ε/2 .

This contradiction completes the proof of the lemma. �
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Lemma 2.4.12. The value of τ in Γ(f ;T ) is ≤ v + δ.

Proof of Lemma. By the fact that g(x) ≥ f(x) for all x, the value of τ in
Γ(f ;T ) is ≤ the value of τ in Γ(g;T ), which is ≤ v+ δ by Lemma 2.4.11. �

Since δ was an arbitrary positive real number, the theorem is proved. �

Theorem 2.4.13. If Gv is determined for every v ∈ (0, 1], then Γ(f ;T ) is
determined.

Proof. Assume that all the Gv are determined. Let w be the least upper
bound of all the numbers v such that I has a winning strategy for Gv. By
Lemma 2.4.4, val↓(Γ(f ;T )) ≥ w. By Lemma 2.4.8, val↑(Γ(f ;T )) ≤ w. Thus
val(Γ(f ;T )) = w. �

Since the games Gv are of the form G(A∗;T ∗), Theorem 2.4.13 allows us
to show that Blackwell determinacy for any given class follows from ordinary
determinacy for a related class. But Theorem 2.4.13 does not yield optimal
results when |T | < 2ℵ0 . This is because the tree T ∗ for Gv has size ≥ 2ℵ0 for
all non-trivial trees T . This problem is easily remedied, however, as we now
explain.

For v ∈ (0, 1], let Ḡv differ from Gv only in an additional requirement that
all values hi(q) be rational. It is easy to check that our proofs go through
unchanged for Ḡv in place of Gv. We state this formally as the following
theorem.

Theorem 2.4.14. If Ḡv is determined for every real (indeed, for every ra-
tional) v ∈ (0, 1], then Γ(f ;T ) is determined.

If f is the characteristic function of a set, then there is a modification of
the games Gv that gives our results with simpler proofs.

Announcement. Until further notice, let A be a subset of [T ].

For v ∈ (0, 1] let G′v be played exactly as is Gv, but let a play x∗ of G′v
be a win for I if and only if π(x∗) ∈ A.

Theorem 2.4.15. If I has a winning strategy for G′v, then val↓(Γ(χ(A);T )) ≥
v.
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Suppose that σ∗ is a winning strategy for I for Gv. Let δ > 0. We will
prove that val(Γ(χ(f);T )) ≥ v − δ. Define σ, acceptable positions, and ψ,
exactly as in the proof of Theorem 2.4.4. Define hp, T p, and vp as before.

Lemma 2.4.5 holds as before.

Lemma 2.4.16. Let τ be a mixed strategy for II in T and let µ = µσ,τ . For
each i ∈ ω,

v ≤
∑

`h(p) = i

(vp + δ(1− 1/2i)µ([Tp]).

Let C1 be the closed set of all plays of Γ that contain only acceptable
positions. Since x = π(ψ(x)) for x ∈ C1, C1 ⊆ A.

Lemma 2.4.17. For any strategy τ for II for Γ, µσ,τ (C1) ≥ v .

Proof. Given τ , assume that µσ,τ (C1) < v. It follows that there is a closed
set C disjoint from C1 such that µσ,τ (C) > 1 − v. By a construction like
that in the proof of Lemma 2.4.6, there is an x ∈ C1 such that, for all i,
µσ,τ (C ∩ [Tx�i]) > 1 − vx�ii . But this is a contradiction, for such an x must
belong to C1 ∩ C. �

Lemma 2.4.18. The value of σ in Γ(χ(A)) is ≥ v.

Proof. The lemma follows from Lemma 2.4.17.
Here is a direct proof of the lemma. For each i, consider the game Γi

which is played in the same way as Γ except that play terminates when the
position p has length i. For plays p of Γi, let

hi(p) =

{
vpi if p is acceptable;
0 otherwise.

It is easy to prove by induction on i that the value of the appropriate fragment
σi of σ in Γi(hi) is ≥ v. Thus the value of σi in Γi(χ(Ci

1)) is ≥ v, where Ci
1 is

the set of all acceptable plays of Γi. Thus the value of σ in Γ(χ(C1)) is ≥ v.
�

Dropping our assumption about σ∗, we get the following.

Lemma 2.4.19. If I has a winning strategy for G′v, then val↓(Γ(χ(A))) ≥ v.
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Now assume that τ ∗ is a winning strategy for II for G′v. Let δ > 0. Define
τ , acceptable positions, and ψ, exactly as in §1.

Let C2 be the closed set of all plays of Γ that contain only acceptable
positions. Since x = π(ψ(x)) for x ∈ C2, C2 ∩ A = ∅.

Lemma 2.4.20. For any strategy σ for I for Γ, µσ,τ (C2) ≥ 1− v − δ .

Lemma 2.4.21. The value of τ in Γ(χ(A)) is ≤ v + δ.

Proof. The lemma follows from Lemma 2.4.20. There is also a direct proof
of the lemma, analogous to the direct proof of Lemma 2.4.18. �

Dropping our assumption about τ ∗, we get the following.

Lemma 2.4.22. If II has a winning strategy for G′v, then val↑(Γ(χ(A))) ≤ v.

Theorem 2.4.23. If G′v is determined for every v ∈ (0, 1], then Γ(χ(A)) is
determined.

We next indicate how to extend our results to stochastic games. In doing
so we are reporting an observation of Maitra and Sudderth.

Stochastic games Γ̃ are played like Blackwell games, except that each
pair of moves of I and II is followed by a move of a third player, whom we
will call Nature. We will restrict ourselves to the case that Nature has a
countable set of legal moves in each postion in which she must make a move.
Payoff functions for Γ̃ are functions of the entire play, including Nature’s
moves. The analogue of Γ(f) is Γ̃(f̃ , ρ) where f̃ is a payoff function and ρ is
a mixed strategy for Nature. If σ and τ are strategies for I and II respectively,
then σ, τ , and ρ give a probability measure µσ,τ,ρ on the set of plays of Γ̃.
Using this measure, we define Eσ,τ,ρ(f̃), E−σ,τ,ρ(f̃), E+

σ,τ,ρ(f̃), val↓(Γ̃(f̃ , ρ)),

val↑(Γ̃(f̃ , ρ)), determinacy of Γ̃(f̃ , ρ), and the value of Γ̃(f̃ , ρ) in the obvious
way.

Fix Γ̃ with no terminal positions. Fix f̃ and ρ. For v ∈ (0, 1], let G̃v be
the perfect information game played as follows. Set p0 = ∅. I’s moves are
functions h0, h1, . . . and II’s moves are positions p1, p2, . . . in Γ̃. For each i,
hi is a function into [0, 1] from the set of all length 2i + 2 extensions of pi,
which has length 2i. Let v0 = v and for i ≥ 0 let vi+1 = hi(pi+1). For each i,
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let ∆̃i be the game in which, starting at pi, the two players and then Nature
make legal moves in Γ̃. The final requirement on hi is that

val(∆̃i(hi, ρpi)) ≥ vi,

where ρpi is the strategy for Nature for ∆̃i that is given by ρ. The final
requirement on pi+1 is that vi+1 > 0.

For positions p∗ in G̃v, define π(p∗), a position in G̃ of length 2`h(p∗), in
the obvous way. Also call π the function induced by π from plays of G̃v to
plays of Γ̃. A play x∗ is a win for I if and only if lim supi vi ≤ f̃(π(x∗)).

The constructions, lemmas, and proofs of the earlier part of this section
adapt in obvious ways to G̃v and Γ̃(f̃ , ρ). (The first draft of our paper
had a slightly different definition of the function h on page 114. Maitra and
Sudderth remarked that the current definition, unlike the original one, would
work for stochastic games.) Thus we get the following theorem.

Theorem 2.4.24. If G̃v is determined for every v ∈ (0, 1], then Γ̃(f̃ , ρ) is
determined.

For more details, see [Maitra and Sudderth, 1993]. There Maitra and
Sudderth adapt our proof to demonstrate the determinacy of a wider class of
stochastic games. They work in the context of finitely additive probabililty
measures, removing the restrictions that I and II choose their moves from
finite sets and that Nature’s moves are chosen from countable sets.

The proof of Theorem 2.4.23 gives the following stronger result.

Theorem 2.4.25. Assume that all G′v are determined. Then

val(Γ(χ(A))) = sup{val(Γ(χ(C))) | C closed and C ⊆ A} .

Proof. Let v < val(Γ(χ(A))). Let σ∗ be a winning strategy for I for G′v. Let
σ be the strategy defined from σ∗ as above. Let C be the set C1 defined just
before the statement of Lemma 2.4.17. The proofs of Lemma 2.4.18 both
show that the value of σ in Γ(χ(C)) is ≥ v. �

Remarks:

(a) For Fσδ sets A, Vervoort in [Vervoort, 1996] directly proves a strength-
ening of the conclusion of Theorem 2.4.25. He conjectures that the conclusion
of Theorem 2.4.25 holds for all Borel sets A. Since the hypothesis of Theo-
rem 2.4.25 holds for Borel A, his conjecture is confirmed.
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(b) Applying Theorem 2.4.25 to the complement of A, we see that the
theorem’s hypothesis implies that

val(Γ(χ(A))) = inf{val(Γ(χ(B))) | B open and B ⊇ A} .

One can also get this conclusion directly from the proofs of Lemma 2.4.21.

(d) For Borel sets A, Maitra, Purves, and Sudderth [Maitra et al., 1991]
show that the determinacy of Γ(χ(A)) implies the conclusion of Theorem 2.4.25.
As mentioned in (a) above, their result follows a fortiori from Theorem 2.4.25
and the determinacy of all Borel perfect information games. It is not true that
for arbitrary A the determinacy of Γ(χ(A)) implies the conclusion of Theo-
rem 2.4.25. For a counterexample, see page 126 below. The last paragraph of
of the paper also discusses issues related to the theorem of [Maitra et al., 1991].

Let Ḡ′v be like G′v except that all hi(q) must be rational.

Theorem 2.4.26. If Ḡ′v is determined for every rational v ∈ (0, 1], then
Γ(f) is determined.

Theorem 2.4.27. Assume that Ḡ′v is determined for every rational v ∈
(0, 1]. Then

val(Γ(χ(A))) = sup{val(Γ(χ(C))) | C closed ∧ C ⊆ A} .

Combining the proof of Theorem 2.4.23 with a proof of Vervoort [Vervoort, 1996]
that Blackwell determinacy implies that all sets are Lebesgue measurable, one
gets [Martin, 2003] on eliminating the Blackwell game, a new way to deduce
Lebesgue measurability from the determinacy of perfect information games.

For convenenience, we think of Lebesgue measure as being the coin-
flipping measure on 2N.

Until the end of the statement of Theorem 2.4.29, let B ⊆ 2N.
Let Hv be played as follows:

I h0 h1 h2 . . .
II p1 p2 p3 . . .

Set p0 = ∅. For i ≥ 1, pi must a sequence of 0’s and 1’s of length i. It is
required that p0 ⊆ p1 ⊆ . . . . For each i, hi must be a function into [0, 1]
from {pi_〈0〉, pi_〈1〉}. Let v0 = v and for i ≥ 0 let

vi+1 = hi(pi+1).
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The final requirement on hi is that

1

2
hi(pi_〈0〉) +

1

2
hi(pi_〈1〉) ≥ vi.

The final requirement on pi+1 is that vi+1 > 0.
For any play x∗ of Hv, let π(x∗) be the member of 2N extending all the

pi. The play x∗ is a win for I if and only if π(x∗) ∈ B.

Theorem 2.4.28. If Hv is determined for every v, then B is Lebesgue mea-
surable.

Proof. Analogues of Lemmas 2.4.19 and 2.4.22 give that the inner measure
of B is ≥ v if I has an winning strategy for Hv and that the outer measure
of B is ≤ v if II has a winning strategy for Hv. �

Let H̄v be like Hv except that all hi(q) must be rational.

Theorem 2.4.29. If H̄v is determined for every rational v ∈ (0, 1], then B
is Lebesgue measurable.

Our definition of Blackwell games requires that each player has only
finitely many legal moves in each position. We could relax this requirement
by demanding only that, in each position, each player has only countably
many legal moves and at least one of the players has only finitely many legal
moves. All our determinacy proofs would still work for this more general
concept. Some proofs would change in a very minor way, because 1-move
games would no longer have optimal strategies. Of course, one could gener-
alize further by allowing positions in which one or the other player makes a
move alone, from a countable set of possibilities.

We have thus far dealt only with Blackwell games Γ(f) such that all plays
of Γ are infinite and such that the range of f is a subset of [0, 1] (though we
made no real use of the former hypothesis). It is clear that our proofs work
with only trivial modifications for general Blackwell games. We will therefore
cite the theorems we have proved as if they were their generalizations.

Theorem 2.4.30. All Borel Blackwell games are determined.

Proof. For Borel measurable f , the games Gv and Ḡv have Borel payoff sets.
By [Martin, 1975] or [Martin, 1985], Borel games of perfect information are
determined. �
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Theorem 2.4.31. All Borel stochastic games (of the kind above) are deter-
mined.

Proof. This follows from Theorem 2.4.24 and Borel perfect information
determinacy. �

As we said earlier, it was Maitra and Sudderth who noticed that our meth-
ods yield Theorem 2.4.31, and in [Maitra and Sudderth, 1993] they prove a
more general version of it.

Borel perfect information determinacy for the case of countable game trees
can be stated in, for example, formal second order number theory. The same
is true of Borel Blackwell determinacy. Results of Friedman [Friedman, 1971]
show, in a technical sense, that Borel perfect information determinacy can-
not be proved without appealing to uncountably many uncountable cardinal
numbers. Indeed, for every new level of the Borel hierarchy beyond the third
level, a new cardinal number is needed. Thus it is of interest that the proof
of Theorem 2.4.30 goes through in second order number theory and that the
proof is “local,” i.e., Blackwell determinacy for a given Borel level needs only
perfect information Borel determinacy for the same level.

Theorem 2.4.32. Work in formal second order number theory. Let α be a
countable ordinal. Assume that, for countable game trees, every Π0

α perfect
information game is determined. Then every Π0

α Blackwell game is deter-
mined. (For what is we mean by a “Π0

α Blackwell game,” see page 105.)

Proof. If Γ(f) is Π0
α, then the games Ḡv are Π0

α as long as α > 2. �

Remarks:

(a) For all α ≥ 1, the games G′v and Ḡ′v are Π0
α if the set A is Π0

α.

(b) Theorem 2.4.32 holds for the stochastic games defined in §1, since
the proof of Theorem 2.4.31 is local in the same way as the proof of Theo-
rem 2.4.30.

Going beyond the Borel sets, we can derive from the results of §1 and §2
local results for pretty much any natural classes. Here are just two examples.
Projective perfect information determinacy for countable game trees implies
projective Blackwell determinacy. For each positive integer n, Σ1

n perfect
information determinacy implies Σ1

n Blackwell determinacy.
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As we have already said, the determinacy of many classes of perfect infor-
mation games has been deduced from so-called large cardinal axioms. With
the aid of our theorem, we get corresponding determinacy results for Black-
well games. For example, for all n ≥ 0, Σ1

n+1 Blackwell determinacy follows
from the existence of n Woodin cardinals with a measurable cardinal above
them.

Vervoort in [Vervoort, 1996] introduces the Axiom of Determinacy for
Blackwell Games (AD-Bl), the assertion that all Blackwell Games are deter-
mined. He shows that AD-Bl, like AD, contradicts the Axiom of Choice. He
deduces from AD-Bl an important known consequence of AD: that all sets
of reals are Lebesgue measurable.

Itay Neeman pointed out to us that there are several variants of AD-Bl
that are not obviously equivalent to one another. One could restrict to games
of the form Γ(χ(A)). Whether or not one did this, one could require that
each player has exactly 2 legal moves in each position, or one could replace 2
by some other number n. In the opposite direction, one could allow that in
each position one of the players has countably infinitely many legal moves.
We know of no simple argument that any two of the possible versions of AD-
Bl are equivalent. Nonetheless, it can be shown that they are all equivalent.
The games Ḡv of §2 can easily be turned into equivalent games in which only
two legal moves are available to each player in each position. Our proofs
adapt to show that the mixed strategy determinacy of these games is enough
to yield the determinacy of the given game Γ(f).

[Vervoort, 1996] asks whether either of AD and AD-Bl implies the other.
Our results obviously give an implication in one direction.

Theorem 2.4.33. Work in ZF without the Axiom of Choice. AD implies
AD-Bl.

What about the converse? Also, do forms of Blackwell determinacy con-
sistent with the Axiom of Choice imply the corresponding forms of perfect
information determinacy?

The main results on these questions are in [Martin et al., 2003]. Examples
of pointclasses Γ for which this paper proves that Blackwell determinacy
implies determinacy are ∆1

2n for n ∈ ω, the class of projective sets, the
class of sets in L(R). The fact that Blackwell determinacy for sets in L(R)
implies determinacy for sets in L(R) implies that AD is consistent if AD-Bl
is consistent.
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Here is a rough sketch of how such theorems are proved. By a perfect
information game, let us mean a game in <ω2 played as in all sections of the
book prior to the present one. To show that Γ Blackwell determinacy implies
Γ determinacy, it is enough to show that if all perfect information Γ games
are determined in the sense of mixed strategies, then all perfect information Γ
games are determined in the sense of pure strategies. A theorem of Vervoort
shows that every perfect information game determined in mixed strategies
has value 0 or 1 and is determined in optimal strategies. In other words,
either player I has a strategy whose value is 1 or player II has a strategy whose
value is 0. In §6E of [Moschovakis, 1980], a method is introduced for using
perfect information determinacy to get optimal (in a different sense from the
present one) pure winning strategies for Γ games for certain pointclasses Γ.
It turns out that the method applies when the given determinacy is not in
pure strategies but just in mixed strategies, provided that the games have
value 0 or 1. Even though the input is weakened to such mixed strategies, the
output is still pure strategies. This yields Lemma 4.1 of [Martin et al., 2003]:

Let Γ be a weakly scaled adequate pointclass. Let ∆ be the intersection of
Γ and its dual. Then ∆ perfect information Blackwell determinacy implies
∆ determinacy.

Here adequate means closed under recursive substitutions, ∨, ∧, and bounded
number quantifcation, and Γ is weakly scaled if every set in Γ has a scale
such that each of the norms is a Γ norm. The mentioned results for the
projective hierarchy are proved using by bootstrapping, using Lemma 4.1
and Moschovakis’ method for getting scales for Σ1

2n+2 from ∆1
2n determinacy.

The case of L(R) is handled using a result of [Kechris and Woodin, 1983].
Here is a more indirect method that sometimes works for getting deter-

minacy from Blackwell determinacy. Many of the proofs of consequences of
perfect information determinacy still work if the existence of mixed strategies
replaces that of pure strategies. Among the consequences of perfect infor-
mation determinacy is the existence of good inner models for various large
cardinal axioms. Many of the proofs of perfect information determinacy from
large cardinal axioms need as hypotheses only the existence of good inner
models of the large cardinal axioms. In this way one often gets the equiva-
lence of forms of determinacy and the existence of good inner models of large
cardinal axioms. These facts provide a method for proving perfect informa-
tion determinacy from Blackwell determinacy. A sample theorem that can
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be proved in this way is the following. Σ1
1 Blackwell determinacy—even just

for games of the form Γ(χ(A))—implies Σ1
1 perfect information determinacy.

What about trying to show directly that Blackwell determinacy implies
determinacy? The most direct way to proceed would be to show that any
countable-tree perfect information game that is determined in the sense of
mixed strategies is determined in the sense of pure strategies. Unfortunately,
this is false, as the following example of Greg Hjorth shows. Let A be any
uncountable subset of 2N such that µ(A) = 0 for every atomless Borel prob-
ability measure µ. (For example, let the members of A code wellorderings,
exactly one of the order type of each countable ordinal.) Consider the game
G∗(A) defined on page 149 of [Kechris, 1994]. Player II has a mixed strategy
whose value in G∗(A) is 0: in each position, assign 1/2 to each of the two legal
moves. But II has no winning pure strategy. (See part (ii) of Theorem 21.1
of [Kechris, 1994].) This counterexample does not destroy all branches of
the direct route. For example, Vervoort’s theorem lets one assume that all
sets are Lebesgue measurable, and this rules out counterexamples of the
kind described in parentheses above. Moreover, although mixed strategy
determinacy for a perfect information game does not imply pure strategy
determinacy, there are useful constraints on the values of perfect information
games. We have been able to prove that the upper or lower value (in the
mixed strategy sense) of a perfect information game in our sense (i.e., one
whose winning condition is given by a set of plays) is either 0 or 1.

Theorems 2.4.25 and 2.4.27 and the related result for general payoff func-
tions give a strong version of Blackwell determinacy. It is easy to see that
this strong version implies, level by level, perfect information determinacy.
Thus another route to our goal would be to show that Blackwell determi-
nacy implies strong Blackwell determinacy. As we mentioned earlier, Maitra,
Purves, and Sudderth [Maitra et al., 1991] have shown that, for Borel A, the
determinacy of Γ(χ(A)) implies the strong determinacy of Γ(χ(A)). Hjorth’s
example given in the preceding paragraph shows that, under Choice, this
is not true for arbitrary A. Nevertheless, their proof may still be relevant.
That proof uses the fact that Borel sets are universally measurable. The
proof of the Lebesgue measurability result of [Vervoort, 1996] shows that the
universal measurability of a set follows from the Blackwell determinacy of
sets of about the same complexity. The additional fact about Borel sets used
in the proof of [Maitra et al., 1991] is their universal capacitability. This
does not generalize to all sets under AD-Bl, for there exist even Π1

1 sets
that are not universally capacitable. But to prove that AD-Bl implies strong
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AD-Bl it would be enough to prove from AD-Bl that all sets are capacitable
with respect to the capacities of [Maitra et al., 1991]. See Section 30 and
Exercises 36.22 and 39.14 of [Kechris, 1994] for some of the capacitability
consequences of perfect information determinacy, consequences that are due
independently to Busch, Shochat, and Mycielski.

Exercise 2.4.1. Let T be the game tree in which every play has length 1
and for which X∅ = Y∅ = ω. Blackwell games in T are thus played by
each player’s choosing a natural number. Let A be the set of plays in T
such that I’s number is ≥ II’s number. Prove that val↓(Γ(A;T )) = 0 and
val↑(Γ(A;T )) = 1.

Exercise 2.4.2. Verify that the proofs of Theorems 2.4.4 and 2.4.8, with
trivial changes, still work if we replace “lim sup” by “lim inf” in stating the
winning condition for Gv.

Exercise 2.4.3. (c) Prove the following strengthening of Theorem 2.4.13: If
Gv is determined for every v ∈ (0, 1], then val(Γ(f ;T )) is the supremum of
the val(Γ(g;T )) for functions g such that (∀x ∈ [T ]) g(x) ≤ f(x) and g is the
lim sup of a function defined on positions in T .

This is the analogue of Theorem 2.4.25 in the context of the Gv (instead
of the G′v).
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Chapter 3

Measurable Cardinals

The results of Chapter 2 exhaust the determinacy that can be proved in ZFC,
at least if we are talking of proving the determinacy of all games in natural
topological or definability classes. The next natural class after ∆1

1 is Π1
1 or

its dual Σ1
1. (See page 84 for the definitions of these classes.) By what is

essentially a result of [Davis, 1964], the determinacy of all Π1
1 games is not

provable in ZFC. (See Exercise 4.1.1.) The rest of the determinacy results in
this book will be proved with the help of large cardinal axioms. In the next
chapter, we will prove the determinacy of Π1

1 games in an arbitrary tree T
from the assumption that a measurable cardinal exists.

The purpose of this chapter is to introduce measurable cardinals and
related notions and to prove the basic facts about them. In §3.1 we give the
definition of measurable cardinals and establish the facts about them that
we need in order to give the proof of Π1

1 determinacy in §4.1. Sections 4.1
and 4.2 may be read independently of the rest of Chapter 3. In §3.2 we
introduce ultrapowers and prove a characterization of measurable cardinals
in terms of elementary embeddings. The elementary embedding definition of
measurable cardinals is important not only because we will later make use of
it but also because it is the elementary embedding versions of large cardinal
axioms that (1) support most arguments for their plausibility and (2) allow
one to see that the known large cardinal axioms are arranged in a coherent
hierarchy. In §3.3 we extend the concepts and results of §3.2 to iterated
ultrapowers and iterations of elementary embeddings. These notions will be
used in §4.3 and throughout the later chapters. As always in this book, our
aim is to prove determinacy results from the weakest possible large cardinal
axioms. In §4.4. we show that Π1

1 determinacy for games in countable trees

129
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can be proved from a consequence of measurable cardinals, the existence of
sharps of elements of ωω. §3.4 is devoted to an exposition of constructible
sets, relative constructibility, and sharps. In §3.5 we study canonical inner
models for ZFC + “there is a measurable cardinal.” We also study related
models. These models will be used in the last three sections of Chapter 5.

Measurable cardinals were introduced in [Ulam, 1930]. Most of the mate-
rial in this chapter dates, however, from the 1960’s, when there was a major
revival in the study of large cardinals.

3.1 Basic Properties

For any nonempty set A, a filter on A is a set F of subsets of A such that

(a) A ∈ F and ∅ /∈ F ;

(b) (∀X ∈ F)(∀Y ∈ F)X ∩ Y ∈ F ;

(c) (∀X ∈ F)(∀Y ⊆ A)(X ⊆ Y → Y ∈ F).

An ultrafilter on a set A is a filter U on A such that

(d) (∀X ⊆ A)(X ∈ U ∨ A \X ∈ U).

A filter F on A is principal if there is a Y ⊆ A such that F = {X ⊆ A |
Y ⊆ X}.

Lemma 3.1.1. An ultrafilter U on A is principal if and only if there is an
a ∈ A such that {a} ∈ U .

Proof. Let U be an ultrafilter on A. If a ∈ A and {a} ∈ U , then clause (c)
in the definition of a filter implies that U ⊇ {X ⊆ A | a ∈ X}, and clauses
(a) and (b) then imply that U = {X⊆A | a ∈ X}. Suppose that Y ⊆ A and
that U = {X ⊆A | Y ⊆ X}. By (a), Y is nonempty. Let a ∈ Y . By (d), one
of {a} and A \ {a} belongs to U and so is a superset of Y . This is possible
only if Y = {a}. �

If κ is a cardinal number, a filter F is κ-complete if every intersection
of fewer than κ elements of F belongs to F . Clause (b) in the definition of
a filter is thus equivalent with the assertion that F is ℵ0-complete. A filter
F is countably complete if F is closed under countable intersections. Note
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that countable completeness is equivalent with ℵ1-completeness, not with
ℵ0-completeness.

A cardinal number κ is measurable if κ > ℵ0 and there is a κ-complete,
non-principal ultrafilter on κ. (Recall that a cardinal number κ is identical
with the set of all ordinals α such that the cardinal number |α| of α—i.e., of
the set of predecessors of α—is smaller than κ. Thus a cardinal number κ is
a set and |κ| = κ.)

The study of measurable cardinals arose out of [Banach, 1930] and espe-
cially [Ulam, 1930]. These papers dealt with the question of whether there
can be a countably additive real-valued measure defined on all subsets of the
unit interval and giving singletons measure 0 and the whole unit interval pos-
itive measure. An ultrafilter on A is essentially the same as a finitely additive
{0, 1}-measure (a finitely additive measure taking only the values 0 and 1)
defined on the whole power set P(A) of A and giving the empty set measure
0 and A measure 1: If µ is such a measure, let U = {X⊆A | µ(X) = 1}. If U
is an ultrafilter on A, let µ : P(A)→ {0, 1} be given by µ(X) = 1↔ X ∈ U .
Thus the definition of a measurable cardinal can be given in terms of mea-
sures, and this fact explains the name. If we left out the conventional con-
straint that a measurable cardinal must be uncountable, then ℵ0 would qual-
ify as a measurable cardinal.

If a filter F is non-principal, then
⋂
F /∈ F . We may then define the

completeness of a non-principal filter F to be the least cardinal κ such that
some intersection of κ elements of F does not belong to F . It is not hard to
show that every non-principal filter on A has a completeness ≤ |A|. For ul-
trafilters this is immediate from Lemma 3.1.1 and clause (a) in the definition
of a filter. By clause (b), the completeness of a filter is at least ℵ0.

The following lemma gives a very useful method of constructing new filters
and ultrafilters from old ones.

Lemma 3.1.2. Let A and B be sets, let F be a filter on A, and let f : A→
B. Let G be the set of all X ⊆ B such that f−1(X) ∈ F . Then

(1) G is a filter on B;

(2) if F is an ultrafilter then so is G;

(3) the completeness of G is is at least as large as the completeness of
F , where we think of the completeness of a principal filter as Ord.

(4) G is a principal ultrafilter if and only if (∃b ∈B) f−1({b}) ∈ F .



132 CHAPTER 3. MEASURABLE CARDINALS

Proof. (1) Since f−1(B) = A and f−1(∅) = ∅, the fact that F satisfies
clause (a) in the definition of a filter implies that G satisfies (a). For clause
(b), we note that f−1(X ∩ Y ) = f−1(X) ∩ f−1(Y ). Hence clause (b) for F
implies clause (b) for G. Similarly clause (c) for G follows from clause (c) for
F , because if X ⊆ Y then f−1(X) ⊆ f−1(Y ).

(2) Assume that F is an ultrafilter. Since f−1(B \ X) = A \ f−1(X),
property (d) for F implies property (d) for G.

(3) Let κ be a cardinal number. Since

f−1(
⋂
α<κ

Xα) =
⋂
α<κ

f−1(Xα),

it follows that G is closed under intersections of size κ if F is closed under
intersections of size κ.

(4) This is an immediate consequence of Lemma 3.1.1 and the definition
of G. �

We will see later that the existence of measurable cardinals cannot be
demonstrated in ZFC. The following lemma shows that their existence is
equivalent with the existence of a countably complete, non-principal ultrafil-
ter on some set.

Lemma 3.1.3. If U is a countably complete, non-principal ultrafilter on A
and κ is the completeness of U , then κ is a measurable cardinal.

Proof. Let κ > ℵ0 be the completeness of a non-principal ultrafilter U on
A. Let {Xα | α < κ} witness that the completeness of U is no greater than
κ. Thus each Xα ∈ U but

⋂
α<κXα /∈ U . Define f : A→ κ by

f(a) =

{
µγ(a /∈ Xγ) if a /∈

⋂
γ<κXγ;

0 otherwise.

Here, as usual, “µ” means “the least.” Let V = {X ⊆ κ | f−1(X) ∈
U}. By Lemma 3.1.2, we get that V is a κ-complete ultrafilter on κ. For
each non-zero α < κ, f−1({α}) is disjoint from Xα, and f−1({0}) is disjoint
from X0 \

⋂
γ<κXγ. Thus no f−1({α}) belongs to U , and so clause (4) of

Lemma 3.1.2 implies that V is non-principal. �

Corollary 3.1.4. If there is a cardinal κ such that there is a countably com-
plete, non-principal ultrafilter on κ, then there is a measurable cardinal ≤ κ.
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In the next section, we will present techniques that give easy proofs that
measurable cardinals are very large. Even without these techniques, it is not
hard to show (Exercises 3.1.1 and 3.1.2) that every measurable cardinal is
inaccessible, i.e. regular and a strong limit. An infinite cardinal κ is regular
if there is no ordinal λ < κ such that some f : λ→ κ has unbounded range;
equivalently, κ is regular if cf (κ) = κ. An infinite cardinal κ is a strong limit
if whenever λ is a cardinal < κ then 2λ < κ.

An ultrafilter U on an infinite cardinal κ is normal if, for all functions
f : κ → κ, if {α < κ | f(α) < α} ∈ U then there is a β < κ such that
{α < κ | f(α) = β} ∈ U .

Let κ be an infinite cardinal. No non-principal ultrafilter on κ can be
closed under all intersections of κ-many sets. If 〈Xβ | β < κ〉 is a sequence
of subsets of κ, then the diagonal intersection ∆β<κXβ is defined by

∆β<κXβ = {α < κ | (∀β < α)α ∈ Xβ}.

Lemma 3.1.5. (Dana Scott; see [Keisler and Tarski, 1964]) If U is an ul-
trafilter on an infinite cardinal κ, then U is normal if and only if U is closed
under diagonal intersections.

Proof. Let U be an ultrafilter on κ, with κ infinite. Assume first that U
is normal. Let 〈Xβ | β < κ〉 be such that each Xβ ∈ U . Suppose that
∆β<κXβ /∈ U . Define f : κ→ κ by

f(α) =

{
µβ(β < α ∧ α /∈ Xβ) if (∃β < α)α /∈ Xβ;
0 otherwise.

Since ∆β<κXβ /∈ U , the set of α for which the first clause in the definition of
f applies is a set in U , i.e. {α | f(α) < α∧α /∈ Xf(α)} ∈ U . By normality, let
β < κ be such that {α<κ | f(α) = β} ∈ U . But then {α<κ | α /∈ Xβ} ∈ U ,
contrary to assumption.

Now assume that U is closed under diagonal intersections. Let f : κ→ κ
be such that {α<κ | f(α) < α} ∈ U . For β < κ, let Xβ = {α<κ | f(α) 6= β}.
We have that ∆β<κXβ /∈ U . From closure under diagonal intersections, we
get a β < κ such that Xβ /∈ U . But then {α < κ | f(α) = β} ∈ U . �

An ultrafilter U on an infinite cardinal κ is uniform if every element of
U has size κ; it is weakly uniform if for each δ < κ the set of all α < κ such
that δ ≤ α belongs to U .
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Lemma 3.1.6. Let U be a normal ultrafilter on an infinite cardinal κ. Then
the following are equivalent:

(a) U is κ-complete and non-principal.

(b) U is uniform.

(c) U is weakly uniform.

Proof. That (a) implies (b) and that (b) implies (c) follow directly from
the definitions, and these implications do not depend on the hypothesis of
normality.

To show that (c) implies (a) assume that U is weakly uniform. Obviously
U is non-principal. For κ-completeness, let δ < κ and let 〈Xγ | γ < δ〉 be
a sequence of members of U . For γ ≥ δ, let Xγ = κ. By Lemma 3.1.5,
∆γ<κXγ ∈ U . Since U is uniform, {α < κ | δ ≤ α} ∈ U . But then⋂

γ<δ

Xγ ⊇ ((κ \ δ) ∩∆γ<κXγ) ∈ U .

�

Lemma 3.1.7. (Dana Scott; see [Keisler and Tarski, 1964]) If κ is a mea-
surable cardinal, then there is a uniform normal ultrafilter on κ.

Proof. Let κ be a measurable cardinal. Let U be a non-principal, κ-complete
ultrafilter on κ.

We first show that there is an f : κ→ κ such that

(i) f is not constant on any member of U ; i.e., (∀β < κ){α < κ | f(α) =
β} /∈ U ;

(ii) for every g : κ → κ, if g is not constant on any member of U , then
{α < κ | f(α) ≤ g(α)} ∈ U .

Assume that no f satisfying (i) and (ii) exists. Let f0 be the identity function
on κ. Since U is non-principal, f0 satisfies (i). Assume inductively that
f0, f1, . . . , fn all satisfy (i) and that (∀i < n){α < κ | fi+1(α) < fi(α)} ∈ U .
By assumption, fn does not satisfy (ii). Let fn+1 be a g witnessing this fact.
Our induction hypothesis thus holds for n+ 1. Since U is κ-complete and κ
is uncountable, we have that U is countably complete. Hence⋂

n∈ω

{α < κ | fn+1(α) < fn(α)} ∈ U .
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By clause (a) in the definition of a filter, no element of U can be empty. Let
then α ∈

⋂
n∈ω{α < κ | fn+1(α) < fn(α)}. We have that

f0(α) > f1(α) > f2(α) > · · · ,

contradicting the fact that κ is wellordered by <.
Let f : κ→ κ satisfy (i) and (ii). Define an ultrafilter V ⊆ P(κ) by

X ∈ V ↔ f−1(X) ∈ U .

Lemma 3.1.2 and (i) give that V is a non-principal ultrafilter on κ. To prove
the normality of V , suppose that {α < κ | h(α) < α} ∈ V . We must show
that (∃β < κ) {α < κ | h(α) = β} ∈ V . Define g : κ→ κ by

g(α) = h(f(α)).

Since {α < κ | h(α) < α} ∈ V , it follows from the definition of V that
{α < κ | h(f(α)) < f(α)} ∈ U . Hence {α < κ | g(α) < f(α)} ∈ U . But
f satisfies (ii); so g cannot satisfy (i). Thus we get a β < κ such that
{α < κ | g(α) = β} ∈ U . By the definitions of g and V , this implies that
{α < κ | h(α) = β} ∈ V . �

The proof of Lemma 3.1.7 uses the uncountability of measurable cardi-
nals. This use is necessary: no non-principal ultrafilter on ω is normal. (See
Exercise 3.1.3.)

For any set z and any cardinal number λ, [z]λ is the set of all subsets
w of z such that |w| = λ. One reason that normal ultrafilters are useful is
the following result of Frederick Rowbottom, which shows that a κ-complete
normal ultrafilter on κ generates κ-complete ultrafilters on [κ]n for all n ∈ ω.

Lemma 3.1.8. ([Rowbottom, 1964]) Let n ∈ ω and let U be a normal ul-
trafilter on a cardinal κ. If Z ⊆ [κ]n, there is an X ∈ U such that either
[X]n ⊆ Z or [X]n ∩ Z = ∅.

Proof. We prove the lemma by induction on n.
The case n = 0 is trivial, since [κ]0 has only one member, ∅.
Assume that the lemma holds for n ≥ 0. Let Z ⊆ [κ]n+1. For each β < κ,

let
Zβ = {u ∈ [κ \ {β}]n | {β} ∪ u ∈ Z}.
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By our induction hypothesis, we have for each β an Xβ ∈ U such that either
[Xβ]n ⊆ Zβ or [Xβ]n ∩Zβ = ∅. Let Y be {β | [Xβ]n ⊆ Zβ} if that set belongs
to U and {β | [Xβ]n ∩ Zβ = ∅} otherwise. Let

X = Y ∩∆β<κXβ.

By Lemma 3.1.5, we have that X ∈ U . Assume first that Y = {β | [Xβ]n ⊆
Zβ}. Let t ∈ [X]n+1. Let β be the least element of t. Let u = t \ {β}. We
have that u ∈ [X]n ⊆ [∆η<κXη]

n, so u ∈ [Xβ]n ⊆ Zβ. By the definitions of t
and Zβ, we get that t ∈ Z. If we now assume that Y = {β | [Xβ]n∩Zβ = ∅},
then a similar argument shows that no t ∈ [X]n+1 belongs to Z. �

Suppose that U is a uniform normal ultrafilter on a cardinal κ. For n ∈ ω,
we define the Rowbottom ultrafilter U [n] on [κ]n by

Z ∈ U [n] ↔ (∃X ∈ U) [X]n ⊆ Z.

The fact that U is κ-complete and non-principal implies that U [n] is a κ-
complete filter. (We need that U is non-principal in order to show that
∅ /∈ U [n].) Lemma 3.1.8 implies that U [n] is an ultrafilter. It is clear that U [n]

is non-principal if n > 0. The Rowbottom ultrafilter on [κ]n is essentially the
same as the iterated product ultrafilter on κn. (See Exercise 3.1.7.)

Exercise 3.1.1. Prove that every measurable cardinal is regular. (Ulam
[1930].)

Exercise 3.1.2. Prove that every measurable cardinal is a strong limit.
(This is due to Alfred Tarski and Ulam independently. See [Ulam, 1930].)

Hint. Assume that λ < κ and that U is a κ-complete ultrafilter on a
subset of λ2. Prove that U is principal.

Exercise 3.1.3. Show that every normal ultrafilter on ω is principal.

Exercise 3.1.4. Let U be a normal ultrafilter on κ. Let f : κ→ κ be such
that (∀α < κ) f−1({α}) /∈ U . Prove that there is a set belonging to U on
which f is one-one.

Exercise 3.1.5. If F and G are filters on A and B respectively, then F
and G are isomorphic (F ∼= G) if there is a bijection f : A → B such that
G = {X ⊆B | f−1(X) ∈ F}.
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Prove that a κ-complete non-principal ultrafilter U on a measurable cardi-
nal κ is isomorphic to a normal ultrafilter if and only if U satisfies Lemma 3.1.8,
i.e. if and only if

(∀n ∈ ω)(∀Z ⊆ [κ]n)(∃X ∈ U)([X]n ⊆ Z ∨ [X]n ∩ Z = ∅).

(This result is probably due to Dana Scott.)

Hint. For the non-trivial direction, consider a function f satisfying (i)
and (ii) in the proof of Lemma 3.1.7.

Exercise 3.1.6. Prove that not every κ-complete non-principal ultrafilter
on a measurable cardinal κ is isomorphic to a normal ultrafilter.

Hint. Prove that the function f : [κ]2 → κ given by f(u) = min(u) is not
one-one on any set belonging to U [2].

Exercise 3.1.7. If U is a filter on a set A, then for the iterated product
filter Un on nA is defined by letting U0 be the unique filter on 0A = {∅} and
inductively setting

W ∈ Un+1 ↔ {a ∈ A | {s ∈ nA | 〈a〉_s ∈ W} ∈ Un} ∈ U .

Let U be a uniform normal ultrafilter on a cardinal κ and, for n ∈ ω,
let the injection g : [κ]n → nκ be given by letting each g(u) enumerate u
in increasing order. Prove that, for all Z ∈ [κ]n, Z ∈ U [n] if and only if
g(Z) ∈ Un.

3.2 Ultrapowers and Elementary Embeddings

We now have developed enough of the theory of measurable cardinals to prove
the main theorem of Chapter 4: that the determinacy of all Π1

1 games in a
tree T follows from the existence of a measurable cardinal larger than |T |.
Section 4.1, which contains the proof of this theorem, and also Section 4.2
can be read without reading the rest of Chapter 3.

For the determinacy proofs of the later chapters, however, we need a
further technical tool: the ultrapower construction.

Convention. Except where we explicitly state otherwise, we mean by a
model a model for the language of set theory: a model M = (M ;E), where
M is a nonempty set and E is a binary relation in M (a subset of M ×M).
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Let U be an ultrafilter on a set A. Let M = (M ;E) be a model. The
ultrafilter U gives rise to an equivalence relation ∼U ,M on AM : If f : A→M
and g : A→M , then

f ∼U ,M g ↔ {a ∈ A | f(a) = g(a)} ∈ U .

We will sometimes suppress the subscript U ,M and write simply ∼ when
there is no ambiguity about U or M .

For f ∈ AM , we write [[f ]]U ,M or just [[f ]] for the equivalence class of f
with respect to ∼U ,M . We denote the set of all the equivalence classes by
AM/U .

We define a binary relation EU ,M in AM/U as follows:

[[f ]]EU ,M [[g]]↔ {a ∈ A | f(a)E g(a)} ∈ U .

It is easy to see that EU ,M is well-defined.
The ultrapower of M with respect to U is the model∏

U

M = (AM/U ;EU ,M).

Note that
∏
UM is, like M, a model for the language of set theory.

Remark. We have defined
∏
UM only for models of one particular sim-

ilarity type, but the definition can easily be extended to arbitrary models.∏
UM is always a model of the same similarity type as M. The proof of

Theorem 3.2.1 below works also for ultrapowers in this more general sense.

Ultrapowers were introduced in [ Loś, 1955], where the following theorem
essentially appears.

Theorem 3.2.1. ([ Loś, 1955]) Let U be an ultrafilter on A and let M =
(M ;E) be a model. Let ϕ(v1, . . . , vn) be any formula of the language of set
theory. Let f1, . . . , fn be elements of AM . Then∏

U

M |= ϕ[[[f1]], . . . , [[fn]]]↔ {a ∈ A | M |= ϕ[f1(a), . . . , fn(a)]} ∈ U .

Proof. We may assume that the only connectives in ϕ are ∧ and ¬ and
that the only quantifier in ϕ is ∃. We prove the theorem by induction on the
complexity of the formula ϕ.



3.2. ULTRAPOWERS AND ELEMENTARY EMBEDDINGS 139

For ϕ atomic, the theorem holds of ϕ by the definitions of ∼U ,M and
EU ,M .

If ϕ is ψ ∧ χ, then∏
UM |= ϕ[[[f1]], . . . , [[fn]]] ↔∏
UM |= ψ[[[f1]], . . . , [[fn]]] ∧

∏
UM |= χ[[[f1]], . . . , [[fn]]] ↔(

{a ∈ A | M |= ψ[f1(a), . . . , fn(a)]} ∈ U ∧
{a ∈ A | M |= χ[f1(a), . . . , fn(a)]} ∈ U

)
↔

{a ∈ A | M |= ϕ[f1(a), . . . , fn(a)]} ∈ U .

Here we have used induction to get the second equivalence, and we have used
clauses (b) and (c) in the definition of a filter to get the last equivalence.

If ϕ is ¬ψ, then∏
UM |= ϕ[[[f1]], . . . , [[fn]]] ↔
¬ (
∏
UM |= ψ[[[f1]], . . . , [[fn]]]) ↔

{a ∈ A | M |= ψ[f1(a), . . . , fn(a)]} /∈ U ↔
{a ∈ A | M |= ϕ[f1(a), . . . , fn(a)]} ∈ U .

The last line follows from the preceding line by clause (d) in the definition of
an ultrafilter. This is the only place in the proof where we use the fact that
U is an ultrafilter rather than just a filter.

If ϕ is (∃v0)ψ, then∏
UM |= ϕ[[[f1]], . . . , [[fn]]] ↔

(∃f0 ∈ AM)
∏
UM |= ψ[[[f0]], [[f1]], . . . , [[fn]]] ↔

(∃f0 ∈ AM) ({a ∈ A | M |= ψ[f0(a), f1(a), . . . , fn(a)]} ∈ U) ↔
{a ∈ A | (∃b ∈M)M |= ψ[b, f1(a), . . . , fn(a)]} ∈ U ↔
{a ∈ A | M |= ϕ[f1(a), . . . , fn(a)]} ∈ U .

Note that the Axiom of Choice is used to deduce that the fourth line implies
the third. �

IfM = (M ;E) and N = (N ;F ) are models, an elementary embedding of
M into N is a function j : M → N such that, for any formula ϕ(v1, . . . , vn)
of the language of set theory and for any n-tuple 〈b1, . . . , bn〉 of elements of
M ,

M |= ϕ[b1, . . . , bn] ↔ N |= ϕ[j(b1), . . . , j(bn)].

We write j :M≺ N to mean that j is an elementary embedding ofM into
N .
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Let M = (M ;E) be a model and let U be an ultrafilter on a set A. We
define j : M → AM/U by

j(b) = [[cb]],

where cb : A→M is the constant function with value b.

Corollary 3.2.2. j :M≺
∏
UM.

Proof. For any ϕ(v1, . . . , vn) and 〈b1, . . . , bn〉, we have by Theorem 3.2.1
that∏

U

M |= ϕ[[[cb1 ]], . . . , [[cbn ]]] ↔ {a ∈ A | M |= ϕ[cb1(a), . . . , cbn(a)]} ∈ U .

But the left-hand side is equivalent with
∏
UM |= ϕ[j(b1), . . . , j(bn)], and

the right-hand side just says that {a ∈ A | M |= ϕ[b1, . . . , bn]} ∈ U , i.e. that
M |= ϕ[b1, . . . , bn]. �

A a model (M ;E) is wellfounded if the relation E is wellfounded, i.e. if
every nonempty subset of M has an E-minimal element. This is equivalent
(using Choice) with the non-existence of an infinite sequence 〈bi | i ∈ ω〉 such
that bi+1 E bi for each i ∈ ω. In [Keisler, 1962b] ultrapowers of wellfounded
structures were first used to get results about measurable cardinals. The
next lemma is fundamental for the method.

Lemma 3.2.3. Let U be a countably complete ultrafilter on the set A and and
let M = (M ;E) be a wellfounded model. Then

∏
UM is also wellfounded.

Proof. Suppose that 〈fi | i ∈ ω〉 is a counterexample to the wellfoundedness
of
∏
UM; that is suppose that

· · ·EU ,M [[f2]]EU ,M [[f1]]EU ,M [[f0]].

By the definition of EU ,M ,

(∀i ∈ ω){a ∈ A | fi+1(a)E fi(a)} ∈ U .

By the countable completeness of U ,
⋂
i∈ω{a ∈ A | fi+1(a)E fi(a)} ∈ U . Let

a belong to this set. Then

· · ·E f2(a)E f1(a)E f0(a),
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contrary to the wellfoundedness of M. �

We mainly want to apply the ultrapower construction to the case thatM
is a model of ZFC and that the relation E is the restriction of the membership
relation to M , i.e. M = (M ;∈ ∩ (M ×M)). For simplicity we will write
(M ;∈) instead ofM = (M ;∈ ∩ (M×M)). The Axiom of Foundation asserts
that such models are always wellfounded. The following lemma of Andrzej
Mostowski implies that wellfounded models of ZFC are all isomorphic to such
models.

Recall that a set x is transitive if every member of a member of x belongs
to x.

Lemma 3.2.4. ([Mostowski, 1949]) Let (M ;E) be a wellfounded model of
the Axiom of Extensionality. Then there is a unique transitive set N such
that (M ;E) ∼= (N ;∈), and the isomorphism π : (M ;E) ∼= (N ;∈) is unique.

Proof. We define π(x) by transfinite recursion on the wellfounded relation
E:

π(x) = {π(y) | y E x}.

Note that this must be π(x) if π is to be an isomorphism. Let, as we must,
N = {π(x) | x ∈ M}. It is immediate that N is transitive. It is immediate
from the definition that (∀x ∈M)(∀y ∈M)(y E x → π(y) ∈ π(x)). If π is
one-one, then it also follows that (∀x ∈M)(∀y ∈M)(π(y) ∈ π(x) → y E x),
and so that π is an isomorphism. We prove by induction on E that for every
x ∈ M there is no x′ ∈ M such that x′ 6= x and π(x′) = π(x). Assume then
that x′ 6= x. Since (M ;E) satisfies Extensionality, there is a z ∈ M that
bears E to exactly one of x′ and x. Assume for definiteness that z E x′ but
that not z E x; the other case is similar. Then by induction there is no wE x
such that π(z) = π(w). But this means that π(z) ∈ π(x′) \ π(x) and so that
π(x′) 6= π(x). �

Suppose that (M ;∈) is a model and that U is a countably complete ul-
trafilter on a set A. Let j : (M ;∈) ≺

∏
U(M ;∈) be the canonical elementary

embedding as defined on page 140. By Lemma 3.2.3,
∏
U(M ;∈) is well-

founded. Let π :
∏
U(M ;∈) ∼= (N ;∈) be given by Lemma 3.2.4. We have

then that

π ◦ j : (M ;∈) ≺ (N ;∈).



142 CHAPTER 3. MEASURABLE CARDINALS

We want to study such embeddings arising from a uniform normal U on a
measurable cardinal κ. However, we want to replace M by a proper class,
in particular by the set-theoretic universe V , and consequently to replace N
also by a proper class. For this we must first check that the results we have
derived so far hold for ultrapowers of proper class models.

Since we are officially working in ZFC, we can’t literally talk about proper
classes. What we mean by a class is something of the form

{x | ϕ(x, y1, . . . , yn)},

where y1, . . . , yn are sets and ϕ is a formula of the language of (ZFC) set
theory. Hence each class is determined by a formula and a finite sequence
of sets. We cannot in our language make general statements about classes;
thus most of the theorems in the rest of this section should be construed as
theorem schemata. See pages 23–24 of [Kunen, 1980] for a discussion of this.
If the reader prefers to construe our talk of classes literally, he can mostly
take us to be working in von Neumann–Bernays–Gödel set theory.

Warning. We will be very casual in dealing with proper classes. The
advantage of doing so is that ideas are less likely to be obscured by technical
details. The disadvantage is that it will sometimes be a non-trivial problem
for the careful reader to see how our discussion could be formalized in ZFC
or even in von Neumann–Bernays–Gödel set theory.

As is usual, we will identify a non-proper class with the corresponding
set.

Except where we explicitly state otherwise, we mean by a class model
something of the form (M ;E) where M is a nonempty class and E is a
subclass of M ×M . We haven’t actually indicated what kind of set-theoretic
object an ordinary model is (we haven’t used ordered pair notation 〈M,E〉),
so we may blithely keep the same ambiguity as to what specific object a class
model is.

Let M = (M ;E) be a class model and let U be an ultrafilter on a set
A. We want to define an ultrapower as in the set model case. As before, for
f : A→M and g : A→M we can let f ∼U ,M g just in case {a ∈A | f(a) =
g(a)} ∈ U . The first problem comes when we try to define the equivalence
class [[f ]]U ,M . The genuine equivalence class, {g | f ∼U ,M g}, is a proper
class if M is a proper class, unless |A| = 1. Since all our classes are to be
classes of sets, using these classes for the [[f ]]U ,M would render us unable to

define AM/U . We could try picking a representative from each equivalence
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class, but this would require a global form of the Axiom of Choice, and we do
not want to make such an assumption. A satisfactory solution comes from
[Scott, 1955], and we will make use of it below.

First let us recall the cumulative hierarchy of sets. Inductively we define
for each ordinal α a set Vα:

(i) V0 = ∅;
(ii) Vα+1 = Vα ∪ P(Vα);

(iii) Vλ =
⋃
α<λ Vα if λ is a limit ordinal.

It is easy to show by induction that each Vα is transitive and so that the
definition would be unaffected if we changed clause (ii) to set Vα+1 = P(Vα).
The Axiom of Foundation implies that every set belongs to the class V =⋃
α∈Ord Vα. (See III, §4 of [Kunen, 1980].) Thus we can define the rank of

any set x by

rank (x) = µαx ∈ Vα+1.

Let us say that f ∼U g if f ∼U ,V g, i.e. if f and g are functions with
domain A and {a ∈ A | f(a) = g(a)} ∈ U . Following [Scott, 1961] we define
[[f ]]U for f : A→ V to be the set of all g of minimal rank such that f ∼U g,
i.e.

[[f ]]U = {g | f ∼U g ∧ (∀h)(f ∼U h→ rank (g) ≤ rank (h))}.

With this definition, [[f ]]U ⊆ Vα for some α ≤ rank (f) + 1. Thus [[f ]]U is a
set. When there is no ambiguity, we may write “[[f ]]” for “[[f ]]U .”

Remark. We have chosen, since Scott’s trick makes it possible, to use
“equivalence classes” [[f ]]U that are independent of M .

Continuing with our class modelM = (M ;E) and our ultrafilter U on the
set A, we denote as in the set model case the class of all [[f ]]U for f : A→M
by AM/U . The class AM/U is a proper class if (and only if) M is a proper
class. Also as in the set model case we let [[f ]]EU [[g]] hold if and only if
{a∈A | f(a) ∈ g(a)} ∈ U and we let

∏
UM be the class model (AM/U ;EU).

Remark. Since a set model is also a class model, there is an ambiguity
in our definitions of AM/U and

∏
UM when applied to set models. Let us

officially adopt the new definition in all cases, though nothing important will
turn on this.
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Theorem 3.2.5. Let U be an ultrafilter on A and letM = (M ;E) be a class
model. Let ϕ(v1, . . . , vn) be any formula of the language of set theory. Let
f1, . . . , fn be elements of AM . Then∏

U

M |= ϕ[[[f1]], . . . , [[fn]]]↔ {a ∈ A | M |= ϕ[f1(a), . . . , fn(a)]} ∈ U .

The proof of Theorem 3.2.5 is just like that of Theorem 3.2.1.

Remark. Theorem 3.2.5 is a theorem schema both because it is about
arbitrary class models and because it is about arbitrary formulas. Since we
cannot in ZFC talk in general about the satisfaction relation even for a fixed
class model, ϕ as well asM must be treated schematically. Thus we are not
proving a fixed sentence by induction but rather are inductively showing how
to prove all sentences of a certain form.

We define elementary embeddings for class models just as we defined them
for set models. We can define a function j : M → AM/U just as on page
140. The proof of elementarity of j in the set case works in the class case.

Corollary 3.2.6. j :M≺
∏
UM.

Wellfoundedness is defined for class models as for set models. The proof
of Lemma 3.2.3 also gives the following lemma.

Lemma 3.2.7. Let U be a countably complete ultrafilter on the set A and
let M be a wellfounded class model. Then

∏
UM is also wellfounded.

Mostowski’s Lemma (Lemma 3.2.4) does not hold in general for class
models. The point is that wellfounded class models can be longer than the
ordinals, and so need not be isomorphic to class models (N ;∈). (See Ex-
ercise 3.2.1.) To rule out this possibility we define (more or less following
[Kunen, 1980]) a class model (M ;E) to be set-like if for all x ∈M the class
{y ∈M | y E x} is a set.

Lemma 3.2.8. If (M ;E) is a wellfounded set-like model of the Axiom of
Extensionality, then there is a unique transitive class N such that (M ;E) ∼=
(N ;∈), and the isomorphism π : (M ;E) ∼= (N ;∈) is unique.
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The proof of 3.2.8 is just like that of 3.2.4. The assumption that (M ;E)
is set-like justifies the inductive definition of π, in particular it guarantees
that π(x) = {π(y) | y E x} is a set.

Remark. Since the N and the π of Lemma 3.2.8 are proper classes, a
word is in order about the significance of the “there is” in the statement of
the lemma. The point is that our proof defines N and π from M and E,
and hence we show how to construct formulas determining N and π from
formulas determining M and E.

The following lemma guarantees that the class models we are interested
in are set-like.

Lemma 3.2.9. Let M = (M ;∈). Let U be an ultrafilter on a set A. Then∏
UM is set-like.

Proof. Let f : A→M . We must prove that {[[g]]∈ AM/U | [[g]] ∈U [[f ]]} is a
set. Let g : A→ M be such that [[g]] ∈U [[f ]]. By definition, this means that
{a ∈ A | g(a) ∈ f(a)} ∈ U . Define g′ : A→M by

g′(a) =

{
g(a) if g(a) ∈ f(a);
f(a) otherwise.

Clearly g′ ∼ g and rank (g′) ≤ rank (f). By the definition of [[g]], it follows
that every member of [[g]] has rank no greater than rank (f). Let α = rank (f).
We have shown that whenever [[g]] ∈U [[f ]] then [[g]] ⊆ Vα+1 and so [[g]] ∈ Vα+2.
But then {[[g]] | [[g]] ∈U [[f ]]} ⊆ Vα+2 and is therefore a set. �

Let U be a countably complete ultrafilter on a set A. Let i′U be the em-
bedding j : (V ;∈) ≺ (AV/U ;∈U) defined on page 140. By Lemmas 3.2.7 and
3.2.9, (AV/U ;∈U) is a wellfounded set-like class model. Let πU : (AV/U ;∈U
) ∼= (N ;∈) be given by Lemma 3.2.8. Note that (N ;∈) is a class model of
ZFC, since V is such a model. By Ult(V ;U) we mean the class N . We denote
by iU the embedding π ◦ i′U .

Convention. We will often attribute properties of models (M ;∈) to the
corresponding sets M . Thus we will say, e.g. that V |= ZFC and that, for
the iU and N of the last paragraph, that iU : V ≺ N .

If M and N are classes, if h : M → N , and if there is an ordinal α ∈ M
such that h(α) 6= α, then we let crit(h) be the least such α and we call it the
critical point of h. We will mainly use this terminology when h : M ≺ N .
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Lemma 3.2.10. Let U be a countably complete ultrafilter on a set A. If U
is principal, then Ult(V ;U) = V and iU is identity. If U is non-principal,
then iU is the identity on Vκ, where κ is the completeness of U , but iU is not
the identity and κ = crit(iU).

Proof. Let us construe the completeness of U to be Ord if U is principal,
since then U is closed under arbitrary intersections. (But U is closed under
intersections of size Ord, so this convention is not completely natural.) Let
κ be the completeness of U .

We first show that iU is the identity on κ. To do this we prove by induction
that iU(α) = α for all α < κ. Suppose then that α < κ and that iU(β) = β
for all β < α. For each β < α, iU(β) ∈ iU(α), by the elementarity of iU .
Suppose that π([[g]]) ∈ iU(α), where π = πU :

∏
U(V ;∈) ∼= (Ult(V ;U);∈).

Then [[g]] ∈U [[cα]], and so {a ∈ A | g(a) ∈ α} ∈ U . But α < κ and so the
κ-completeness of U implies that there is a β < α such that {a ∈ A | g(a) =
β} ∈ U . But then g ∼ cβ, and so

π([[g]]) = π([[cβ]]) = iU(β) = β.

This completes the inductive proof that iU is the identity on κ.
Next we prove by induction on α < κ that iU is the identity on Vα. The

only non-trivial case of the induction is that of successor α. Assume then
that α = β + 1 and iU � Vβ is the identity. Let x ∈ Vα. By the elementarity
of iU ,

iU(x) ∈ ViU (α) = Vα.

Thus every member of iU(x) belongs to Vβ. If y ∈ Vβ, then the elementarity
of iU and our induction hypothesis give that

y ∈ x ↔ iU(y) ∈ iU(x) ↔ y ∈ iU(x).

We have shown that iU(x) and x have the same members and hence that
iU(x) = x.

It only remains to prove that if U is non-principal then iU(κ) 6= κ. Assume
that U is non-principal. Let 〈Xα | α < κ〉 be such that each Xα ∈ U but⋂
α<κXα /∈ U . Let f : A→ V be given by

f(a) =

{
µα a /∈ Xα if a /∈

⋂
α<κXα;

0 if a ∈
⋂
α<κXα.
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Now, for each α < κ, cα(a) = α < f(a) for every a ∈
⋂
β<αXβ \

⋂
α<κXα.

Since
⋂
β<αXβ ∈ U and

⋂
α<κXα /∈ U , we have that [[cα]] < [[f ]] for each

α < κ. But then
α = iU(α) = π([[cα]]) < π([[f ]]),

for each α < κ. Thus π([[f ]]) is an ordinal ≥ κ. But we also have that
f(a) < κ for every a ∈ A. Hence [[f ]] < [[cκ]], and so

κ ≤ π([[f ]]) < π([[cκ]]) = iU(κ). �

Remark. Note that the proof that iU is the identity on Vκ used only that
iU : V ≺M for some M and that iU is the identity on κ. Thus any j : V ≺M
is the identity on Vcrit(j).

If M is a class model of ZFC (or a large enough fragment of ZFC), then
by V M

α we mean the αth stage of the rank hierarchy as defined in M . If
M is transitive, this is just Vα ∩M . If U is a non-principal ultrafilter, then
Lemma 3.2.10 shows that Ult(V ;U) and V agree to the completeness κ of U ,
i.e. V M

κ = Vκ. The following lemma shows that they agree one level further.

Lemma 3.2.11. Let κ be the completeness of a non-principal ultrafilter U
on a set A. Then V

Ult(V ;U)
κ+1 = Vκ+1. Indeed, κ(Ult(V ;U)) ⊆ Ult(V ;U).

Proof. The second assertion actually implies the first; for, by Lemma 3.1.3
and either Exercises 3.1.1 and 3.1.2 or Lemma 3.2.15, the cardinal κ is inac-
cessible and so |Vκ| = κ. But the first assertion has a simpler proof, so we
give that proof separately: Let x ∈ Vκ+1. Thus x ⊆ Vκ. If y ∈ Vκ, then

y ∈ x ↔ iU(y) ∈ iU(x) ↔ y ∈ iU(x).

Thus iU(x) ∩ Vκ = x. Since Vκ belongs to the transitive Ult(V ;U), it follows
that x ∈ Ult(V ;U).

For the second assertion, let h : κ → Ult(V ;U). For each α < κ, let
h(α) = π([[fα]]), with π = πU . Let g : A→ κV be given by

(g(a))(α) = fα(a).

Now π([[g]]) : iU(κ) → Ult(V ;U) and for α < κ we have that (π([[g]]))(α) =
(π([[g]]))(iU(α)) = (π([[g]]))(π([[cα]])) = π([[fα]]) = h(α). Thus h = π([[g]]) � κ ∈
Ult(V ;U). �
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Theorem 3.2.12. ([Scott, 1961], [Keisler, 1962a]) Let κ be an ordinal num-
ber. The following are equivalent:

(a) κ is a measurable cardinal.

(b) There are a transitive class M and an embedding j : V ≺ M such
that crit(j) = κ.

(c) There is transitive set N and an embedding k : Vκ+1 ≺ N such that
crit(k) = κ.

Proof. (a) ⇒ (b): Assume (a) and let U be a κ-complete non-principal
ultrafilter on κ. Since the completeness of U cannot be greater than |κ| = κ,
we can apply Lemma 3.2.10 with A = κ. Thus (b) holds with M = Ult(V ;U)
and j = iU .

(b) ⇒ (c): Assume that M and j witness (b). Then N = Vj(κ)+1 ∩M
and k = j � Vκ+1 witness (c).

(c) ⇒ (a): Assume that N and k witness (c). Let

U = {X ⊆ κ | κ ∈ k(X)}.

Since κ is the critical point of k, κ < k(κ), i.e. κ ∈ k(κ). By the elementarity
of k, we have that k(∅) = ∅ and so that κ /∈ k(∅). Thus U satisfies clause (a)
in the definition of a filter. The elementarity of k also gives that k(X ∩Y ) =
k(X)∩k(Y ), that X ⊆ Y → k(X) ⊆ k(Y ), and that k(κ\X) = k(κ)\k(X);
therefore U satisfies clauses (b), (c), and (d) in the definition of an ultrafilter.
To verify the κ-completeness of U , let δ < κ and let X = 〈Xγ | γ < δ〉 be a
sequence of elements of U . The elementarity of k and the fact that δ < crit(k)
yield that

k(
⋂
γ<δ

Xγ) =
⋂

γ<k(δ)

(k(X))γ =
⋂
γ<δ

k(Xγ).

But κ ∈
⋂
γ<δ k(Xγ), so

⋂
γ<δXγ ∈ U . U is non-principal, since for α < κ we

have that κ /∈ {α} = k({α}). �

Remark. We included (c) in the statement of Theorem 3.2.12 to show that
(b), which involves proper classes, has an equivalent version that involves only
sets. Obviously (b) and (c) are also equivalent to each of the intermediate
propositions gotten by replacing Vκ+1 in (c) by Vκ+α for ordinals α > 1.

It is of interest that the ultrafilter U defined in the proof of (a) from (c)
is actually normal:
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Lemma 3.2.13. Let j : V ≺ M with M transitive or let j : Vκ+α ≺ N with
N transitive and α ≥ 1. Assume that κ = crit (j). Let U = {X ⊆ κ | κ ∈
j(X)}. Then U is a normal ultrafilter on κ.

Proof. Suppose that 〈Xβ | β < κ〉 is a sequence of elements of U . Then
κ ∈ j(Xβ) for each β < κ. Thus κ belongs to the diagonal intersection of
j(〈Xβ | β < κ〉). Thus ∆β<κXβ ∈ U . �

Many large cardinal properties of a cardinal κ can be expressed in the
form:

There is an elementary embedding j : V ≺M with M transitive,
with crit(j) = κ, and with M like V in respect R.

For the property of being measurable, nothing like the last clause appears in
(b) of Theorem 3.2.12. But such a clause could be added, as Lemma 3.2.11
shows. Thus we could strengthen (b) by adding “and with Vκ+1 ⊆ M” or
even “and with κM ⊆M .” In fact, the proof of the first assertion of Lemma
3.2.11 uses nothing special about iU and Ult(V ;U), so we have:

Lemma 3.2.14. If j : V ≺ M with M transitive and crit(j) = κ, then
Vκ+1 ⊆M .

The proof of the second part of Lemma 3.2.11 (that κ(Ult(V ;U)) ⊆
Ult(V ;U), or—as we will say—that Ult(V ;U) is κ-closed) depended on spe-
cific properties of Ult(V ;U). Indeed the analogue of Lemma 3.2.14 fails: If
κ is a measurable cardinal, then there is an embedding j : V ≺ M with M
transitive and crit(j) = κ such that M is not even countably closed. (See
Exercise 3.3.2.)

Various properties of measurable cardinals can be proved rather eas-
ily from the elementary embedding version of measurability. For exam-
ple, the fact that there is a normal ultrafilter on each measurable cardinal
(Lemma 3.1.7) follows from Lemma 3.2.13. Another example is the follow-
ing lemma. The original proof of its first assertion is in [Ulam, 1930]. (See
Exercises 3.1.1 and 3.1.2.) The original proof of the second assertion is in
[Hanf, 1964] and [Tarski, 1962]. The first part of the proof below is essentially
from [Keisler, 1962b].

Lemma 3.2.15. Let κ be a measurable cardinal. Then κ is inaccessible. In
fact κ is the κth inaccessible cardinal.
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Proof. Let j : V ≺M with M transitive and crit(j) = κ.
To prove that κ is regular, let δ < κ and let f : δ → κ. Elementarity gives

that j(f) : j(δ) → j(κ) and so that j(f) : δ → j(κ). Moreover for all γ < δ
we have that (j(f))(γ) = (j(f))(j(γ)) = j(f(γ)) = f(γ) (since f(γ) < κ).
Hence j(f) = f . But then the range of j(f) is not unbounded in j(κ), since
it is bounded by κ < j(κ). By elementarity, the range of f is bounded in κ.

To show κ is a strong limit cardinal, let δ < κ. If x ⊆ δ, then j(x) = x.
Moreover j(P(δ)) = P(δ). Let λ = |P(δ)|. Let h : P(δ)→ λ be a bijection.
Then j(h) : P(δ) → j(λ) is a bijection. For each x ∈ P(δ), (j(h))(x) =
(j(h))(j(x)) = j(h(x)). But then every ordinal smaller than j(λ) belongs to
the range of j. Since κ /∈ range (j), it follows that j(λ) ≤ κ and so that
λ < κ. Thus we have shown that 2δ < κ.

Now κ is inaccessible in M , since any witness that κ is not inaccessible
in M would also be a witness that κ is not inaccessible in V . If α < κ, then
M |= (∃β)(α < β < j(κ) ∧ β is inaccessible). (Take κ for β.) Hence in
V |= (∃β)(α < β < κ ∧ β is inaccessible). We have shown that the there are
unboundedly many inaccessible cardinals smaller than κ. Since κ is regular,
this means that there are κ inaccessible cardinals smaller than κ. �

Exercise 3.2.7 is another example of this sort.

Suppose that we start with a uniform normal ultrafilter U on a measurable
cardinal κ, that we form the elementary embedding iU , and that we then
construct a normal measure V on κ from iU by letting V = {X ⊆ κ | κ ∈
iU(X)}. Then V = U (Exercise 3.2.3). On the other hand, if we start
with j : V ≺ M with M transitive and crit(j) = κ and if we then form
V = {X⊆κ | κ ∈ j(X)}, it need not be true that iV = j. (See Exercise 3.2.4.)

Exercise 3.2.1. Let M = Ord. Define a relation E in M by

αE β ↔


(α < β and α and β are even)∨
(α < β and α and β are odd)∨
(α is even and β is odd)

Prove that there is no class N such that (M ;E) ∼= (N ;∈).

Exercise 3.2.2. Let U be a κ-complete, non-principal ultrafilter on a mea-
surable cardinal κ. Let id : κ→ κ be the identity. Prove that U is normal if
and only if πU([[id]]U) = κ.
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Exercise 3.2.3. Let U be a uniform normal ultrafilter on a cardinal κ. Let
V = {X ⊆ κ | κ ∈ iU(X)}. Show that V = U .

Exercise 3.2.4. Let U be a uniform normal ultrafilter on a cardinal κ. Let
V = {X ⊆ κ | κ ∈ iU [2](X)}, where U [2] is the Rowbottom measure defined
on page 136. Prove that V = U and that iV(κ) < iU [2](κ).

Exercise 3.2.5. Let U be a uniform normal ultrafilter on κ. Let f : κ→ V .
Show that

(iU(f))(κ) = πU([[f ]]U).

Hint. Use Exercise 3.2.2.

Exercise 3.2.6. (a) Let j : V ≺ M with M transitive and crit(j) = κ. Let
U = {x ⊆ κ | κ ∈ j(X)}. Prove that there is a unique k : Ult(V ;U) ≺ M
such that k ◦ iU = j and k � κ+ 1 is the identity.

(b) Show that if κ is a measurable cardinal then there is a j : V ≺ M
with M transitive and crit(j) = κ such that, with U as in (a), there is more
than one k : Ult(V ;U) ≺M with k ◦ iU = j.

Hint. For (a), define k by setting k(πU([[f ]]U)) = (j(f))(κ). For (b), let
j = iU [2] and let k′ = iU � Ult(V ;U).

Exercise 3.2.7. If λ is an ordinal number, then a subset C of λ is closed
in λ if it is closed in the order topology or, equivalently, if α ∈ C whenever
α < λ is a limit ordinal and C is unbounded in α. If λ is a limit ordinal, then
a subset X of λ is stationary in λ if X meets every closed, unbounded subset
of λ. Note that the only stationary subsets of an ordinal λ of cofinality ω
are the complements in λ of bounded sets. A cardinal κ is Mahlo if κ is
a strong limit cardinal and the set of all regular α < κ is stationary in κ.
Clearly every Mahlo cardinal has uncountable cofinality. If cf(κ) > ω and
f : δ → κ witnesses that κ is not regular, then the set C of limit points
of range(f) which are greater than δ witnesses that κ is not Mahlo. Thus
every Mahlo cardinal is inaccessible. Prove that every Mahlo cardinal κ
is the κth inaccessible cardinal. Prove that every measurable cardinal κ is
the κth Mahlo cardinal. This last result is a consequence of theorems in
[Tarski, 1962] and [Hanf, 1964].
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3.3 Iterated Ultrapowers

In this section we show how to iterate the ultrapower construction to get a
sequence

V = M0
j0→M1

j1→M2
j2→ . . .

of class models and elementary embeddings. This system will be used in
§4.3 and in determinacy proofs in Chapter 5. We also show how to ex-
tend the sequence into the transfinite. The machinery of iterated ultra-
powers was introduced by Haim Gaifman and used by him to obtain the
results of [Gaifman, 1964]. The machinery, in generalized form, is presented
in [Gaifman, 1974].

If U is a countably complete ultrafilter on A, then

Ult(V ;U) |= ZFC + χ[iU(U), iU(A)],

where χ(v1, v2) says “v1 is a countably complete ultrafilter on v2.” Thus we
can, within Ult(V ;U), form the ultrapower of the universe of sets with respect
to iU(U). The elements of this ultrapower are the “equivalence classes” of
functions f : iU(A) → Ult(V ;U) with f ∈ Ult(V ;U); in other words, each
element of the ultrapower is, for some such f , the set of all g : iU(A) →
Ult(V ;U) of minimal rank such that g ∈ Ult(V ;U) and {a ∈ iU(A) | f(a) =
g(a)} ∈ iU(U). We denote these classes by

[[f ]]
Ult(V ;U)
iU (U) .

Note that this need not be a true ultrapower (in the full universe V ), since (1)
iU(U) may not be (and, unless U is principal, is in fact not) an ultrafilter in V ,
and (2) we are using only functions in Ult(V ;U). The class model Ult(V ;U)
satisfies the formula saying that this ultrapower is wellfounded and set-like.
Since Ult(V ;U) also satisfies (the relevant instance of) Lemma 3.2.8, this
ultrapower is isomorphic to a transitive class. We denote this transitive class
by Ult(Ult(V ;U); iU(U)), and we denote the canonical elementary embedding

of Ult(V ;U) into Ult(Ult(V ;U); iU(U)) by i
Ult(V ;U)
iU (U) .

In general, suppose that M is a transitive class satisfying ZFC, that A and
V ∈M , and that M |= “V is an ultrafilter on A.” We will denote the element
represented by f in the ultrapower taken inside M of M with respect to V
by [[f ]]MV . We will denote the transitive class isomorphic to this ultrapower
by Ult(M ;V), and we will denote the canonical elementary embedding of M
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into Ult(M ;V) by iMV . Later we will generalize these notions further, allowing
M to be a model of a fragment of ZFC and not requiring that V belong to
M . Even in these more general cases, we will use the same notation, with
the “M” in [[f ]]MV , in iMV , and in Ult(M ;V) signifying that the ultrapower is
the ultrapower of M using the functions in M .

We can think of an elementary embedding j : M ≺ N , for M and N
(with ∈) transitive class models, as acting on subclasses Y of M which satisfy
(∀α ∈Ord ∩M)Y ∩ Vα ∈M ; for we can let

j(Y ) =
⋃

α∈Ord∩M

j(Y ∩ Vα).

Thus

Ult(V ;U) = iU(V );

Ult(Ult(V ;U); iU(U)) = iU(Ult(V ;U));

i
Ult(V ;U)
iU (U) = iU(iU).

Moreover, for any transitive M and j : V ≺M we can define j(V ) (= M) and
j(j) : M ≺ j(M). Suppose that j : M ≺ N with M and N transitive and
with M satisfying, say, ZFC. If j ⊆ M and is definable in M from elements
of M , i.e. if j is a class in M , then we have j(M) = N and j(j) : N → j(N).

Let M be a transitive class model of ZFC and let j : M ≺ N with N
transitive and j a class in M . We define inductively, for n ∈ ω, transitive
classes M j

n and embeddings jn : M j
n ≺M j

n+1 as follows:

(a) M j
0 = M ;

(b) j0 = j;

(c) M j
n+1 = jn(M j

n);

(d) jn+1 = jn(jn).

We can also define jm,n : M j
m ≺M j

n, for m ≤ n ∈ ω by composition:

(i) jm,m is the identity;

(ii) jm,n+1 = jn ◦ jm,n.

Note that each jm,n is a class in M j
m. Exercise 3.3.1 concerns some properties

of the jm,n.
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Let M be a transitive class model of ZFC and let U ∈ M be, in M , a
countably complete ultrafilter on A ∈M . For n ∈ ω we let

Ultn(M ;U) = M iU
n .

Lemma 3.3.1. Let M and U be as in the preceding paragraph and let i =
iU . For each n ∈ ω, Un = i0,n(U) is, in Ultn(M ;U), a countably complete
ultrafilter on i0,n(A). Moreover each Ultn+1(M ;U) = Ult(Ultn(M ;U);Un)

and each in = i
Ultn(M ;U)
Un .

The proof of the lemma is routine, and we omit it.

Lemma 3.3.2. Let κ be the completeness of a countably complete, non-
principal ultrafilter U on a set A. Then, for all n ∈ ω, V

Ultn(V ;U)
κ+1 = Vκ+1.

Indeed all Ultn(V ;U) are κ-closed, i.e. κ(Ultn(V ;U)) ⊆ Ultn(V ;U).

Proof. Let i = iU . For each m ∈ ω, applying Lemma 3.2.11 in Ultm(V ;U)
gives us that

V
Ultm+1(V ;U)
i0,m(κ)+1 = V

Ultm(V ;U)
i0,m(κ)+1

and that

Ultm(V ;U) ∩ i0,m(κ)(Ultm+1(V ;U)) ⊆ Ultm+1(V ;U).

Since
κ < i0,1(κ) < i0,2(κ) < · · · ,

the lemma follows by induction. �

The first assertion of Lemma 3.3.2 follows also from the special case n = 0
and the fact that crit(i1,n+1) > κ, and so, using Lemma 3.2.14:

Lemma 3.3.3. If j : V ≺M with M transitive and crit(j) = κ then, for all
n ∈ ω, Vκ+1 ⊆ j0,n(V ).

Let M be a transitive class model of ZFC and let j : M ≺ N with N
transitive and j a class in M . The direct limit

(M̃j
ω, 〈̃m,ω | m ∈ ω〉)

of (〈(M j
n;∈) | n ∈ ω〉, 〈jm,n | m ≤ n ∈ ω〉) is given as follows:
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For x ∈M j
m and y ∈M j

n and m ≤ n, we let

〈m,x〉 ∼ 〈n, y〉 ↔ 〈n, y〉 ∼ 〈m,x〉 ↔ jm,n(x) = y.

Let [[m,x]] be the equivalence class of 〈m,x〉 with respect to the equivalence
relation ∼. We set

M̃ j
ω = {[[m,x]] | m ∈ ω ∧ x ∈M j

m}.

For x ∈M j
m and y ∈M j

n, we define

[[m,x]] Ẽj
ω [[n, y]] ↔

{
jm,n(x) ∈ y if m ≤ n;
x ∈ jn,m(y) if n < m.

Let M̃j
ω = (M̃ j

ω; Ẽj
ω). Finally, we let ̃m,ω(x) = [[m,x]].

Remarks:

(a) We have used the natural notation “〈jm,n | m ≤ n ∈ ω〉,” but this
should not be construed literally, since we want the object to be a genuine
class (with sets as members). A similar comment applies to, e.g., “〈(M j

n;∈
) | n ∈ ω〉.”

(b) Since each M j
n = j0,n(M), we could dispense with talk of 〈(M j

n;∈) |
n ∈ ω〉 and say that 〈̃m,ω | m ∈ ω〉 is the direct limit of 〈jm,n | m ≤ n ∈ ω〉.

Lemma 3.3.4. Let M be a transitive class model of ZFC and let j : M ≺ N
with N transitive and j a class in M . Then for all natural numbers m and
n with m ≤ n, ̃m,ω = ̃n,ω ◦ jm,n. Moreover ̃m,ω : (M j

m;∈) ≺ (M̃ j
ω; Ẽj

ω) for
all m ∈ ω.

Proof. The proof of the first assertion is routine, and we omit it. The second
assertion follows from the elementary chain theorem of Tarski–Vaught [1957].
Nevertheless, we give the proof: We proceed by induction on the complexity
of formulas ϕ. The only non-trivial case is that of a formula ϕ(v1, . . . , vk) of
the form (∃v0)ψ(v0, . . . , vk). Consider such a ϕ and ψ. Let m ∈ ω and let
〈x1, . . . , xk〉 ∈ M j

m. If M j
m |= ϕ[x1, . . . , xk], then there is an x0 ∈ M j

m such
that M j

m |= ψ[x0, . . . , xk]. By the induction hypothesis for ψ, we get that
M̃j

ω |= ψ[̃m,ω(x0), . . . , ̃m,ω(xk)] and so that M̃j
ω |= ϕ[̃m,ω(x1), . . . , ̃m,ω(xk)].

Suppose then that M̃j
ω |= ϕ[̃m,ω(x1), . . . , ̃m,ω(xk)]. Let x̃ ∈ M̃ j

ω be such that
M̃j

ω |= ψ[x̃, ̃m,ω(x1), . . . , ̃m,ω(xk)]. Let n ∈ ω and y ∈ M j
n be such that x̃ =
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[[n, y]]. Assume, without loss of generality, that n ≥ m. By induction and the
first assertion of the lemma, we have that M j

n |= ψ[y, jm,n(x1), . . . , jm,n(xk)].
Thus M j

n |= ϕ[jm,n(x1), . . . , jm,n(xk)]. The elementarity of jm,n implies that
M j

m |= ϕ[x1, . . . , xk]. �

Lemma 3.3.5. ([Gaifman, 1974]) Let M and j be as in the statement of
Lemma 3.3.4. Then M̃j

ω is wellfounded.

Proof. Assume that the lemma is false. There is an infinite sequence 〈ỹi |
i ∈ ω〉 such that

. . . Ẽj
ω ỹ2 Ẽ

j
ω ỹ1 Ẽ

j
ω ỹ0.

Hence there is such a sequence with ỹ0 of the form [[n, y]] and so of the form
̃n,ω(y). If x = V M

rank(y)+1, then j0,n(x) = V Mn

j0,n(rank(y)+1) and so y ∈ j0,n(x).

Hence there is an x ∈M such that there is a sequence 〈ỹi | i ∈ ω〉 with

. . . Ẽj
ω ỹ2 Ẽ

j
ω ỹ1 Ẽ

j
ω ỹ0 = ̃0,ω(x).

Let x ∈ M have minimal rank with this property. Choose such a sequence
and let n and u ∈ M j

n be such that ỹ1 = ̃n,ω(u). By the elementarity of
j0,n, we have that j0,n(x) is, in M j

n, a w of minimal rank with the following
property P : There is an infinite sequence 〈z̃i | i ∈ ω〉 such that

. . . Ẽjn
ω z̃2 Ẽ

jn
ω z̃1 Ẽ

jn
ω z̃0 = (̃n)0,ω(w).

But M jn
k = M j

n+k and (jn)k,m = jn+k,n+m for all k ≤ m ∈ ω. Thus P (w) is
equivalent with the existence of a sequence 〈z̃i | i ∈ ω〉 such that

. . . Ẽj
ω z̃2 Ẽ

j
ω z̃1 Ẽ

j
ω z̃0 = ̃n,ω(w).

But this is a contradiction; for u also has this property, and u ∈ j0,n(x) so
rank (u) < rank(j0,n(x)). �

Lemma 3.3.6. Let M and j be as in the statement of Lemma 3.3.4. Then
(M̃ j

ω; Ẽj
ω) is set-like.

Proof. Let ỹ ∈ M̃ j
ω. Let n ∈ ω and x ∈M j

n be such that ỹ = [[n, x]], so that
ỹ = ̃n,ω(x). Suppose z̃ Ẽj

ω ỹ. Let m ∈ ω and u ∈ M j
m be such z̃ = jm,ω(u).

If k ≥ max{m,n}, then ̃k,ω(jm,k(u)) = z̃ and ̃k,ω(jn,k(x)) = ỹ and so the
elementarity of ̃k,ω yields that jm,k(u) ∈ jn,k(x). We have then shown that
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for every z̃ Ẽj
ω ỹ there is a k ≥ n and a v ∈ jn,k(x) such that z̃ = ̃k,ω(v). By

the Axiom of Replacement, {z̃ | z̃ Ẽj
ω ỹ} is a set. �

If M and j are as in the statement of Lemma 3.3.4, then Lemmas 3.3.5,
3.3.6, and 3.2.8 imply that there is a transitive class M j

ω such that (M j
ω;∈)

is isomorphic to (M̃ j
ω; Ẽj

ω). Thus we can extend the M j
n and jm,n into the

transfinite. Our next goal is to carry this out.
First we introduce some general terminology for direct limits. A directed

relation on a set D is a transitive, reflexive relation R in D such that

(∀x ∈D)(∀y ∈D)(∃z ∈D)(xR z ∧ y R z).

A directed system of homomorphisms is something of the form

(〈Md | d ∈ D〉; 〈jd,d′ | d ∈ D ∧ d′ ∈ D ∧ dR d′〉),

where R is a directed relation on D, each Md is a class model, each jd,d′ :
Md →Md′ is a homomorphism, and

(∀d1 ∈D)(∀d2 ∈D)(∀d3 ∈D)(d1Rd2Rd3 → jd1,d3 = jd2,d3 ◦ jd1,d2).

Such a directed system of homomorphisms is a directed system of elementary
embeddings if each jd,d′ :Md ≺Md′ .

The direct limit of a directed system (〈Md | d ∈ D〉; 〈jd,d′ | d ∈ D ∧ d′ ∈
D∧dR d′〉) of homomorphisms is (M̃; 〈̃d | d ∈ D〉), where M̃ = (M̃ ; Ẽ) and
the ̃d are defined as follows. For d ∈ D letMd = (Md, Ed). For x ∈Md and
y ∈Md′ , define

〈d, x〉 ∼ 〈d′, y〉 ↔ (∃d′′)(dR d′′ ∧ d′Rd′′ ∧ jd,d′′(x) = jd′,d′′(y)).

Note that the defining condition on the right is equivalent with

(∀d′′)((dR d′′ ∧ d′Rd′′)→ jd,d′′(x) = jd′,d′′(y)).

Let [[d, x]] be the equivalence class of 〈d, x〉 with respect to the equivalence
relation ∼. We set

M̃ = {[[d, x]] | d ∈ D ∧ x ∈Md}.

For x ∈Md and y ∈Md′ , we define

[[d, x]] Ẽ [[d′, y]] ↔ (∃d′′)(dR d′′ ∧ d′Rd′′ ∧ jd,d′′(x)Ed′′ jd′,d′′(y)).

Finally, we let ̃d(x) = [[d, x]].
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Lemma 3.3.7. Let (〈Md | d ∈ D〉; 〈jd,d′ | d ∈ D ∧ d′ ∈ D ∧ dR d′〉) be a
directed system of elementary embeddings. Let (M̃; 〈̃d | d ∈ D〉) be the direct
limit of this directed system. Then ̃d : Md ≺ M̃ for all d ∈ D. For all d
and d′ in D, with dR d′,

̃d = ̃d′ ◦ jd,d′ .
Moreover M̃ is set-like if all the Md are set-like.

We omit the proof of Lemma 3.3.7. The proof of the first two assertions
is similar to the proof of Lemma 3.3.4. The proof of the last assertion is like
that of Lemma 3.3.6.

Let M be a transitive class model of ZFC and let j : M ≺ N with N
transitive and j a class in N . We define inductively (1) ξj, which will be
either an ordinal number or Ord, (2) for α < ξj, transitive class models M j

α,
and (3) for α ≤ β < ξj, embeddings jα,β : M j

α ≺ M j
β. (What we define

inductively is, of course, not ξj but rather membership in ξj, i.e. an ordinal’s
being < ξj.) Our inductive definition will guarantee that the jα,β commute:
for α ≤ β ≤ γ < ξj, jα,γ = jβ,γ ◦ jα,β.

(i) 0 < ξj and M j
0 = M .

(ii) If α < ξj then jα,α = id.

(iii) If α < ξj then α + 1 < ξj.

(iv) If α < ξj then jα,α+1 = j0,α(j) and M j
α+1 = jα,α+1(M j

α). (This latter
stipulation makes sense, as jα,α+1 is a class in M j

α.)

(v) If γ < α < ξj then jγ,α+1 = jα,α+1 ◦ jγ,α.

(vi) If α ≤ ξj and α is a limit ordinal, we define ((M̃ j
α; Ẽj

α), 〈̃β,α | β < α〉)
to be the direct limit of (〈(M j

β;∈) | β < α〉, 〈jβ,γ | β ≤ γ < α〉). If

(M̃ j
α; Ẽj

α) is not wellfounded, then α = ξj. If (M̃ j
α; Ẽj

α) is wellfounded,
then, since Lemma 3.3.7 implies that it is set-like as well, we let πjα :
(M̃ j

α; Ẽj
α) ∼= (M j

α;∈) be given by Lemma 3.2.8. We set jγ,α = πjα ◦ ̃γ,α.

Extending our notation from the case of finite α, let us set

jα = j0,α(j)

for α < ξj.

Lemma 3.3.8. ([Gaifman, 1974]) Let M be a transitive class model of ZFC
and let j : M ≺ N with N transitive and j a class in M . Then ξj ≥ Ord∩M .
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Proof. The proof is similar to that of Lemma 3.3.5. Assume the lemma is
false for j and M . In M define x to have minimal rank such that there is an
infinite sequence 〈ỹi | i ∈ ω〉 such that

. . . Ẽj
ξj
ỹ2 Ẽ

j
ξj
ỹ1 Ẽ

j
ξj
ỹ0 = ̃0,ξj(x).

Choose such a sequence and let α < ξj and u ∈M j
α be such that ỹ1 = ̃α,ξj(u).

By the elementarity of j0,α, we have that j0,α(x) is, in M j
α, a w of minimal

rank such that there is an infinite sequence 〈z̃i | i ∈ ω〉 such that

. . . Ẽjα
ξjα
z̃2 Ẽ

jα
ξjα
z̃1 Ẽ

jα
ξjα
z̃0 = (̃α)0,ξjα

(w).

But, since (Mβ)jα = M j
α+β and (jα)β,γ = jα+β,α+γ for all β ≤ γ < ξjα , we get

a contradiction as in the proof of Lemma 3.3.5: u as well as j0,α(x) has this
property, and u ∈ j0,α(x) so rank (u) < rank(j0,α(x)). �

Let M be a transitive class model of ZFC and let U ∈ M be in M a
countably complete ultrafilter on A ∈M . For each α < ξiMU , so in particular
for each α ≤ Ord ∩M , we let

Ultα(M ;U) = M
iMU
α .

Lemma 3.3.9. Let M and U be as in the preceding paragraph and let i = iMU .
For each α < ξi, Uα = i0,α(U) is, in Ultα(M ;U), a countably complete
ultrafilter on i0,α(A). Moreover each Ultα+1(M ;U) = Ult(Ultα(M ;U);Uα)

and each iα = i
Ultα(M ;U)
Uα .

Lemma 3.3.10. Let M be a transitive class model of ZFC. Let κ be a cardi-
nal of M and let U ∈M be such that M |= “U is a uniform normal ultrafilter
on κ.” Let i = iMU . Let β be a limit ordinal such that β < ξi. Then the set
{i0,γ(κ) | γ < β} is unbounded in i0,β(κ).

Proof. Let η < i0,β(κ). Because η belongs to Ultβ(M ;U), there must be
ordinals γ < β and ν such that η = iγ,β(ν). If ν ≥ i0,γ(κ), then η ≥
iγ,β(i0,γ(κ)) = i0,β(κ). Thus ν < i0,γ(κ). But crit (iγ,β) = i0,γ(κ), and so
η = ν and thus η < i0,γ(κ). �

Lemma 3.3.11. ([Kunen, 1968]) Let M be a transitive class model of ZFC.
Let κ be a cardinal of M and let U ∈ M be such that M |= “U is a uniform
normal ultrafilter on κ.” Let i = iMU . Let α be a limit ordinal with α < ξi.
Let X ⊆ i0,α(κ) with X ∈ Ultα(M ;U). Then

X ∈ i0,α(U) ↔ (∃β < α)(∀γ)(β ≤ γ < α→ i0,γ(κ) ∈ X).
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Proof. We begin by, in effect, doing Exercise 3.2.3 and half of Exercise 3.2.2.
Let π = πMU and, for f : κ→M with f ∈M , let [[f ]] = [[f ]]MU .

First we show that π([[id]]) = κ. Since π([[cη]]) < π([[id]]) for every η < κ
by the uniformity of U in M , we know that κ ≤ π([[id]]). If π([[f ]]) < π([[id]]),
then the normality of U in M implies that [[f ]] = [[cη]] for some η < κ. Thus
π([[id]]) ≤ κ.

Next we show that

U = {Y ⊆ κ | Y ∈M ∧ κ ∈ i(Y )}.

This is because, for Y ⊆ κ with Y ∈M ,

Y ∈ U ↔ {η | id(η) ∈ Y } ∈ U ↔ π([[id]]) ∈ i(Y )↔ κ ∈ i(Y ).

Since α is a limit ordinal, there exist β < α and Y ∈ Ultβ(M ;U) such
that X = iβ,α(Y ). By the elementarity of i0,β, we have that

Y ∈ i0,β(U)↔ i0,β(κ) ∈ iβ(Y ).

Let γ be such that β ≤ γ < α. Then X ∈ i0,α(U)↔ Y ∈ i0,β(U)↔ i0,β(κ) ∈
iβ(Y ) ↔ i0,γ(κ) ∈ iβ,γ+1(Y ) ↔ i0,γ(κ) ∈ iβ,α(Y ), where the last equivalence
holds because crit(iγ+1,α) > i0,γ(κ). �

Lemma 3.3.12. ([Kunen, 1968]) Let M be a transitive class model of ZFC.
Let κ be a cardinal of M and let U ∈ M be such that M |= “U is a uniform
normal ultrafilter on κ.” Let i = iMU . Let α be a limit ordinal such that α < ξi
and cf(α) > ω.

Then i0,α(U) is the restriction to Ultα(M ;U) of the closed, unbounded
filter on i0,α(κ); i.e., if X ∈ Ultα(M ;U) and X ⊆ i0,α(κ), then X ∈ i0,α(U)
if and only if X has a subset that is closed and unbounded in i0,α(κ).

Proof. By the preceding lemma, it suffices to prove that {i0,γ(κ) | γ < α} is
closed and unbounded in i0,α(κ). But this follows easily from Lemma 3.3.10.

�

Lemma 3.3.13. Let κ be a cardinal number and let U be a uniform normal
ultrafilter on κ. Let i = iU .

(a) For all ordinals η and α with α > 0, |i0,α(η)| ≤ max{|η|κ, |α|}.
(b) For every ordinal α ≥ 2κ, |i0,α(κ)| = |α|.
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(c) For every cardinal δ > 2κ, i0,δ(κ) = δ.

(d) For every cardinal δ > 2κ such that cf(δ) > κ and for every ordinal
α < δ, i0,α(δ) = δ.

Proof. We prove (a) by induction on α, simultaneously for all η.
If η > 0 and [[f ]]U < [[cη]]U , then there is a g : κ → η such that g ∼U f .

This fact implies (a) for the case α = 1.
Assume that (a) holds for α. For any η, we have that

|i0,α+1(η)| ≤ |i0,α(κ)i0,α(η)|Ultα(V ;U)

= i0,α(|η|κ)
≤ max{(|η|κ)κ, |α|}
= max{|η|κ, |α|}.

Here the first inequality is by the case α = 1 and the elementarity of i0,α.
Finally assume that (a) holds for all α < λ, where λ is a limit ordinal.

For any η,

|i0,λ(η)| = supα<λ|i0,α(η)|
≤ supα<λmax{|η|κ, |α|}
= max{|η|κ, |λ|}.

(b) follows easily from (a).
For (c), let δ be a cardinal larger than 2κ. Part (b) of the lemma implies

that i0,γ(κ) < δ for all γ < δ. Lemma 3.3.10 then gives that i0,δ(κ) = δ.
For (d), let δ > 2κ be a cardinal with cf(δ) > κ. Let α < δ be such

that (d) fails for δ and α but holds for δ and all β < α. Obviously α > 0.
Suppose that α = 1. Let f be such that δ ≤ πU([[f ]]U) < i(δ). We

may assume that f : κ → δ. Since cf(δ) > κ, there is an η < δ such that
f : κ → η. But then πU([[f ]]U) < i(η). But this contradicts part (a), which
implies that i(η) < δ.

The fact that α 6= 1 implies that, for any β, iβ(i0,β(δ)) = i0,β(δ). This
means that α cannot be a successor ordinal β + 1.

Thus α must be a limit ordinal. Let ν be such that δ ≤ ν < i0,α(δ). Let
γ < α and ρ be such that ν = iγ,α(ρ). Then ρ < i0,γ(δ) = δ. Hence ρ+1 < δ.
But ν < iγ,α(ρ+ 1) ≤ i0,α(ρ+ 1), and this contradicts part (a), which implies
that i0,α(η) < δ for every η < δ. �
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Lemma 3.3.14. Let κ and κ′ be a cardinal numbers with κ < κ′. Let U and
U ′ be uniform normal ultrafilters on κ and κ′ respectively. Let i = iU . For
any α < κ′, i0,α(U ′) = U ′ ∩ Ultα(V ;U).

Proof. By part (d) of Lemma 3.3.13, i0,α(κ′) = κ′ for every α < κ′. It also
follows easily from part (d) of Lemma 3.3.13 that, for all α < κ′, the set Wα

of all η < κ′ such that η is a fixed point of i0,α belongs to U ′.
We prove the lemma by induction on α ≥ 1.
First consider the case α = 1. Let X = πU([[f ]]U) belong to i(U ′). Then

Z ∈ U , where
Z = {γ < κ | f(γ) ∈ U ′}.

Let Y =
⋂
γ∈Z f(γ). The κ′-completeness of U ′ implies that Y ∈ U ′. Since

{γ < κ | Y ⊆ f(γ)} belongs to U , it follows by the  Loś Theorem that
i(Y ) ⊆ X. Now Y ∩ W1 belongs to U ′ and is a subset of i(Y ), and so
i(Y ) ∈ U ′. Therefore X ∈ U ′.

Assume that the lemma holds for α. By the elementarity of i0,α and the
case α = 1 of the lemma, we have that i0,α+1(U) = i0,α(U) ∩ Ultα+1(V ;U).
This fact and our induction hypothesis imply that the lemma holds for α+1.

Let λ < κ′ be a limit ordinal and assume that the lemma holds for all
α < λ. Let X ∈ i0,λ(U ′). For some α < λ and some Y ∈ Ultα(V ;U),
X = iα,λ(Y ). By the elementarity of iα,λ and our induction hypothesis,
Y ∈ U ′. Hence Y ∩Wλ ∈ U ′. Since X ⊆ Y ∩Wλ, X ∈ U ′. �

Exercise 3.3.1. Let j : M ≺ N with N transitive and j a class in M .
(a) Prove that j ◦ j = j1 ◦ j.
(b) Let x ∈ N . Prove that j(x) = j1(x) if and only if x ∈ range(j).
(c) Prove that jn+1(α) ≤ jn(α) for all n ∈ ω and all ordinals α ∈M .
Hint. For (c), let α be an ordinal of M and let β be the least ordinal γ

such that j(γ) > α. By the elementarity of j, j(β) is the least ordinal γ such
that j1(γ) > j(α).

Exercise 3.3.2. Let U be a uniform normal ultrafilter on a cardinal κ. Prove
that Ultω(V ;U) is not countably closed: Prove that there is an f : ω →
Ultω(V ;U) that does not belong to Ultω(V ;U).

Hint. Prove that 〈(iU)0,n(κ) | n ∈ ω〉 /∈ Ultω(V ;U).

Exercise 3.3.3. Let U be a uniform normal ultrafilter on a cardinal κ. Show
that iU [n] = (iU)0,n for all n ∈ ω.

Exercise 3.3.4. Prove that part (a) of Lemma 3.3.13 remains true for η ≥ κ
if “≤” is replaced by “=” in its conclusion.
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3.4 Sharps

In order to prove Π1
1 determinacy from a hypothesis that is actually equiva-

lent with Π1
1 determinacy, we need to introduce the notion of what are called

sharps. The existence of these objects follows from measurable cardinals,
but it is actually weaker. The simplest example of a sharp, 0#, is a set of
natural numbers that codes up the entire universe L of constructible sets. To
introduce sharps, we must then first introduce L. We carry out this latter
task in a rather sketchy fashion, letting the reader consult other works, such
as [Kunen, 1980], for a complete treatement.

Gödel’s constructible universe L and hierarchy of constructible sets are
defined as follows:

(1) L0 = ∅.
(2) Lα+1 is the collection of all subsets of Lα that are first order definable

over Lα from elements of Lα. In other words, a set x belongs to Lα+1 if
and only if there is a formula ϕ(v0, . . . , vn) of the language of set theory
and there are elements y1, . . . , yn of Lα such that

x = {y0 ∈ Lα | (Lα;∈) |= ϕ[y0, . . . , yn]}.

(3) If α is a limit ordinal, then Lα =
⋃
β<α Lβ.

(4) L =
⋃
α∈Ord Lα.

We now give the basic facts about L. Some of the proofs we outline and
some of them we omit altogether. See [Kunen, 1980] for details.

Theorem 3.4.1. (Gödel [1939]) L is a transitive class model of ZFC.

Proof. We briefly sketch the proof. If x ∈ Lα and x ⊆ Lα, the formula
v0 ∈ v1 witnesses that x ∈ Lα+1. If Lα is transitive, it follows that Lα ⊆ Lα+1

and that Lα+1 is transitive. By induction one easily shows that Lα ⊆ Lβ
whenever α < β and that each Lα is transitive. Thus L is transitive. The
Axiom of Foundation holds in any transitive class. One readily constructs
formulas to show that, for limit ordinals α, Lα is closed under pairing and
union. Since the formulas expressing v0 = {v1, v2} and v0 =

⋃
v1 are absolute

for L—and indeed for any transitive class—it follows that the Axioms of
Pairing and Union hold in L. (A formula ϕ(v1, . . . , vn) is absolute for a class
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N if whenever a1, . . . , an are elements of N , then N |= ϕ[a1, . . . , an] if and
only if V |= ϕ[a1, . . . , an].) By induction, using the formula “v0 is an ordinal
number,” one can show that each ordinal α belongs to Lα+1. Hence ω belongs
to Lω+1 and, by absoluteness, witnesses that L is a model of the Axiom of
Infinity. If x ∈ L, then P(x) ∩ L is, by Replacement in V , a subset of some
Lα and so a member of some Lα+1. Thus, for each x ∈ L, the set P(x) ∩ L
witnesses that the Power Set Axiom holds in L for x. If u ∈ L and

(∀x ∈ u)(∃!y ∈ L)L |= ϕ(x, y),

then Replacement in V gives an α such that

(∀x ∈ u)(∃!y ∈ Lα)L |= ϕ(x, y).

Thus Replacement holds in L if Comprehension does. By Replacement in V ,
there are for each formula ϕ(v1, . . . , vn) arbitrarily large ordinals α such that

(∀a1 ∈ Lα) · · · (∀an ∈ Lα)(Lα |= ϕ[a1, . . . , an]↔ L |= ϕ[a1, . . . , an]).

(Such an instance of the schema called Reflection for L is proved by a kind
of Löwenheim–Skolem argument applied to the finitely many subformulas of
ϕ.) If u ∈ L and we want to verify that (∃v)(∀x)(x ∈ v ↔ (x ∈ u ∧ L |=
ϕ[x, u, y1, . . . , yn])), then we apply Reflection to ϕ to get an α with u ∈ Lα
and we deduce that the desired v belongs to Lα+1. The Axiom of Choice
holds in L because there is a wellordering <L of L definable in L: First order
by rankL(x) = µα(x ∈ Lα+1); for rankL(x) = rankL(y), order inductively by
the formulas and parameters from LrankL(x) witnessing x and y in LrankL(x)+1.
(We assume in the sequel that some such specific definition of <L has been
fixed.) �

The Axiom of Constructibility asserts that V = L.

Theorem 3.4.2. ([Gödel, 1939]) The Axiom of Constructibility holds in L.

Theorem 3.4.2 is proved by showing that the formula v ∈ L is absolute
for L.

Lemma 3.4.3. ([Gödel, 1939]) For each infinite ordinal α, the cardinal num-
ber of Lα is |α|.
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Proof. Since each α ∈ Lα+1, we have that |Lα| ≥ |α| for all infinite α.
We prove by transfinite induction that |Lα| ≤ |α| for all infinite α. It

is easy to see that Ln+1 = P(Ln) for n ∈ ω. This implies that each Ln is
finite and so that |Lω| = ℵ0. Assume that α is infinite and that |Lα| ≤ |α|.
Each member of Lα+1 is determined by a formula and finitely many elements
of Lα. Thus |Lα+1| ≤ max{ℵ0, |Lα|} = |Lα| ≤ |α|. Now assume that α is
a limit ordinal and that |Lβ| ≤ |β| for each infinite β < α. Then |Lα| =
|
⋃
β<α Lβ| ≤

∑
β<α |β| ≤

∑
β<α |α| = |α| · |α| = |α|. �

Theorem 3.4.4. ([Gödel, 1939]) The Generalized Continuum Hypothesis holds
in L.

The proof, which we omit, proceeds by showing that

(∀x ∈ Lα)P(x) ∩ L ⊆ Lα+ ,

where as usual α+ is the least cardinal greater than α. The theorem then
follows by Lemma 3.4.3.

Lemma 3.4.5. (a) ZFC− + V = L holds in Lγ for every uncountable regular
cardinal γ, where ZFC− is ZFC without the Power Set Axiom.

(b) If N is a transitive class model of ZFC− + V = L, then either N = L
or N = Lα for some limit ordinal α.

Part (a) of Lemma 3.4.5 is proved much as are Theorem 3.4.1 and Theo-
rem 3.4.2. Part (b) is proved by showing that V = L is absolute for transitive
models of ZFC−.

For each limit α, the formula defining the wellordering <L of L described
in the proof of Theorem 3.4.1 is absolute for Lα. The proof that the formula
in question defines a wellordering of L goes through in ZFC−.

The following striking result of Dana Scott was the inspiration for all
subsequent work about the impact of large cardinals on L.

Theorem 3.4.6. ([Scott, 1961]) If a measurable cardinal exists, then V 6= L.

Proof. Let κ be the least measurable cardinal. By Theorem 3.2.12, let
j : V ≺ M with M transitive and crit(j) = κ. By part (b) of Lemma 3.4.5,
j(L) = L. If V = L then M = j(L) = L = V and so κ is the least measurable
cardinal in M . But j(κ) > κ, and the least measurable cardinal in M is j(κ).
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�

We now deduce some much stronger consequences of the existence of a
measurable cardinal for the relation of L to V . These consequences that will
give us the best possible hypotheses for the determinacy result of Chapter 4
and for some of the results of Chapter 5.

A class U is a class of indiscernibles for a transitive class M if

(a) U ⊆ Ord ∩M ;

(b) if α1 < · · · < αn and β1 < · · · < βn are elements of U and ϕ(v1, . . . , vn)
is a formula of the language of set theory, then

M |= ϕ[α1, . . . , αn] ↔ M |= ϕ[β1, . . . , βn].

Recall that a subset X of a limit ordinal λ is closed if X is closed in
the order topology. Equivalently, X is closed if whenever α < λ and X is
unbounded in α then α ∈ X.

Fix some recursive bijection ϕ 7→ nϕ from the set Φ of formulas of the
language of set theory whose free variables are among v1, v2, . . . to the set
ω. If there is a closed unbounded subset C of ω1 such that C is a set of
indiscernibles for Lω1 , then 0# is

{nϕ(v1,...,viϕ ) | Lω1 |= ϕ[α1, . . . , αiϕ ]}.

Here iϕ is the greatest i such that vi is free in ϕ if ϕ is not a sentence and
0 otherwise, and α1 < · · · < αn are members of C. Since the intersection of
two closed unbounded sets is closed and unbounded, there is no dependence
on the choice of C. If such a C does not exist, then there is no 0#.

Remark. “0#” is pronounced as “0 sharp.” It would perhaps then be
better if it were written “0],” and it sometimes is. The notation with #
has its origin in the fundamental [Solovay, 1967]. 0# was introduced—and
most of the results of this section were proved—in Jack Silver’s dissertation,
[Silver, 1966], published in abridged form as [Silver, 1971].

Lemma 3.4.7. ([Rowbottom, 1964]) If κ is a measurable cardinal and U
is a uniform normal ultrafilter on κ, then there is subset X of κ such that
X ∈ U and such that X is a set of indiscernibles for Lκ.
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Proof. Let κ be a measurable cardinal and let U be a uniform normal
ultrafilter on κ. For n ∈ ω and q ∈ [κ]n, let (q)1 < · · · < (q)n be the elements
of q. For each formula ϕ ∈ Φ, let n be minimal such that ϕ is ϕ(v1, . . . , vn),
i.e. such that the free variables of ϕ are among v1, . . . , vn. Let

Yϕ = {q ∈ [κ]n | Lκ |= ϕ[(q)1, . . . , (q)n]}.

Let Zϕ = Yϕ if Yϕ ∈ U [n] and let Zϕ = [κ]n \ Yϕ otherwise. (The Rowbottom
ultrafilter U [n] is defined on page 136.) By the definition of U [n], let Xϕ ⊆ κ
be such that Xϕ ∈ U and [Xϕ]n ⊆ Zϕ. Let X =

⋂
ϕXϕ. Clearly X ∈ U and

X is a set of indiscernibles for Lκ. �

If ϕ(v0, v1, . . . , vn) is a formula of the language of set theory, then let us
define fϕ : nL→ L by

fϕ(x1, . . . , xn) =

{
µx0 L |= ϕ[x0, x1, . . . , xn] if (∃x0)L |= ϕ[x0, x1, . . . , xn];
∅ otherwise.

Here the µ-operator is being applied to the ordering <L. We also define
fαϕ : nLα → Lα by replacing “L” by “Lα” in the definition of fϕ.

For α a limit ordinal and X ⊆ Lα, let H(Lα, X) be the closure of X under
all the functions fαϕ . Note that

H(Lα, X) =
⋃

ϕ(v0,...vn)

{fαϕ (x1, . . . , xn) | 〈x1, . . . , xn〉 ∈ nX}.

This is because compositions of the fαϕ are also among the fαϕ . Note also that
H(Lα, X) ≺ Lα, i.e. that id : H(Lα, X) ≺ Lα. More generally, H(Lα, X) ≺
H(Lα, Y ) when X ⊆ Y . Any class model (M ;E) of ZFC− + V = L has its
own internally defined version of the fϕ. Let us call the closure of X ⊆ M
under these functions H((M ;E), X). (Note that when M is a proper class,
e.g. when M = L, then we are going beyond the language of ZFC in making
this definition.)

If (M ;E) is a class model and X ⊆ M , let us say that X generates
(M ;E) if for every a ∈ M there are n ∈ ω, f : nM → M and x1, . . . , xn
belonging to X such that f is definable (without parameters) in (M ;E) and
a = f(x1, . . . , xn). This is equivalent to saying the closure of X under the
definable functions is all of M . If (M ;E) is a class model of ZFC− + V = L
and X ⊆ M , then it is easy to see that X generates (M ;E) if and only if
H((M ;E), X) = M . If α is a limit ordinal and X ⊆ Lα, then X generates
Lα (i.e. X generates (Lα;∈)) just in case H(Lα, X) = Lα.
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Theorem 3.4.8. ([Silver, 1966]) The following are equivalent:

(i) 0# exists.

(ii) There is an uncountable regular cardinal γ such that there is an
unbounded subset of γ that is a set of indiscernibles for Lγ.

(iii) There is a closed unbounded proper class C such that C is a class
of indiscernibles for L that generates L and such that, for every un-
countable cardinal η, H(L,C ∩ η) = Lη.

Proof. Clearly (i) implies (ii) and (iii) implies (i). We need then only show
that (ii) implies (iii). Let γ be an uncountable regular cardinal and let X ⊆ γ
be unbounded in γ and a set of indiscernibles for Lγ. Since γ is regular, X
has order type γ. Let α 7→ xα be the order preserving bijection between γ
and X.

We may assume that X has been chosen with the minimal possible value
of xω, i.e. that, for any unbounded subset X ′ of γ such that X ′ is a set of
indiscernibles for Lγ, the ωth element of X ′ is at least as large as xω.

We next show that we can replace X with a Y that has, in addition to
the properties of X, the additional property of generating Lγ.

By Lemma 3.2.4, let
π : H(Lγ, X) ∼= N,

with N transitive. By part (a) of Lemma 3.4.5, N |= ZFC− + V = L. By
part (b) of the same lemma, N = Lα for some limit ordinal α. Since π(β) ≤ β
for each ordinal β ∈ H(Lγ, X), we must have α ≤ γ. But |X| = γ, so we get
that α = γ. Let

Y = {π(x) | x ∈ X}.
Clearly Y is unbounded in γ. Since π : H(Lγ, X) ∼= Lγ and H(Lγ, X) ≺ Lγ,
we get that Y is a set of indiscernibles for Lγ. Let α 7→ yα be the order
preserving bijection between γ and Y . We have then that

(a) Y is an unbounded subset of γ;

(b) Y is a set of indiscernibles for Lγ;

(c) Y has minimal ωth element among sets with properties (a) and (b);

(d) Y generates Lγ.

.
We next prove some useful facts about Y and the fγϕ .
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(1) rankL(fγϕ(y1, . . . , yn)) < yn+1.

(2) If rankL(fγϕ(y1, . . . , yj, yj+1, . . . , yj+m)) < yj+1, then

fγϕ(y1, . . . , yj, yj+1, . . . , yj+m) = fγϕ(y1, . . . , yj, yα1 , . . . , yαm)

for any α1, . . . , αm such that j < α1 < · · · < αm < γ.

If (1) fails, then indiscernibility gives that rankL(fγϕ(y1, . . . , yn)) ≥ yα for
every α < γ. Hence fγϕ(y1, . . . , yn) /∈ Lγ.

Suppose that the hypothesis of (2) holds and that the conclusion fails.
Thus we have j < α1 < · · · < αm < γ and

yj+1 > fγϕ(y1, . . . , yj, yj+1, . . . , yj+m) 6= fγϕ(y1, . . . , yj, yα1 , . . . , yαm).

Let αm < β1 < · · · < βm. If

fγϕ(y1, . . . , yj, yα1 , . . . , yαm) = fγϕ(y1, . . . , yj, yβ1 , . . . , yβm),

then indiscernibility gives the contradiction that

fγϕ(y1, . . . , yj, yj+1, . . . , yj+m) = fγϕ(y1, . . . , yj, yβ1 , . . . , yβm).

We have then shown that for any α1 < · · · < αm and β1 < · · · < βm such
that j < α1, αm < β1, and βm < γ,

fγϕ(y1, . . . , yj, yα1 , . . . , yαm) 6= fγϕ(y1, . . . , yj, yβ1 , . . . , yβm).

By indiscernibility, we have that one of the following holds for all such
α1, . . . , αm and β1, . . . , βm:

fγϕ(y1, . . . , yj, yα1 , . . . , yαm) <L fγϕ(y1, . . . , yj, yβ1 , . . . , yβm)

fγϕ(y1, . . . , yj, yα1 , . . . , yαm) >L fγϕ(y1, . . . , yj, yβ1 , . . . , yβm)

Let αρ,k = j + mρ + k for ρ < γ and 0 ≤ k < m. If it is the second
inequality that holds, then 〈fγϕ(y1, . . . , yj, yαn,0 , . . . , yαn,m−1) | n ∈ ω〉 is an
infinite descending sequence with respect to the wellordering <L. Thus it is
the first inequality that holds. By indiscernibility and the fact that z <L z

′

implies rankL(z) ≤ rankL(z′), we get that one of the following holds for all
any α1 < · · · < αm < β1 < · · · < βm such that j < α1 and βm < γ:

rankL(fγϕ(y1, . . . , yj, yα1 , . . . , yαm)) = rankL(fγϕ(y1, . . . , yj, yβ1 , . . . , yβm))
rankL(fγϕ(y1, . . . , yj, yα1 , . . . , yαm)) < rankL(fγϕ(y1, . . . , yj, yβ1 , . . . , yβm))
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If it is the equation that holds, then there is an η < γ such that

{fγϕ(y1, . . . , yj, yαρ,0 , . . . , yαρ,m−1) | ρ < γ} ⊆ Lη.

This is impossible, since |Lη| < γ. Hence it is the inequality that holds. But
then

{rankL(fγϕ(y1, . . . , yj, yαρ,0 , . . . , yαρ,m−1)) | ρ < γ}

is readily seen to be an unbounded subset of γ that is a set of indiscernibles
for Lγ. Moreover the ωth element of this set is

fγϕ(y1, . . . , yj, yω, . . . , yω+m−1) <L yω.

This contradicts property (c) of Y .
We use Y to generate a proper class model (M ;E) as follows: Suppose

that ϕ(v0, . . . , vn) and ψ(v0, . . . , vm) are formulas and α1 < · · · < αn and
β1 < · · · < βm are ordinal numbers. Let

q : {α1, . . . , αn, β1, . . . , βm} → |{α1, . . . , αn, β1, . . . , βm}|

be the order preserving bijection. Set

〈ϕ, α1, . . . , αn〉 ∼ 〈ψ, β1, . . . , βm〉 ↔
fγϕ(yq(α1), . . . , yq(αn)) = fγψ(yq(β1), . . . , yq(βm)).

Let [[ϕ, α1, . . . , αn]] be the equivalence class of 〈ϕ, α1, . . . , αn〉 with respect to
the equivalence relation ∼, fixed up à la Scott to be a set. Let M be the
class of all the [[ϕ, α1, . . . , αn]]. Define, for q as above,

[[ϕ, α1, . . . , αn]]E [[ψ, β1, . . . , βm]]↔
fγϕ(yq(α1), . . . , yq(αn)) ∈ fγψ(yq(β1), . . . , yq(βm)).

Suppose for a contradiction that (M ;E) is not wellfounded. Then there
exists a sequence 〈ai | i ∈ ω〉 such that each ai+1E ai. Let ai = [[ϕi, δi,1, . . . δi,ni ]].
Let g be the order preserving bijection between a countable ordinal and
{δi,j | i ∈ ω ∧ j ≤ ni}. For each i, let ei = fγϕi(yg−1(δi,1), . . . , yg−1(δi,ni )

). We
have the contradiction that each ei+1 ∈ ei.

For a set A of ordinals, let ot(A) be the order type of A, let α 7→ aα be
the order isomorphism between ot(A) and A, and let

MA = {[[ϕ, aα1 , . . . , aαn ]] | ϕ a formula ∧ α1 < · · · < αn < ot(A)}.
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Suppose that ot(A) ≤ γ. It is clear from the definition of (M ;E) that
the correspondence given by

fγϕ(yα1 , . . . , yαn) 7→ [[ϕ, aα1 , . . . , aαn ]]

gives an isomorphism

hA : (H(Lγ, {yα | α < ot(A)});∈) ∼= (MA;E).

For any ordinal δ, let zδ = [[v0 = v1, δ]]. Note that hA(yα) = zaα for each
α < γ.

If A ⊆ B ⊆ Ord and ot(B) ≤ γ, then the fact that

(H(Lγ, {yα | α < ot(A)});∈) ≺ (H(Lγ, {yα | α < ot(B)});∈)

implies that
(MA;E) ≺ (MB;E).

Thus, in particular,

〈(MA;E) | A ⊆ Ord ∧ A finite 〉,

together with the inclusions, forms a directed system of elementary embed-
dings. It follows from Lemma 3.3.7 that, for each finite A,

(MA;E) ≺ (
⋃

A finite

MA;E) = (M ;E).

Hence, for every finite A,

hA : (H(Lγ, {yα | α < ot(A)});∈) ≺ (M ;E).

We use properties (1) and (2) of Y to show that (M ;E) is set-like. Let
b = [[ϕ, δ1, . . . , δn]] ∈ M . Let A = {δ1, . . . , δn, δn + 1}. By property (1) of
Y we have that (M ;E) |= rankL(hA(fγϕ(yδ1 , . . . , yδn))) < hA(yδn+1), i.e. that
(M ;E) |= rankL(b) < zδn+1. Suppose that aE b. Then (M ;E) |= rankL(a) <
zδn+1. Let a = [[ψ, ρ1, . . . , ρm]]. We may assume that there is a j with 1 ≤
j ≤ m such that ρj+1 = δn+1. Using hB with B = {ρ1, . . . , ρm, ξj+1, . . . , ξm}
for arbitrary ordinals ξj+1, . . . , ξm and using property (2) of Y , we get that
a = [[ψ, ρ1, . . . , ρj, ξj+1, . . . , ξm]] for any ξj+1 < · · · < ξm with ρj < ξj+1. Thus
we have shown that each a such that aE b is determined by numbers j and
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m, a formula ψ, and a j-tuple of ordinals smaller than δn + 1. The collection
of such a thus forms a set.

By Lemma 3.2.8, (M ;E) is isomorphic to (N ;∈) for some transitive class
N . Since the zδ are distinct elements of M , we have that M is a proper class
and so that N also is a proper class. By part (b) of Lemma 3.4.5, N = L. Let
π : (M ;E) ∼= (L;∈). For ordinals α let cα = π(zα). Let C = {cα | α ∈ Ord}.

For each finite set A = {a1, . . . , an} of ordinals with a1 < · · · < an, let
h∗A = π ◦ hA. We have that

h∗A : H(Lγ, {y1, . . . , yn}) ≺ L.

Moreover h∗A(yi) = cai for each i. Using such functions h∗A, it is easy to see
that C is a class of indiscernibles for L, that [[ϕ, α1, . . . , αn]] = fϕ(cα1 , . . . , cαn)—
and so that C generates L—and that C has properties (1) and (2), i.e. that

(1) rankL(fγϕ(c1, . . . , cn)) < cn+1.

(2) If rankL(fγϕ(c1, . . . , cj, cj+1, . . . , cj+m)) < cj+1, then

fγϕ(c1, . . . , cj, cj+1, . . . , cj+m) = fγϕ(c1, . . . , cj, cα1 , . . . , cαm)

for any α1, . . . , αm such that j < α1 < · · · < αm.

We know that |H(L, {cβ | β < η})| = |η| for each limit ordinal η. By prop-
erties (1) and (2), we get that H(L, {cβ | β < η}) = H(L,C) ∩ Lsupβ<ηcβ =
Lsupβ<ηcβ for all limit ordinals η. If η is an uncountable cardinal, these facts
imply that

Lη = H(L, {cβ | β < η}) = H(L,C ∩ η).

It remains only to show that C is closed. Suppose that α is a limit ordinal
and that ξ < cα (so that ξ ∈ Lcα). Let

ξ = fϕ(cβ1 , . . . , cβj , cα, cδ1 , . . . , cδj+m),

where β1 < · · · < βj < α < δ1 < . . . < δj+m. By property (2) of C,
ξ ∈ Lcβj+1

, i.e. ξ < cβj+1. This shows that the cβ, β < α, are cofinal in cα.
�

Corollary 3.4.9. If a measurable cardinal exists, then 0# exists.

Proof. By Lemma 3.2.15 and Lemma 3.4.7, clause (ii) of the theorem holds
for any measurable cardinal γ. �
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Corollary 3.4.10. Assume that 0# exists. If κ and λ are uncountable car-
dinals with κ < λ, then Lκ ≺ Lλ ≺ L.

Proof. This follows directly from clause (iii) of the theorem. �

It is easy to see that the class C of clause (iii) of Theorem 3.4.8 is unique.
Indeed, the whole structure of H(L,C) is determined directly by 0#, which
gives us the relations among the values fω1

ϕ (cα1 , . . . , cαn) and so, since Lω1 ≺
L, among the values fϕ(cα1 , . . . , cαn). We will refer to C as the Silver class
of indiscernibles for L and to the members of C as the Silver indiscernibles
for L. Note that the uncountable cardinals are among the indiscernibles for
L.

The concepts and theorems of this section can easily be relativized.
Let a be any set. Let the language L be the result of adding to the

language of set theory a one-place predicate symbol P . We can expand any
transitive class model (M ;∈) to a class model (M ;∈, a) for L by interpreting
P by the property of belonging to a. We define:

(1) L0[a] = ∅.
(2) Lα+1[a] is the collection of all subsets x of Lα[a] such that x is first

order definable over (Lα;∈, a) from elements of Lα[a].

(3) L[a] =
⋃
α∈Ord Lα[a].

In general, a need not belong to L[a]. But it is always the case that
a ∩ L[a] ∈ L[a]. Moreover L[a] = L[a ∩ L[a]]. If a ⊆ Vω or a is a set of
ordinals, then a ∈ L[a]. From large cardinal hypotheses it follows that ωω
does not belong to L[ωω]; this will be shown in Chapter 9.

We omit the proofs of the following results. These proofs are essentially
the same as those of the corresponding unrelativized results.

Theorem 3.4.11. For every a, L[a] is a transitive class model of ZFC.

Theorem 3.4.12. For every a, L[a] |= V = L[a ∩ L[a]]; thus L[a] |= V =
L[a] if a ∈ L[a]. Furthermore, if b ∩ L[a] = a, then L[a] = L[b].

Lemma 3.4.13. For each a and each infinite ordinal α, the cardinal number
of Lα[a] is |α|.
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Theorem 3.4.14. If ν is an ordinal and a ⊆ ν, then for all cardinals κ of
L[a] such that ν ≤ κ, L[a] |= 2κ = κ+. For each a ⊆ Vω, the Generalized
Continuum Hypothesis holds in L[a].

Lemma 3.4.15. Let a be any set.
(a) ZFC− + V = L[a∩L[a]] holds in Lγ[a] for every uncountable regular

cardinal γ such that a ∩ L[a] ∈ Lγ[a].
(b) If a ∈ N and N is a transitive class model of ZFC− + V = L[a], then

either N = L[a] or N = Lα[a] for some limit ordinal α.

Theorem 3.4.16. If κ is a measurable cardinal and a ⊆ Vκ, then V 6= L[a].

For any set a, let tclos(a) be the smallest transitive set of which a is a
member. In the special case when a is a set of ordinals, tclos(a) = {a} ∪ β,
where β is the least ordinal of which a is a subset.

If M is a transitive class and if a ∈ M , then a class U is a class of
indiscernibles for M,a if

(a) U ⊆ Ord ∩M ;

(b) if b1, . . . , bm are elments of tclos(a), if α1 < · · · < αn and β1 < · · · < βn
are elements of U , and if ϕ(v1, . . . , vn, vn+1, . . . , vm+n) is a formula of
the language of set theory, then

M |= ϕ[b1, . . . , bm, α1, . . . , αn] ↔ M |= ϕ[b1, . . . , bm, β1, . . . , βn].

Let ϕ 7→ nϕ be as in the definition of 0#. Let a be a set such that
a ∈ L[a]. Let ν be the least ordinal such that a ∈ Lν+ [a]. If there is a closed,
unbounded subset C of ν+ such that C is a set of indiscernibles for Lν+ [a], a,
then a# is the set of all

〈nϕ(v1,...,vm+n), 〈b1, . . . , bm〉〉

such that

(∀i)(1 ≤ i ≤ m→ bi ∈ tclos(a)) ∧ Lν+ [a] |= ϕ[b1, . . . , bm, α1, . . . , αn]},

where α1 < · · · < αn are members of C. If there is no such C, then there is
no a#.

Remarks:
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(a) If a ⊆ Vω, then all members of tclos(a) other than a itself are definable
in Lω1 [a]. Thus a# is determined by {n ∈ ω | 〈n, 〈a〉〉 ∈ a#}, and so a# is
often defined to be this subset of ω.

(b) We have not yet defined a# or even what it means for a# to exist
when a /∈ L[a]. We will do so later in this section.

Lemma 3.4.17. Let κ be a measurable cardinal, let U be a uniform normal
ultrafilter on κ, and let a ∈ Vκ with a ∈ L[a]. Then a ∈ Lκ[a] and there is
subset X of κ such that X ∈ U and such that X is a set of indiscernibles for
Lκ[a], a.

For any set a, L[a] has a wellordering internally definable from a ∩
L[a]. Using the definition of this ordering we can define H(L[a], X) and
H(Lα[a], X) for sets X such that a ∩ L[a] ∈ X, and we will have, e.g.,
H(Lα[a], X) ≺ Lα[a].

Theorem 3.4.18. Let ν be an infinite cardinal and let a be such that a ∈ Vν+

and a ∈ L[a]. The following are equivalent:

(i) a# exists.

(ii) There is an uncountable regular cardinal γ > ν such that a ∈ Lγ[a]
and there is an unbounded subset of γ that is a set of indiscernibles for
Lγ[a], a.

(iii) a ∈ Lν+ [a]. Moreover there is a closed, unbounded proper class
Ca such that Ca is a class of indiscernibles for L[a], a, such that Ca ∪
tclos(a) generates L[a] and such that, for every uncountable cardinal
η > ν, H(L[a]; (Ca ∩ η) ∪ tclos(a)) = Lη[a].

Corollary 3.4.19. If κ is a measurable cardinal, then a# exists for every
a ∈ Vκ such that a ∈ L[a].

Corollary 3.4.20. Let ν be a cardinal, let a ∈ Vν+, and assume that a#

exists. If κ and λ are uncountable cardinals with ν < κ < λ, then Lκ[a] ≺
Lλ[a] ≺ L[a].

The Ca of clause (iii) of Theorem 3.4.18 is unique. We call it the Silver
class of indiscernibles for L[a], a and we call its members the Silver indis-
cernibles for L[a], a. It is the same as the Silver class of indiscernibles defined
earlier in the special case a ⊆ Vω.
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When a /∈ L[a], we can still make sense of a#. This is done as follows.
Let a be any set. Let the language La be the result of adding to the

language of set theory a one-place predicate symbol Pb for each b ∈ tclos(a).
We can expand any transitive class model (M ;∈) to a class model (M ;∈
, b, . . .) for La by interpreting each Pb by the property of belonging to b. We
define:

(1) L0(a) = ∅.
(2) Lα+1(a) is the collection of all subsets x of Lα(a) such that x is first

order definable over (Lα(a);∈, b, . . .) from elements of Lα(a).

(3) L(a) =
⋃
α∈Ord Lα(a).

Note that a ∈ L(a) and moreover that a ∈ Lν(a) if a ∈ Vν .
L(a) need not satisfy the Axiom of Choice, but we still have the following

fact.

Theorem 3.4.21. For every a, L(a) is a transitive class model of ZF.

Theorem 3.4.22. For every a, L(a) |= V = L(a).

Lemma 3.4.23. Let a be any set.
(a) ZF− + V = L(a) holds in Lγ(a) for every uncountable regular cardinal

γ such that a ∈ Vγ and γ > |tclos(a)|.
(b) If a ∈ N and N is a transitive class model of ZFC− + V = L(a),

then either N = L(a) or N = Lα(a) for some limit ordinal α.

Let ϕ 7→ nϕ be as in the definition of 0#. Let a be any set. Let ν be
the least cardinal such that a ∈ Vν+ and |tclos(a)| ≤ ν. If there is a closed,
unbounded subset C of ν+ such that C is a set of indiscernibles for Lν+(a), a,
then a# is the set of all

〈nϕ(v1,...,vm+n), 〈b1, . . . , bm〉〉

such that

(∀i)(1 ≤ i ≤ m→ bi ∈ tclos(a)) ∧ Lν+(a) |= ϕ[b1, . . . , bm, α1, . . . , αn]},

where α1 < · · · < αn are members of C. If there is no such C, then there is
no a#.
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Lemma 3.4.24. Let κ be a measurable cardinal, let U be a uniform normal
ultrafilter on κ, and let a ∈ Vκ. Then a ∈ Lκ(a) and there is a subset X of
κ such that X ∈ U and such that X is a set of indiscernibles for Lκ(a), a.

Since L(a) need not satisfy Choice, it certainly need not have an internally
definable wellordering. Nevertheless, every element of any Lα(a) is definable
in L(a) from ordinals smaller than α and elements of tclos(a) by a formula
absolute for Lα(a). Thus we can define H(L(a), X) and H(Lα(a), X) for any
X such that tclos(a) ⊆ X, and we have, e.g., that H(Lα(a), X) ≺ Lα(a).

Theorem 3.4.25. Let ν be an infinite cardinal and let a ∈ Vν+ be such that
|tclos(a)| ≤ ν. The following are equivalent:

(i) a# exists.

(ii) There is an uncountable regular cardinal γ > ν such that there is an
unbounded subset of γ that is a set of indiscernibles for Lγ(a), a.

(iii) There is a closed, unbounded proper class Ca such that Ca is a class
of indiscernibles for L(a), a, such that Ca∪ tclos(a) generates L(a) and
such that, for every uncountable cardinal η > ν, H(L(a); (Ca ∩ η) ∪
tclos(a)) = Lη(a).

Corollary 3.4.26. If κ is a measurable cardinal, then a# exists for every
a ∈ Vκ.

Corollary 3.4.27. Let ν be a cardinal and let a ∈ Vν+ be such that |tclos(a)| ≤
ν. Assume that a# exists. If κ and λ are uncountable cardinals with ν < κ <
λ, then Lκ(a) ≺ Lλ(a) ≺ L(a).

The Ca of clause (iii) of Theorem 3.4.25 is unique. We call it the Silver
class of indiscernibles for L[a], a and we call its members the Silver indis-
cernibles for L[a], a.

Exercise 3.4.1. Assume 0# exists. Prove that (ω1)L < ω1. Indeed, prove
that ω1 is inaccessible in L.

Hint. Use the fact that all the uncountable cardinals are Silver indis-
cernibles for L.
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3.5 L[U ]

Lemma 3.5.1. Let U be a uniform normal ultrafilter on a measurable car-
dinal κ. Then L[U ] |= ZFC + “U ∩ L[U ] is a uniform normal ultrafilter on
κ.”

Proof. That L[U ] |= ZFC follows from Lemma 3.4.11. It is easy to see that
L[U ] |= “U ∩ L[U ] is a uniform ultrafilter on κ,” and any counterexample to
normality in the model L[U ] would be a counterexample to normality in V .

�

To state an easy generalization of Lemma 3.5.1, let us introduce some
notation. For a function 〈aj | j ∈ J〉, let us write

-〈aj | j ∈ J〉-

for
{〈j, b〉 | j ∈ J ∧ b ∈ aj}.

Let us also write, for sets a1, a2, . . . , an,

L[a1, a2, . . . , an]

for
L[-〈ai | 1 ≤ i ≤ n〉-].

To see the point of this notation, note that L[〈a1, a2〉] = L and that if Uβ,
β < α, are uniform normal ultrafilters then L[〈Uβ | β < α〉] = L. (See
Exercise 3.5.1.)

Lemma 3.5.2. Let 〈κβ | β < α〉 and 〈Uβ | β < α〉 be such that each Uβ is a
uniform normal ultrafilter on the measurable cardinal κβ. Let a be any set.
Then L[a, -〈Uβ | β < α〉-] |= ZFC + “for all β < α, Uβ ∩L[a, -〈Uβ | β < α〉-] is
a uniform normal ultrafilter on κβ.”

The next two theorems, which will be used in Chapter 5, are from [Kunen, 1968].

Theorem 3.5.3. Let κ and U be such that L[U ] |= “U ∩ L[U ] is a uniform
normal ultrafilter on κ.” In L[U ], U ∩ L[U ] is the unique uniform normal
ultrafilter on κ.
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Proof. Let us assume for notational simplicity that U = U ∩L[U ]. Assume
that the conclusion of the Theorem fails. Let X ⊆ κ be least in the canonical
wellordering of L[U ] such that X ∈ U ↔ X /∈ V for some uniform normal
ultrafilter V on κ in L[U ]. Let V witness this fact. By Exercise 3.2.3, whose
proof is given during the proof of Lemma 3.3.11, this means that

κ ∈ iU(X) ↔ κ /∈ iV(X),

where we write iU and iV for I
L[U ]
U and i

L[U ]
V respectively. Now let

M = Ult(2κ)+(Ult(L[U ];U); iU(U));

N = Ult(2κ)+(Ult(L[U ];V); iV(U)).

Since the canonical elementary embeddings j : Ult(L[U ];U) ≺ M and k :
Ult(L[U ];V) ≺ N do not move κ, it follows that

κ ∈ j(iU(X)) ↔ κ /∈ k(iV(X)).

Part (c) of Lemma 3.3.13, applied in L[U ] and in Ult(L[U ];V), yields that
j(iU(κ)) = (2κ)+ = k(iV(κ)). Lemma 3.3.12 thus implies that j(iU(U)) =
F ∩M and k(iV(U)) = F ∩ N , where F is the closed, unbounded filter on
(2κ)+. The elementarity of j ◦ iU gives that M = L[j(iU(U))] and therefore
that M = L[F ∩M ] = L[F ], by Theorem 3.4.12. Similarly N = L[F ]. From
this it follows that j(iU(U)) = k(iV(U)) and that M = N . But X is definable
in L[U ] from U ; thus j(iU(X)) = k(iV(X)), a contradiction. �

Theorem 3.5.4. Let 〈κγ | γ < α〉 be a strictly increasing sequence of ordinal
numbers such that α < κ0. Let a ∈ Vκ0. Let 〈Uγ | γ < α〉 be such that
L[a, -〈Uγ | γ < α〉-] |= “Uγ ∩L[a, -〈Uγ | γ < α〉-] is a uniform normal ultrafilter
on κγ,” for each γ < α.

In L[a, -〈Uγ | γ < α〉-], Uγ ∩ L[a, -〈Uγ | γ < α〉-] is the unique uniform
normal ultrafilter on κγ for each γ < κ.

Proof. We may assume that a = a ∩ L[a, -〈Uγ | γ < α〉-] and that Uγ =
Uγ ∩ L[a, -〈Uγ | γ < α〉-] for every γ < α. As in the proof of Theorem 3.5.3,
argue by contradiction. Let δ < α and suppose that X ⊆ κδ is least in the
canonical wellordering of L[a, -〈Uγ | γ < α〉-] such that X ∈ Uδ ↔ X /∈ V
for some V that in L[a, -〈Uγ | γ < α〉-] is a uniform normal ultrafilter on κδ.



180 CHAPTER 3. MEASURABLE CARDINALS

Let V witness this fact. Taking iterated ultrapowers with respect to Uδ+1, if
necessary, we may assume that κδ+1 > (2κδ)+. Let

M = Ult(2κδ )+(Ult(L[a, -〈Uγ | γ < α〉-];Uδ); iUδ(Uδ));
N = Ult(2κδ )+(Ult(L[a, -〈Uγ | γ < α〉-];V); iV(Uδ)).

Let j : Ult(L[a, -〈Uγ | γ < α〉-];Uα) ≺ M and k : Ult(L[a, -〈Uγ | γ < α〉-];V) ≺
N be the canonical elementary embeddings. If we can show that j(iUδ(Uβ)) =
k(iV(Uβ)) for all β < α such that β 6= δ, then we can obtain a contradiction
as in the proof of Theorem 3.5.3. (Note that, e.g., k(iV(-〈Uγ | γ < α〉-)) =
-〈(k(iV))(Uγ) | γ < α〉-, since α < κ0.) For β < δ, what we need to show
follows from the fact that both crit(j ◦ iUδ) and crit(k ◦ iV) are greater than
κβ. For β > δ it follows from Lemma 3.3.14 applied in L[a, -〈Uγ | γ < α〉-]
and in Ult(L[a, -〈Uγ | γ < α〉-];V). �

Remark. In [Kunen, 1968], stronger uniqueness theorems are proved. For
example, it is shown that if L[U ] |= “U is a uniform normal ultrafilter on κ”
and L[V ] |= “V is a uniform normal ultrafilter on κ” then U = V .

Suppose that there is a U ∈ L[U ] such that L[U ] satisfies “U is a uniform
normal ultrafilter on κ” for some ordinal κ. If U# exists, then the set of all
n ∈ ω such that 〈n, 〈U〉〉 ∈ U# is called 0†. (See page 174 for the definition of
U#. The name “0†” is due to R. Solovay.) This definition of 0† might seem to
depend upon the choice of U , but it does not; see Exercise 3.5.2. If there are
two measurable cardinals, then 0† exists. The existence of 0† is equivalent to
the determinacy of a certain class of games. (See Exercise 5.3.5.) One can
also define the notion of a† and one can define analogues of 0† for models
L[-〈Uγ | γ < α〉-] as in Theorem 3.5.4. These generalizations also appear in
determinacy results in Chapter 5.

Exercise 3.5.1. (a) Show that, for any finite set a, L[a] = L. (It follows
that, with any of the standard definitions of n-tuples, L[〈a1, . . . , an〉] = L for
any sets a1, . . . , an.)

(b) Let α be an ordinal number. For β < α, let Uβ be a uniform normal
ultrafilter on a measurable cardinal κβ. Show that L[〈Uβ | β < α〉] = L.
(Hint. No Uβ belongs to L.)

Exercise 3.5.2. Prove that 0† is well-defined, i.e., that 0† as defined above
does not depend on the choice of U . (Hint. Use Lemma 3.3.12.)



Chapter 4

Π1
1 Games

The classes Π1
1 and Σ1

1 were defined on page 84. (We will repeat these
definitions in §4.1 below.) By Theorem 2.2.7, if A ⊆ dT e belongs both to Π1

1

and to Σ1
1 (that is, if A ∈ ∆1

1), then G(A;T ) is determined. We would like
to extend this determinacy result to sets that belong to only one of Π1

1 and
Σ1

1. The use of a dummy first move, as in the proof of Theorem 1.2.4, shows
that the determinacy of all Π1

1 games is equivalent with the determinacy of
all Σ1

1 games. Hence we may restrict our attention to proving the former.
Unfortunately, Π1

1 determinacy, even in countable trees, is not provable in
ZFC. (See Exercise 4.1.1.) If we are to prove Π1

1 determinacy, we must then
assume principles that go beyond the ZFC axioms.

In §4.1 we prove the determinacy of all Π1
1 games in an arbitrary game tree

T from the hypothesis that there is a measurable cardinal larger than |T |. In
the remainder of the chapter, we present three variants of this proof. In §4.2
we show that the proof of §4.1 may be organized in terms of the machinery
of semicoverings , a machinery similar to that of Chapter 2. In Chapter 5 we
will use semicoverings to get determinacy proofs for wider classes of games.
The result of §4.2 will play in Chapter 5 a role analogous to the role that
Lemma 2.1.7 played in Chapter 2. In §4.3 we reorganize the proof of §4.2
in terms of the machinery of homogeneous trees. The determinacy proofs of
Chapters 8 and 9 will use this machinery. (Those of Chapter 5, however,
will make no use of it.) In §4.4 we show that–as Robert Solovay observed
in the case of countable |T |–our Π1

1 determinacy proof in §4.1 goes through
with the existence of a measurable cardinal larger than |T | replaced by the
existence of a# for every subset a of |T |. By a a theorem of Leo Harrington,

181
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for countable T , this is equivalent with the determinacy of all Π1
1 games in T .

(See Exercises 4.4.1.) The only later section that depends upon §4.4 is §5.3.

4.1 Π1
1 Determinacy

Recall that a subset A of dT e belongs to Π1
1 if and only if there is a closed

C ⊆ dT e × ωω (= dT e × d<ωωe) such that

(∀x ∈ dT e)(x ∈ A↔ (∀y ∈ ωω) 〈x, y〉 /∈ C).

Recall also that A ⊆ dT e belongs to Σ1
1 just in case dT e \ A ∈ Π1

1.
The following lemma was proved in the course of proving Theorem 2.2.3.

The two sentences of the lemma state the propositions (a) and (b) occurring
in that proof. For the definition of open-separated union, see page 80.

Remark. The reader who has skipped §2.2 should now read the proof of
Lemma 2.2.3. Such a reader may ignore the the parts of that lemma and this
one that are concerned with open-separated unions.

Lemma 4.1.1. Every clopen set belongs to Π1
1 and to Σ1

1. Both Π1
1 and Σ1

1

are closed under countable unions and open-separated unions.

Remark. It will be convenient to deal with game trees T such that there
are no terminal positions in T . To see that this is justified, let T be a game
tree. Consider the tree

T ′ = T ∪ {p_〈0, . . . , 0〉 | p is terminal in T}.

The obvious f : T ′ → T induces a homeomorphism from dT ′e to dT e such
that, for each A ⊆ dT e, G(A;T ) is determined if and only if G(f−1(A);T ′)
is determined.

We next prove two standard representations of Π1
1 sets. The second of

these will be useful for determinacy proofs. To avoid unnecessary details, we
do not state the most general versions of these lemmas. For later applications,
however, we state the lemmas in slightly more general form than we will need
in this section.

If T is a game tree, let us denote by [T ] the set of all infinite plays in T .
If there are no terminal positions in T , then [T ] = dT e. If T is a game tree
with taboos and every play normal in T is infinite, then [T ] = dTe.
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Lemmas 4.1.2 and 4.1.4 give ways to characterize the members of a Π1
1 set

that belong to [T ]. With a little more complex characterizations, we could
remove the qualification “that belong to [T ].”

Lemma 4.1.2. Let T be a game tree and let A ⊆ dT e. Then A ∈ Π1
1 if and

only if there is a relation R ⊆ T × <ωω, such that

(a) R(∅, ∅);

(b) (∀p ∈ T )(∀s ∈ <ωω)(R(p, s)→ `h(p) = `h(s));

(c) (∀p ∈ T )(∀s ∈ `h(p)ω)(∀n < `h(p))(R(p, s)→ R(p � n, s � n)).

(d) (∀x ∈ [T ])(x ∈ A↔ (∀y ∈ ωω)(∃n ∈ ω)¬R(x � n, y � n)).

(Here we have written R(p, s) for 〈p, s〉 ∈ R.)

Proof. Suppose that C witnesses that A ∈ Π1
1. Let R(p, s) hold if and only

if `h(p) = `h(s) and

p = s = ∅ ∨ (∃x ∈ [T ])(∃y ∈ ωω)(p ⊆ x ∧ s ⊆ y ∧ 〈x, y〉 ∈ C).

It is trivial that R has properties (a), (b), and (c). Let x ∈ [T ]. If x /∈ A,
then there is a y ∈ ωω such that 〈x, y〉 ∈ C; thus R(x � n, y � n) holds for
every n ∈ ω. If x ∈ A, then the fact that C is closed guarantees that for all
y ∈ ωω there is an n such that (dTx�ne × d(<ωω)y�ne) ∩ C = ∅. Thus R has
property (d).

Suppose now that there is an R with properties (a), (b), (c), and (d). Let

C = {〈x, y〉 | x ∈ dT e \ [T ] ∨ (∀n ∈ ω)R(x � n, y � n)}.

It is easy to see that C witnesses that A ∩ [T ] ∈ Π1
1. Since A \ [T ] is open,

it follows by Lemma 4.1.1 that A ∈ Π1
1. �

To prove what for us will be the most useful characterization of Π1
1 sets,

we need the definition and the lemma that follow.
The Brouwer–Kleene ordering <BK of <ωω is defined by

s <BK t↔ (s ) t ∨ (∃n < min{`h(s), `h(t)})(s � n = t � n ∧ s(n) < t(n))).

The Brouwer–Kleene ordering is a linear ordering of <ωω. It agrees with the
lexicographic ordering <lex except that when s ) t then t <lex s but s <BK t.
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Lemma 4.1.3. Let S be a subtree of <ωω. Then S is wellfounded (i.e.,
[S] = ∅) if and only if the restriction to S of <BK is a wellordering.

Proof. Assume first that S is not wellfounded. Let y ∈ [S]. Then 〈y � n |
n ∈ ω〉 is an infinite descending sequence with respect to <BK, and so <BK

is not a wellordering.
Now assume that <BK �S is not a wellordering. Since it is a linear order-

ing, it must not be wellfounded. Let 〈ti | i ∈ ω〉 be an infinite descending
sequence with respect to <BK with each ti ∈ S.

We prove by induction on m ∈ ω:

(i) for all but finitely many i ∈ ω, `h(ti) ≥ m;

(ii) limi (ti �m) exists.

(i) and (ii) trivially hold for m = 0. Suppose that (i) and (ii) hold for m.
Let im be such that

(∀i≥ im)(`h(ti) ≥ m ∧ ti �m = tim �m).

At most one of the ti, i ≥ im, can be tim �m and this one, if it exists, must
be tim . Therefore `h(ti) ≥ m+ 1 for every i > im. By the definition of <BK,

tim+1(m) ≥ tim+2(m) ≥ · · · .

Thus limi ti(m) exists.
Now let y ∈ ωω be given by

y(m) = limi ti(m).

Since each y � n is extended by some ti, it follows that each y � n belongs to
S. Thus y ∈ [S], and hence S is not wellfounded. �

The following characterization of Π1
1 sets is a well-known variant of those

of [Kleene, 1955] and [Lusin and Sierpiński, 1923].

Lemma 4.1.4. Let T be a game tree and let A ⊆ dT e. Then A ∈ Π1
1 if and

only if there is a function p 7→<p with domain T such that

(1) for all p ∈ T , <p is a linear ordering of `h(p) with greatest element
0 (if `h(p) > 0);
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(2) for all p ⊆ q ∈ T , <p is the restriction of <q to `h(p);

(3) (∀x ∈ [T ])(x ∈ A ↔ <x is a wellordering), where <x is the relation⋃
n∈ω <x�n.

Proof. Suppose first that A ∈ Π1
1.

Let n 7→ sn be a bijection from ω to <ωω such that whenever sm ⊆ sn
then m ≤ n, i.e. such that no sequence is enumerated before a sequence it
properly extends. Let R ⊆ T × <ωω be given by Lemma 4.1.2.

For p ∈ T and m and n smaller than `h(p), we let m <p n just in case
one of the following holds:

(i) ¬R(p � `h(sm), sm) ∧ R(p � `h(sn), sn);

(ii) m < n ∧ ¬R(p � `h(sm), sm) ∧ ¬R(p � `h(sn), sn);

(iii) sm <BK sn ∧ R(p � `h(sm), sm) ∧ R(p � `h(sn), sn).

In other words, we place all the n < `h(p) such that ¬R(p � `h(sn), sn) at the
beginning of the ordering <p in their natural order, and we then order the
remaining numbers n < `h(p) according to the Brouwer–Kleene ordering of
the corresponding sequences sn.

The fact that no s precedes in the enumeration any of its proper initial
segments guarantees that `h(sn) ≤ n and so that <p is well-defined. It is
clear that <p is a linear ordering of `h(p) for every p ∈ T . Since s0 = ∅,
property (a) of R and the fact that ∅ is maximal with respect to <BK imply
that 0 is maximal with respect to every <p. Thus (1) holds.

Condition (2) is obvious from the definition.
To prove (3), fix x ∈ [T ] and let

S = {t ∈ <ωω | R(x � n, t)}.

Properties (b) and (c) of R imply that S is a subtree of <ωω. Property (d)
implies that

x ∈ A ↔ [S] = ∅.
By Lemma 4.1.3,

[S] = ∅ ↔ <BK �S is a wellordering.

Since <x is isomorphic to the natural ordering of {n | sn /∈ S} followed by
<BK �S,

<BK �S is a wellordering ↔ <x is a wellordering.
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For the other half of the lemma, suppose there is a function p 7→<p

satisfying (1), (2), and (3). Define C ⊆ dT e × ωω by

〈x, y〉 ∈ C ↔ (x /∈ [T ] ∨ (∀n ∈ ω)(y(n+ 1) <x y(n))).

Clearly we have that

(∀x ∈ dT e)((x ∈ [T ]∧ <x is a wellordering) ↔ (∀y ∈ ωω) 〈x, y〉 /∈ C).

Thus C witnesses that A ∩ [T ] ∈ Π1
1. Lemma 4.1.1 implies that A ∈ Π1

1.
For later use, we also give a proof using Lemma 4.1.2 of this “if” half of

the lemma: Let <p have properties (1), (2), and (3). Define R ⊆ T × <ωω
by letting R(p, s) hold if and only if `h(p) = `h(s) and, for all n such that
n+ 1 < `h(p),

(s(n) < `h(p) ∧ s(n+ 1) < `h(p)) → s(n+ 1) <p s(n).

It is easy to check that R satisfies (a)–(d) of Lemma 4.1.2. That lemma thus
gives that x ∈ A. �

We will sometimes want to point out sharper lightface versions of our
theorems. We make the following definitions explicitly only for subsets of ωω,
but the definitions extend in an obvious way to subsets of finite products of ω
and ωω. A subset A of ωω belongs to Π1

1 if there is a relation R ⊆ <ωω×<ωω
with properties (a)–(d) of Lemma 4.1.2 such that R is recursive. A set
A ⊆ ωω belongs to Σ1

1 if ωω \ A ∈ Π1
1. For x ∈ ωω, the classes Π1

1(x) and
Σ1

1(x) are similarly defined, with “recursive in x” replacing “recursive.” It is
easy to see that

Π1
1 =

⋃
x∈ωω

Π1
1(x);

Σ1
1 =

⋃
x∈ωω

Σ1
1(x).

Here is the lightface version of Lemma 4.1.4:

Lemma 4.1.5. Let A ⊆ <ωω. Then A ∈ Π1
1 if and only if there is a recursive

function p 7→<p with domain <ωω such that

(1) for all p ∈ <ωω, <p is a linear ordering of `h(p) with greatest element
0 (if `h(p) > 0);
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(2) for all p ⊆ q ∈ <ωω, <p is the restriction of <q to `h(p);

(3) (∀x ∈ ωω)(x ∈ A ↔ <x is a wellordering), where <x is the relation⋃
n∈ω <x�n.

The proof of the “only if” part of Lemma 4.1.5 is just like that of
Lemma 4.1.4, except that the function n 7→ sn must be chosen to be re-
cursive. The proof of the “if” part of Lemma 4.1.5 is just like the second
proof of the “if” part of Lemma 4.1.4.

Lemma 4.1.4 and the Rowbottom ultrafilters introduced in §3.1 provide
us with the tools for proving Π1

1 determinacy from the existence of large
enough measurable cardinals.

Theorem 4.1.6. ([Martin, 1970]) Let T be a game tree. Assume there is a
measurable cardinal larger than |T |. Then all Π1

1 games in T are determined.

Proof. As we argued on page 182, we may assume that there are no terminal
positions in T and so that dT e = [T ].

Let A ⊆ dT e with A ∈ Π1
1. Let p 7→<p and x 7→<x be as given by

Lemma 4.1.4.
Let κ be a measurable cardinal with |T | < κ and, by Lemma 3.1.7, let U

be a uniform normal ultrafilter on κ.
We describe a game tree T ∗ by describing the legal plays in T ∗:

I 〈a0, ξ0〉 〈a2, ξ1〉 〈a4, ξ2〉 . . .
II a1 a3 . . .

Each 〈ai | i < n〉 must be a legal position in T . Each ξi must be an ordinal
number smaller than κ. Let π : T ∗ → T be given by

π(〈〈a0, ξ0〉, a1, . . . , a2n−1 [, 〈a2n, ξn〉]〉) = 〈a0, a1, . . . , a2n−1 [, a2n]〉.

π induces a continuous function, which we also call π, from dT ∗e to dT e.
Consider the set A∗ ⊆ dT ∗e given by

〈〈a0, ξ0〉, a1, 〈a2, ξ1〉, a3, . . .〉 ∈ A∗ ↔
(∀m ∈ ω)(∀n ∈ ω)(m <〈ai|i∈ω〉 n↔ ξm < ξn).

I wins a play x∗ of G(A∗;T ∗) if his ordinal moves ξi give an embedding of
(ω;<π(x∗)) into (κ;<). In particular this means that π(A∗) ⊆ A. Thus I wins
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a play x∗ of G(A∗;T ∗) if he not only succeeds in making π(x∗) ∈ A but also
verifies that π(x∗) ∈ A by embedding of (ω;<π(x∗)) into (κ;<).

The set A∗ is closed; so, by Lemma 1.2.4, G(A∗;T ∗) is determined.
Suppose first that G(A∗;T ∗) is a win for I. Let σ∗ be a winning strategy

for I for G(A∗;T ∗). Let σ be a strategy for I in T such that σ(π(p∗)) is the first
component of σ∗(p∗) for every p∗ consistent with σ∗. (This condition fixes σ
on all positions consistent with σ.) A play consistent with σ is thus the image
under π of a play consistent with σ∗. It follows that every play consistent
with σ belongs to A and so that σ is a winning strategy for G(A;T ).

Suppose now that G(A∗;T ∗) is a win for II. Let τ ∗ be a winning strategy
for II for G(A∗;T ∗). We will define a strategy τ for II for G(A;T ).

Let n ∈ ω, let p = 〈a0, a1, . . . , a2n〉 be a position in T , and let v ∈ [κ]n+1.
There is a unique

q∗(p, v) = 〈〈a0, ξ0〉, a1, . . . , 〈a2n, ξn〉〉

such that π(q∗(p, v)) = p and i 7→ ξi embeds (n+ 1;<p) into (v;<). Let

τ(p) = a ↔ {v ∈ [κ]n+1 | τ ∗(q∗(p, v)) = a} ∈ U [n+1],

where U [n+1] is the Rowbottom ultrafilter defined from U as on page 136.
Since |T | < κ and U [n+1] is κ-complete, τ(p) is defined. Let

Zp = {v ∈ [κ]n+1 | τ(p) = τ ∗(q∗(p, v))}.

Zp belongs to U [n+1].

Remark. Equivalently, we may define τ(p) by

τ(p) =

∫
τ ∗(q∗(p, v))dµ[n+1],

where µ[n+1] is the measure on [κ]n+1 given by

µ[n+1](X) =

{
1 if X ∈ U [n+1];
0 otherwise.

Thus one might call the technique by which τ is obtained from τ ∗ integration.

Since each Zp belongs to U [n+1], we may, by the definition of U [n+1], let
Xp ⊆ κ be such that Xp ∈ U and [Xp]

n+1 ⊆ Zp. Let

X =
⋂
{Xp | p ∈ T ∧ `h(p) odd}.
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Since U is κ-complete and |T | < κ, we have that X ∈ U . Moreover, for every
n and every p ∈ T of length 2n+ 1,

(∀v ∈ [X]n+1) τ(p) = τ ∗(q∗(p, v)).

To show that τ is a winning strategy for II for G(A;T ), let x ∈ dT e be
consistent with τ . Assume for a contradiction that x ∈ A. Since |X| = κ >
ℵ0, let i 7→ ξi embed the wellordering (ω;<x) into (X;<). Let x∗ be the play
in T ∗ with these values of the ξi and with π(x∗) = x. Clearly x∗ is a win for
I in G(A∗;T ∗). But, for each p∗ ⊆ x∗ of odd length,

x∗(`h(p∗)) = τ(π(p∗)) = τ ∗(q∗(π(p∗), {ξi | 2i < `h(p∗)})) = τ ∗(p∗).

Thus x∗ is a play consistent with the winning strategy τ ∗, and this contradicts
the fact that x∗ is a win for I. �

Exercise 4.1.1. Assume that all Π1
1 games in countable trees are deter-

mined and prove that ω1 is inaccessible in L. Deduce that Π1
1 determinacy

is not provable in ZFC.

Hint. First show that every uncountable Π1
1 subset of ω2 (= d<ω2e) has

a perfect subset (a nonempty subset without isolated points). To do this, let
A ⊆ ω2 with A ∈ Π1

1 and let R witness that A ∈ Π1
1. Consider a game tree

T plays in which are as follows:

I s0 s1 s2 . . .
II e0 e1 . . .

Each ei must belong to 2 (= {0, 1}). Each si must belong to <ω2, and each
si+1 must satisfy

si+1 ⊇ si_〈ei〉.

Let G(B;T ) be the game that I wins if and only if
⋃
i∈ω si ∈ A. Prove that

G(B;T ) is a win for I if and only if A has a perfect subset. Prove that
G(B;T ) is a win for II if and only if A is countable. (This argument, the
same as alluded to in Exercises 1.1.2 and 1.1.4, is from [Davis, 1964]. See
pages 295–297 of [Moschovakis, 1980].)

Now prove the result of Gödel [1938] that if V = L then there is an
uncountable subset of ω2 belonging to Π1

1 and without a perfect subset. Note
that the proof works under the weaker hypothesis that (ω1)L = ω1. Relativize
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the proof to get an uncountable set in Π1
1(x) without a perfect subset if

(ω1)L[x] = ω1 for any x ∈ ωω. (See page 283 of [Moschovakis, 1980].)

The results of the preceding two paragraphs and the assumption of the
exercise imply that (ω1)L[x] is countable for every x ∈ ωω, and this implies
that that ω1 is inaccessible in L.

The first part of the exercise implies that, under the assumption of the
exercise, Lω1 |= ZFC. The last part of the exercise follows by the Second
Incompleteness Theorem of Gödel. Of course, the last part follows simply
from the fact that Π1

1 determinacy is false in L.

Exercise 4.1.2. Prove that the determinacy of all Π1
1 games in <ωω is not

provable in ZFC.

Hint. Show that Π1
1 determinacy is false in L, by coding as games in <ωω

the games G(B;T ) of the hint to Exercise 4.1.1.

4.2 Semicoverings

The proof of Theorem 4.1.6 is reminiscent of those of Chapter 2. The function
π occurring in the former plays a role like that of the functions π that are
components of coverings. The construction of the strategies σ and τ from
the strategies σ∗ and τ ∗ respectively gives an operation like the φ component
of a covering. Nevertheless, these operations do not in general give rise to
a covering. The difficulty concerns the Ψ component of a covering. In the
proof of Theorem 4.1.6, we were given a play x consistent with τ and we
constructed an x∗ consistent with τ ∗ such that π(x∗) = x, but we were able
do this only because we made the assumption that x ∈ A. This assumption
provided us with the ordinals ξi used to define x∗.

It is a theorem of Itay Neeman that, under a large cardinal hypothesis,
every Π1

1 set can be unraveled by a covering. We will discuss this theorem
on page 309.

The proof of Theorem 4.1.6 does give rise to what we will call semicover-
ings. Semicoverings are enough like coverings that (1) any set A unraveled by
what we will call an A-semicovering is determined and (2) certain operations
on semicoverings yield semicoverings. In this section we will define semicov-
erings and use them to reprove Π1

1 determinacy from measurable cardinals.
In Chapter 5 we will use semicoverings to get further determinacy results.
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As we did with coverings, we will define semicoverings in terms of game
trees with taboos. If T is a game tree with taboos, then a semicovering of
T is a quadruple 〈T̃, π, φ,Ψ〉 such that

(a) T̃ is a game tree with taboos;

(b) π : T̃⇒ T;

(c) φ : T̃
S⇒ T;

(d) Ψ : domain (Ψ)→ dT̃ e, the domain of Ψ is a subset of

{〈σ̃, x〉 | σ̃ ∈ S(T̃ ) ∧ x ∈ dT e ∧ x is consistent with φ(σ̃)},

and, for all 〈σ̃, x〉 ∈ domain (Ψ),

(i) Ψ(σ̃, x) is consistent with σ̃;

(ii) π(Ψ(σ̃, x)) ⊆ x;

(iii) either (1) π(Ψ(σ̃, x)) = x and Ψ(σ̃, x) and x are both normal or
both taboo for the same player or (2) Ψ(σ̃, x) is taboo for the
player for whom σ̃ is a strategy.

The only difference between a covering of T and a semicovering of T is
that clause (d) above, unlike the clause (d) on page 66, does not demand that
Ψ(σ̃, x) be defined for every pair 〈σ̃, x〉 such that σ̃ ∈ S(T̃ ) and x is a play
in T consistent with φ(σ̃). On the one hand, this means that every covering
of T is a semicovering of T. On the other hand, it means that the notion of
a semicovering is a very weak one. For example, domain (Ψ) may be empty.
Thus a semicovering will not be of much use to us unless the domain of Ψ
satisfies some further conditions.

We say that a semicovering 〈T̃, π, φ,Ψ〉 of T unravels a subset A of dTe
if π−1(A) is a clopen subset of dT̃e. Here π : dT̃e → dTe is defined as on
page 65.

The existence of a mere semicovering of T that unravels A does not imply
the determinacy of G(A; T). (See Exercise 4.2.1.) For A ⊆ dTe, let us then
define an A-semicovering of T to be a semicovering 〈T̃, π, φ,Ψ〉 of T such
that

(e) If σ̃ ∈ S(T̃ ) and x witnesses that φ(σ̃) is not a winning strategy for
G(A; T) (i.e., if x is a play consistent with φ(σ̃) that is a loss in G(A; T)
for the player for whom σ̃ is a strategy), then 〈σ̃, x〉 ∈ domain (Ψ).
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AnA-semicovering is exactly what is needed to make the proof of Lemma 2.1.3
go through:

Lemma 4.2.1. If A ⊆ dTe and there is an A-semicovering of T that unrav-
els A, then G(A; T) is determined.

Proof. The proof of Lemma 2.1.3 works here too, since we may assume that
the play x occurring in that proof is a win for the bad player. �

Just as we needed the notion of a k-covering, we will need in Chapter 5
the notion of a k-semicovering. Let T be a game tree with taboos and let
C = 〈T̃, π, φ,Ψ〉 be a semicovering of T. For k ∈ ω, C is a k-semicovering of
T if

(i) kT̃ = kT;

(ii) π � kT̃ is the identity;

(iii) φ � S(kT̃ ) is the identity.

The proof of Theorem 4.1.6 adapts fairly easily to give an A-semicovering
of T that unravels A (under the hypothesis that there is a measurable cardinal
larger than |T |). But for our unraveling results in Chapter 5 for sets more
complicated than Π1

1 sets, we will need a stronger result for Π1
1. Of course

we will need A k-semicoverings for arbitrary k ∈ ω and we will need a bound
on the size of the T̃ of the semicovering, but we will need even more. To
state this stronger result, we require another definition:

If T is a game tree with taboos and if A and B are subsets of dTe, then
an (A,B)-semicovering of T is an A-semicovering 〈T̃, π, φ,Ψ〉 of T such that

(f) for every σ̃ ∈ S(T̃ ) and for every x ∈ B such that x is consistent with
φ(σ̃), the pair 〈σ̃, x〉 belongs to the domain of Ψ;

(g) every normal play in T̃ belongs to π−1(B).

Lemma 4.2.2. Let T be a game tree with taboos. Let B ⊆ dTe with B ∈ Π1
1.

Let k ∈ ω. Suppose that κ is a measurable cardinal larger than |T |.
(i) There is a (B,B)-k-semicovering 〈T̃, π, φ,Ψ〉 of T such that |T̃ | ≤ κ.
(ii) There is a (dTe \ B,B)-k-semicovering 〈T̃, π, φ,Ψ〉 of T such that

|T̃ | ≤ κ.
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Proof. We give the proof of (i). The proof of (ii) is similar, with the roles of
the players reversed. Also, to keep the proof closer to that of Theorem 4.1.6,
we do the case k = 0. (We will indicate briefly how to handle the case k > 0.)

Let p 7→<p and x 7→<x be as given by Lemma 4.1.4. Let U be a uniform
normal ultrafilter on κ.

Define T̃ as follows. Plays in T̃ are of the form

I 〈a0, ξ0〉 〈a2, ξ1〉 〈a4, ξ2〉 . . .
II a1 a3 . . .

Each 〈ai | i < n〉 must be a legal position in T . Each ξi must be an ordinal
number smaller than κ. So far the definition is like that of T ∗ in the proof
of Theorem 4.1.6. But we impose a further restriction. We demand that

m <〈a0,...,a2n〉 m
′ ↔ ξm < ξm′

for all m and m′ no greater than n. Thus all legal positions p̃ in T̃ are such
that i 7→ ξi embeds (n;<π(p̃�n)) into (κ;<), where

π(〈〈a0, ξ0〉, a1, 〈a2, ξ1〉, a3, . . .〉 = 〈a0, a1, a2, a3, . . .〉

and where n is the greatest number such that 2n ≤ `h(p) + 1. If a terminal
position p̃ in T̃ is such that π(p̃) is taboo in T, then p̃ is taboo for the same
player in T̃. If p̃ is terminal in T̃ and π(p̃) is terminal and normal in T, then
p̃ is taboo for I in T̃ if π(p̃) /∈ B and p̃ is normal in T̃ if π(p̃) ∈ B. If p̃ is
terminal in T̃ but π(p̃) is not terminal in T then p̃ is taboo for I in T̃. (Such
a p̃ must have some even length 2i. It occurs when I cannot play ξi so as to
obey the order restriction.)

Clearly |T̃ | ≤ κ.
If x̃ is an infinite play in T̃ , then i 7→ ξi embeds (ω;<πππ(x̃)) into (κ;<),

so π(x̃) ∈ B. If x̃ is a finite normal play in T̃, then also π(x) ∈ B. Thus
π−1(B) = dT̃e.

To define φ and Ψ, suppose first that σ̃ ∈ SI(T̃ ). For positions p̃ consistent
with σ̃, let (φ(σ̃))(π(p̃)) be the first component of σ̃(p̃). For other positions
p ∈ T , define φ(σ̃) arbitrarily, subject to the constraints of clause (iii) in the

definition of φ : T̃
S⇒ T. (In the proof for k > 0, the constraints of clause

(iii) in the definition of a k-covering must be met also.) We define Ψ(σ̃, x)
for every play x consistent with φ(σ̃). Fix such an x. There is a unique play
x̃ such that x̃ is consistent with σ̃ and π(x̃) ⊆ x. Let Ψ(σ̃, x) = x̃.
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Now suppose that τ̃ ∈ SII(T̃ ). Let n ∈ ω, let p = 〈a0, a1, . . . , a2n〉 be a
position in T , and let v ∈ [κ]n+1. As in the proof of Theorem 4.1.6 there is
a unique

q̃(p, v) = 〈〈a0, ξ0〉, a1, . . . , 〈a2n, ξn〉〉

such that π(q̃(p, v)) = p and i 7→ ξi is order-preserving from (n + 1;<p) to
(v;<). Let

(φ(τ̃))(p) = a ↔ {v ∈ [κ]n+1 | τ̃(q̃(p, v)) = a} ∈ U [n+1].

(Here, as in the proof of Theorem 4.1.6, we are using the fact that |T | < κ.)
Let

Zp = {v ∈ [κ]n+1 | (φ(τ̃))(p) = τ̃(q̃(p, v))}.

Zp belongs to U [n+1]. Let Xp ⊆ κ be such that Xp ∈ U and [Xp]
n+1 ⊆ Zp.

Let
X =

⋂
{Xp | p ∈ T ∧ `h(p) odd}.

We have that X ∈ U and that, for every n and every p ∈ T of length 2n+ 1,

(∀v ∈ [X]n+1) τ̃(q̃(p, v)) = (φ(τ̃))(p).

We define Ψ(τ̃ , x) for every play x consistent with φ(τ̃) such that either x ∈ B
or else x is finite. Fix such an x. If x ∈ B and x is infinite, let i 7→ ξi embed
(ω;<x) into (X;<). If x is finite, let i 7→ ξi embed (`h(x);<x) into (X;<).
Let Ψ(τ̃ , x) be the play x̃ with these values of the ξi and with π(x̃) = x.

We leave to the reader the easy verification that our functions π, φ, and
Ψ have the required properties.

For k > 0, the main change is that plays in T̃ are of the form

I a0 . . . 〈a2j, ξ0〉 〈a2j+2, ξ2〉 . . .
II a1 . . . a2j+1 . . .

where j is large enough that 2j ≥ k. Other changes are the obvious ones.
For example, if p = 〈a0, . . . , a2j+2n〉, then q̃(p, v) is defined for v ∈ [κ]n+1; if
`h(p) ≤ 2j then q̃(p, v) = p. �

Lemmas 4.2.1 and 4.2.2 give a different proof of Theorem 4.1.6. But the
importance of these lemmas is that they provide ingredients for proving in
Chapter 5 the determinacy of wider classes of games. For the sharpest results
in Chapter 5, we need the following refinment of Lemma 4.2.2.
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Lemma 4.2.3. Let T be a game tree with taboos. Let B ⊆ dTe with B ∈ Π1
1.

Let k ∈ ω and m ∈ ω. Suppose that κ is a measurable cardinal such that
|T | ≤ κ and such that

(∀p ∈ T )(`h(p) > m→ |Tp| < κ).

(i) There is a (B,B)-k-semicovering 〈T̃, π, φ,Ψ〉 of T such that |T̃ | ≤ κ
and such that

(∀p̃ ∈ T̃ )(`h(p̃) > max{k,m}+ 1→ |T̃p̃| < κ).

(ii) There is a (dTe \ B,B)-k-semicovering 〈T̃, π, φ,Ψ〉 of T such that
|T̃ | ≤ κ and such that

(∀p̃ ∈ T̃ )(`h(p̃) > max{k,m}+ 1→ |T̃p̃| < κ).

Proof. The proof is like that of Lemma 4.2.2. We indicate only the changes.
Define T̃ as in the proof of Lemma 4.2.2, but with max{k,m} as the k of
that proof, i.e. with moves 〈a2(j+i), ξi〉 for the least j with 2j ≥ max{k,m}.

The fact that |T | < κ was used twice in the proof of Lemma 4.2.2. The
first time was to guarantee, for each position p in T of odd length, that
τ̃(q̃(p, v)) took fewer that κ values. But in the present situation q̃(p, v) = p
unless `h(p) > 2j ≥ m. If `h(p) > 2j then, since the values τ̃(q̃(p, v)) belong
to the set Tp whose size is less than κ, we get the desired conclusion. The
other use of the fact that |T | < κ was to guarantee that the set X =

⋂
{Xp |

p ∈ T ∧ `h(p) is odd} belonged to U . Instead of considering X, we can define
sets

Xp =
⋂
{Xp′ | p′ ∈ Tp ∧ `h(p′) is odd}

for p ∈ T . If `h(p) > m, then Xp ∈ U . In defining Ψ(τ̃ , x), we can replace
X by Xp for p ⊆ x and `h(p) = m+ 1.

Let us verify that any |T̃p̃| < κ for every p̃ ∈ T̃ such that `h(p̃) > 2j.
Since, 2j ≤ max{k,m} + 1, this will complete the proof. Recall that 0 is
maximal in <p for every p ∈ T . Thus every legal position in T̃ is such that
ξi < ξ0 for each i > 0. Therefore, if p̃ ∈ T̃ and `h(p̃) > 2j, then |T̃p̃| is no
greater than the maximum of (a) |Tπ(p̃)|, (b) the cardinal of the ξ0 given by
p̃, and (c) ℵ0. But all these cardinal numbers are smaller than κ. �

Remark. The replacement described above of X by Xp would work for
the original proof of Lemma 4.2.2 also, with any value of n. Indeed the use in
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question of the hypothesis that |T | < κ was unnecessary altogether: Instead
of considering X or the Xp, we could have defined, for each play x ∈ dT e,
the set Xx =

⋂
{Xp | p ⊆ x ∧ `h(p) is odd}. The set Xx is a countable

intersection of sets in U , and so it belongs to U . In defining Ψ(τ̃ , x), we
could then have used Xx in place of X or an Xp. We did not do this because
of a later application of the method (Lemma 5.2.12), where we will not be
able to use the Xx.

Exercise 4.2.1. Let T be any game tree with taboos. Show that there is a
semicovering of T that unravels every subset of dTe.

Hint. Let T̃ = {∅}.

Exercise 4.2.2. Prove that the semicovering of T constructed in the proof
of Lemma 4.2.2 need not extend to a covering of T. Indeed prove that there
need not be any covering of T extending the T̃ and π constructed in that
proof. Hint. Let T = 〈<ω2, ∅, ∅〉, let A = {x | (∃n ∈ ω)x(2n) = 1}, and let
k = 0. Let τ̃ be the strategy for II in T̃ such that

τ̃(p̃) = 1 ↔ p̃_〈1〉 is terminal in T̃ .

4.3 Homogeneous Trees

In this section we present still another way to organize the proof of Theo-
rem 4.1.6. No use of the ideas and results of this section will be made until
Chapter 8, but they will be the basis of all our determinacy proofs from that
point on.

Let X and Y be arbitrary sets. If B ⊆ X × Y , then

pB = {x ∈X | (∃y ∈ Y ) 〈x, y〉 ∈ B}.

Thus pB is the projection of B onto the first coordinate.
If E is a topological space and κ is a cardinal number, a subset A of E is

κ-Souslin if there is a closed C ⊆ dT e × ωκ such that A = pB.
We will mainly be interested in κ-Souslin subsets of dT e, where T has no

terminal positions. As we have remarked on page 182, this involves no loss
of generality as far as determinacy results are concerned.

Lemma 4.3.1. Let T be a game tree and let κ be an infinite cardinal number.
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(a) If λ < κ and A ⊆ dT e is λ-Souslin, then A is κ-Souslin.

(b) Every Σ1
1 subset of dT e is κ-Souslin.

(c) The class of κ-Souslin subsets of dT e is closed under unions of size
≤ κ.

(d) The class of κ-Souslin subsets of dT e is closed under countable in-
tersections.

(e) Both the class of κ-Souslin subsets of dT e and the class of co-κ-
Souslin subsets of dT e (the class of complements of κ-Souslin subsets
of dT e) are closed under open-separated unions.

Proof. (a) is obvious, since if λ < κ then ωλ is a closed subset of ωκ.
It is immediate from the definitions that

A is ℵ0-Souslin ↔ A ∈ Σ1
1.

From this (b) follows with the help of (a).
The proofs of (c) and (d) are a trivial modification of the proof of the

proposition (b)(i) occurring in the proof of Theorem 2.2.3, and the proof of
(e) is a trivial modification that of (b)(ii) of the the proof of Theorem 2.2.3.
We leave them to the reader. (The reader who has skipped §2.2 may skip
(e).) �

To present and study an alternative characterization of κ-Souslin sets, we
need to make a few definitions:

If T is a game tree, then the field of T , field (T ), is

{p(i) | p ∈ T ∧ i < `h(p)}.

If X is a set, then a tree on X is a game tree T such that field (T ) ⊆ X.
If p and q are finite sequences of the same length , then we let

〈|p, q|〉 = 〈〈p(n), q(n)〉 | n < `h(p)〉.

If T is a game tree and p is a finite sequence, then let

T [p] = {q | 〈|p, q|〉 ∈ T}.

If T is a game tree and if x is an infinite sequence, then let

T (x) =
⋃
n∈ω

T [x � n].

Note that T (x) is always a game tree if it is nonempty.
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Lemma 4.3.2. Let T be a game tree, let A ⊆ [T ], and let κ be a cardinal
number. Then A is κ-Souslin if and only if there is a tree U on field (T )× κ
such that

A = {x ∈ [T ] | [U(x)] 6= ∅}.

Proof. If C witnesses that A is κ-Souslin, then let

U = {〈|p, s|〉 | (∃x⊇ p)(∃g ⊇ s) 〈x, g〉 ∈ C}.

If U is as in the statement of the lemma, then let

C = {〈x, g〉 | x ∈ [T ] ∧ (∀n ∈ ω) 〈|x � n, g � n|〉 ∈ U}.

�

Remark. Recall that a game tree is wellfounded if )�T is wellfounded on
T , i.e. if every nonempty subset X of T has an element p with no proper
extensions in X. The Axiom of Choice gives that T is wellfounded if and
only if there are no infinite plays in T . Thus the last line of the statement
of Lemma 4.3.2 can be reformulated as

A = {x ∈ [T ] | U(x) is not wellfounded}.

It will be useful to have a third way to express this relation between A and
U . For any tree T , any set Y , and any tree U on field (T ) × Y , let us say
that the T -projection of U is {x ∈ [T ] | U(x) 6= ∅}. Thus the last line of the
statement of Lemma 4.3.2 says that A is the T -projection of U .

We have already mentioned the fact that Σ1
1 is identical with the class

of all ℵ0-Souslin sets. We now show, as is essentially proved in Shoenfield
[1961], that all Π1

1 sets are ℵ1-Souslin.

Lemma 4.3.3. If T is a game tree and if A ⊆ dT e with A ∈ Π1
1, then A is

ℵ1-Souslin, and so A is κ-Souslin for every uncountable κ.

Proof. Let T be a game tree and let A ⊆ dT e with A ∈ Π1
1. Though the

last clause of the statement of the lemma follows from the preceding one, we
will directly verify the last clause. Let κ be an uncountable cardinal number.

The setA\[T ] is open and so is κ-Souslin by Lemma 4.3.1. By Lemma 4.1.1,
A ∩ [T ] ∈ Π1

1. By Lemma 4.3.1 again, it suffices to prove that A ∩ [T ] is κ-
Souslin. Without loss of generality, let us then assume that A ⊆ [T ].



4.3. HOMOGENEOUS TREES 199

Let the functions p 7→<p and x 7→<x be as given by Lemma 4.1.4.
We could get a tree U witnessing that A is κ-Souslin directly from the

tree T ∗ occurring in the proof of Lemma 4.1.6 by replacing the moves ai of
player II in T ∗ by 〈ai, 0〉. Instead we prefer to use a slightly different tree.
Let

U = {〈|p, s|〉 | p ∈ T ∧ s embeds (`h(p);<p) into (κ;<)}.

Let x ∈ [T ]. If g ∈ [T (x)], then g embeds (ω;<x) into (κ;<), and so
x ∈ A. If x ∈ A, then there is a g embedding the wellordering (ω;<x) into
(κ;<), and any such g belongs to [T (x)]. �

Remark. Not every ℵ1-Souslin set belongs to Π1
1. See Exercises 4.3.2 and

4.3.3.

A set is Souslin if it is κ-Souslin for some κ. Sometimes the word “Souslin”
is used in a more restricted sense, synonymous with “ℵ0-Souslin.” We will
mostly talk of Souslin sets in the context of the concepts that we now define.

Suppose U and V are countably complete ultrafilters on sets A and B
respectively. Suppose that χ : B → A is such that

(∀X ∈ U) {b ∈B | χ(b) ∈ X} ∈ V .

Then we say that V projects to U by χ. In this situation, we can define

iU ,V,χ :
∏
U

(V ;∈) ≺
∏
V

(V ;∈)

by
iU ,V,χ([[f ]]U) = [[χ∗(f)]]V ,

where
(χ∗(f))(b) = f(χ(b)).

We omit the routine verification that iU ,V,χ is well-defined and is an elemen-
tary embedding.

Let T be a game tree, let Y be a nonempty set, and let U be a tree on
field (T )× Y . We say that U is homogeneous for T if there is a system

〈Up | p ∈ T 〉

satisfying the following conditions:
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(1) Each Up is a countably complete ultrafilter on U [p].

(2) The Up are compatible: For all p ⊆ q ∈ T , Uq projects to Up by χq,p,
where χq,p : U [q]→ U [p] is given by χq,p(s) = s � `h(p).

(3) Let x ∈ [T ] and let 〈Zn | n ∈ ω〉 be such that each Zn belongs to Ux�n.
Then

[U(x)] 6= ∅ → (∃f : ω → Y )(∀n ∈ ω) f � n ∈ Zn.

Remarks:

(a) Implicit in clause (1) is the requirement that U [p] be nonempty for
each p ∈ T . There is an variant notion of homogeneity that does not make
this requirement. (See Exercise 4.3.5.)

(b) Each U [p] is a subset of `h(p)Y , and so each Up induces—and is essen-
tially the same as—an ultrafilter on `h(p)Y .

(c) The “→” in the last line of condition (3) can be replaced by a “↔,”
since any f satisfying the right hand side must belong to [U(x)].

There is an equivalent of condition (3) that will be of use to us later:
Suppose that (1) and (2) are satisfied. For p ∈ T , let πp = πUp :

∏
Up(V ;∈

) ∼= (Ult(V ;Up);∈). For p ⊆ q ∈ T , let

ip,q = πq ◦ iUp,Uq ,χq,p ◦ πp−1.

For each x ∈ [T ], let
(Mx; 〈ixx�n | n ∈ ω〉)

be the direct limit of the directed system of elementary embeddings

(〈Ult(V ;Ux�n) | n ∈ ω〉; 〈ix�m,x�n | m ≤ n ∈ ω〉).

(3′) (∀x ∈ [T ])([U(x)] 6= ∅ → Mx is wellfounded).

Lemma 4.3.4. If (1) and (2) hold of T and 〈Up | p ∈ T 〉 and if x ∈ [T ],
then x witnesses the falsity of (3) if and only if x witnesses the falsity of (3 ′).
Thus a tree U on field (T ) × Y is homogeneous for T if and only if there is
a system 〈Up | p ∈ T 〉 satisfying (1), (2), and (3 ′).

Proof. Let U be a tree on field (T )× Y and let 〈Up | p ∈ T 〉 satisfy (1) and
(2).
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Suppose first that x and 〈Zn | n ∈ ω〉 witness the failure of (3). Let

S = {s ∈ U(x) | (∀n≤ `h(s)) s � n ∈ Zn}.

S is a game subtree of U(x) with no infinite plays. Thus S is wellfounded.
By the elementarity of ix∅ ,

Mx |= ix∅(S) is wellfounded.

But let
sn = ixx�n(πx�n([[idU[x�n]]]Ux�n)).

It is easy to see that each sn ∈ ix∅(S) and that, for m ≤ n ∈ ω, sm ⊆ sn.
Thus

⋃
n∈ω sn belongs to [ix∅(S)], and so ix∅(S) is not really wellfounded. Thus

‖ix∅(S)‖ as computed in Mx is an “ordinal” of Mx that is not wellordered
by the membership relation ix∅(∈) of Mx. (See page 25 for the definition of
‖S‖.) This implies that Mx is not wellfounded.

Now suppose that x witnesses that (3′) fails. Let 〈zn | n ∈ ω〉 be an
infinite descending sequence with respect to ix∅(∈). For each n ∈ ω, let
mn and an ∈ Ult(V ;Ux�mn) be such that zn = ixx�mn(an). Without loss of
generality, we may assume that

(∀n′ ∈ ω)(∀n ∈ ω)(n′ < n→ mn′ < mn).

Let gn ∈ U [x�mn]V be such that

πx�mn([[gn]]Ux�mn ) = an.

For each n ∈ ω, let

Zmn+1 = {s ∈ U [x �mn+1] | gn+1(s) ∈ gn(s �mn)}.

For each m ∈ ω such that m is not of the form mn+1, let Zm = U [x � m].
For each m ∈ ω, we have that Zm ∈ Ux�m. But if f : ω → Y is such that
(∀m∈ω) f �m ∈ Zm, then 〈f(mn) | n ∈ ω〉 is an infinite descending sequence
with respect to ∈. Thus no such f exists, and we have a counterexample to
(3). �

Remark. By Lemma 4.3.4 and our earlier remark about (3), the “→” in
condition (3′) can be replaced by “↔.”
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For T a game tree, Y a set, and κ a cardinal number, a tree U on field (T )×
Y is κ-homogeneous for T if there is a system 〈Up | p ∈ T 〉 witnessing that
U is homogeneous for T and having the further property that each Up is
κ-complete.

Let T be a game tree and let A ⊆ [T ]. A is homogeneously Souslin if there
is a tree U on field (T )×Y for some Y such that U is homogeneous for T and
A is the T -projection of U . For cardinal numbers κ, A is κ-homogeneously
Souslin if it is the T -projection of a κ-homogeneous tree.

Remark. Note that the last of the definitions just given says nothing
about the size of the κ-homogeneous tree. A set can be κ-homogeneously
Souslin without being κ-Souslin.

Theorem 4.3.5. For any game tree T , all |T |+-homogeneously Souslin games
in T are determined.

Proof. Without loss of generality, we may restrict ourselves to game trees
T without terminal positions. Let T be such a tree and let A ⊆ [T ] be
|T |+-homogeneously Souslin. Let U and Y be such that U is a tree on
field (T )× Y , U is |T |+-homogeneous for T , and A = {x∈ [T ] | [U(x)] 6= ∅}.
Let 〈Up | p ∈ T 〉 witness that U is |T |+ homogeneous for T . Let T ∗ be the
game tree plays in which are as follows:

I 〈a0, b0〉 〈a2, b1〉 〈a4, b2〉 . . .
II a1 a3 . . .

Each 〈ai | i < n〉 must belong to T and each bi must belong to Y .
Define π : T ∗ → T and the induced π : [T ∗] → [T ] as in the proof of

Theorem 4.1.6.
Let A∗ be the set of plays in T ∗ such that each 〈〈ai, bi〉 | i < n〉 belongs

to U . The game G(A∗;T ∗) is closed and so is determined.
Suppose first that σ∗ is a winning strategy I for G(A∗;T ∗). Let σ be

a strategy for I in T gotten as in the proof of Theorem 4.1.6. If x is a
play consistent with σ, then there is an x∗ consistent with σ∗ such that
π(x∗) = x. Since x∗ ∈ A∗, x∗ gives an element 〈〈ai, bi〉 | i ∈ ω〉 of [U ] with
x = 〈ai | i ∈ ω〉. Thus 〈bi | i ∈ ω〉 ∈ [U(x)], and so x ∈ A.

Suppose now that τ ∗ is a winning strategy for II for G(A∗;T ∗). For each
p = 〈ai | i ≤ 2n〉 ∈ T and each s ∈ n+1Y , let

q∗(p, s) = 〈〈a0, s(0)〉, a1, . . . , 〈a2n, s(n)〉〉.
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Each q∗(p, s) is a position in T ∗ and is such that π(q∗(p, s)) = p. Define a
strategy τ for II in T setting

τ(p) = a ↔ {s ∈ U [p � n+ 1] | τ ∗(q∗((p, s)) = a} ∈ Up�n+1,

for p ∈ T with `h(p) = 2n + 1. Since Up�n+1 is |T |+-complete, τ is well-
defined. To see that τ is a winning strategy for II for G(A;T ), let x be a
play consistent with τ . Assume for a contradiction that x ∈ A, i.e. that
[U(x)] 6= ∅. For each n ∈ ω let

Zn+1 = {s ∈ U [x � n+ 1] | τ ∗(q∗(x � 2n+ 1, s)) = x(2n+ 1),

and let Z0 = {∅}. For each n ∈ ω, Zn ∈ Ux�n. Hence clause (3) in the
definition of homogeneous trees gives us an f : ω → Y such that f � n ∈ Zn
for every n ∈ ω. By the definition of τ , this means that

x∗ = 〈〈x(0), f(0)〉, x(1), 〈x(2), f(1), x(3), . . .〉

is a play in T ∗ consistent with τ ∗. Since x∗ ∈ A∗, we have our contradiction.
�

Theorem 4.3.6. If T is a game tree and κ is a measurable cardinal greater
than |T |, then every Π1

1 subset of [T ] is κ-homogeneously Souslin and is
witnessed to be κ-homogeneously Souslin by a tree on field (T )× κ.

Proof. Let T be a game tree, let κ > |T | be a measurable cardinal, let V be
a uniform normal ultrafilter on κ, and let A ⊆ [T ] with A ∈ Π1

1. Let p 7→<p

and x 7→<x be as given by Lemma 4.1.4. Let U be defined as in the proof
of Lemma 4.3.3:

U = {〈|p, s|〉 | p ∈ T ∧ s embeds (`h(p);<p) into (κ;<).

Let p ∈ T . For each v ∈ [κ]`h(p), there is a unique bijection spv : `h(p)→ v
such that 〈|p, spv|〉 ∈ U . Define an ultrafilter Up on U [p] by

X ∈ Up ↔ {v ∈ [κ]`h(p) | spv ∈ X} ∈ V [`h(p)].

We know from the proof of Lemma 4.3.3 that A is the T -projection of
U . The system 〈Up | p ∈ T 〉 obviously has property (1) in the definition of
homogeneity, and it is easy to check that it has property (2). For (3), let
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x ∈ [T ] and let 〈Zn | n ∈ ω〉 be such that each Zn ∈ Ux�n. Fix for the moment
n ∈ ω. Let

Z̄n = {v ∈ [κ]n | sx�nv ∈ Zn}.

By the definition of Ux�n, we have that Z̄n ∈ V [n]. By the definition of V [n],
let Xn ∈ V be such that [Xn]n ⊆ Z̄n. Now let X =

⋂
n∈ωXn. Thus X ∈ V

and, for all n, [X] ⊆ Z̄n. Assume that [U(x)] 6= ∅. Then x ∈ A, and so
<x is a wellordering of ω. Let f embed (ω;<x) into (X;<). To see that f
is as required by (3), let Let n ∈ ω. We have that f � n ∈ U [x � n] and
range (f � n) ∈ Z̄n. But then f � n ∈ Zn. �

Remark. The name “homogeneous tree” may seem not to be descriptive
of the concept: It is not clear that homogeneous trees need be homogeneous
in any standard sense. Historically, the paradigm example of a homogeneous
tree was essentially the tree U of the proof just given. The tree U is homo-
geneous in the straightforward sense that

(∀X ⊆ κ)(|X| = κ→ U �X ∼= U),

where U �X = U ∩{〈|p, s|〉 | range (s) ⊆ X}. A related property is that mem-
bership in U [p] of s ∈ `h(p)κ depends only on the order type of the sequence
s. It is these homogeneity properties that made possible the verification of
(3). A.S. Kechris and Martin began applying “homogeneous” to trees like U
and trees whose fields consist of transfinite sequences and which have similar
homogeneity properties. Such trees arose in work on the Axiom of Determi-
nacy by Kenneth Kunen and later by Martin. Finally Kechris and Martin
independently abstracted from the particular class of examples and began
using “homogeneous tree” in the current sense (Kechris in [Kechris, 1981],
and Martin in lectures). The idea is that a tree must have some kind of
homogeneity if (3) in the definition of homogeneous trees is to be satisfied.
The definition leaves the nature of this homogeneity unspecified.

Exercise 4.3.1. Let A ⊆ dT e. Show that

(∃n ∈ ω)A is n-Souslin ↔ A is 1-Souslin ↔ A is closed.

Exercise 4.3.2. A subset X of dT e belongs to Σ1
2 if there is a subset B

of dT e × ωω such that B ∈ Π1
1 and A = pB. Prove that every A ∈ Σ1

2 is
ℵ1-Souslin.
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Exercise 4.3.3. It is relatively consistent with the ZFC axioms that in
countable trees Σ1

2 is identical with the class of ℵ1-Souslin sets. The hy-
pothesis MAℵ1 + (ω1)L = ω1, for example, implies that this is the case. (See
[Martin and Solovay, 1970].)

(a) Show, on the other hand, that the continuum hypothesis implies that
every subset of dT e is ℵ1-Souslin if T is countable.

(b) Deduce that it is relatively consistent with the ZFC axioms that not
every ℵ1-Souslin subset of ωω belongs to Σ1

2.

(c) Show that the determinacy of all Π1
1 games in countable trees implies

that not every ℵ1-Souslin subset of ωω belongs to Σ1
2

Hint. First prove that, for any game tree T , every subset A of dT e is |A|-
Souslin. This gives (a). For (b), use (a) and the fact that the class of all Σ1

2

subsets of ωω has size 2ℵ0 . For (c) prove that the determinacy of all Π1
1 games

in <ωω implies that every uncountable Σ1
2 subset of ω2 has a perfect subset.

To do this, let B ∈ Π1
1 witness that A ⊆ ω2 belongs to Σ1

2. Use the game of
Exercise 4.1.1 modified so that I’s moves have extra components belonging
to ω. I wins the modified game if and only if the extra components form a
y such that 〈

⋃
i∈ω si, y〉 ∈ B. (This trick, called unfolding, is due to Robert

Solovay, though this is not his application of it.) To complete (c) construct,
by a diagonalization, an uncountable subset of ω2 without a perfect subset,
then from this get a set of size ℵ1 with no perfect subset.

Exercise 4.3.4. Show that it is consistent with the ZFC axioms that the
only homogeneously Souslin subset of [T ] is [T ] itself. (But see Exercise 4.3.5.)

Exercise 4.3.5. Redefine the concept of a tree’s being homogeneous for T
as follows: Replace 〈Up | p ∈ T 〉 by 〈Up | p ∈ T ′〉, where T ′ is allowed to
be an arbitrary subtree of T . Require that if x ∈ [T ] and [U(x)] 6= ∅ then
x � n ∈ T ′ for every n ∈ ω. Replace “T” by “T ′” in clause (2) of the original
definition.

Prove in ZFC that every closed set of [T ] is homogeneously Souslin in this
modified sense. Prove that if a measurable cardinal exists then the same sets
are homogeneously Souslin under the original and the modified definitions.

The modified definition is perhaps more natural, and it has other virtues.
We do not adopt it as our official definition simply because it would make
our notation more cumbersome.



206 CHAPTER 4. Π1
1 GAMES

4.4 Sharps and Π1
1 Determinacy

We have already seen in Exercise 4.1.1 that the determinacy of all Π1
1 games is

not provable from the ZFC axioms alone. On the other hand, Theorem 4.1.6
shows that it is provable if we adjoin the hypothesis that there is a measurable
cardinal. That hypothesis is, however, stronger than necessary. When I told
Robert Solovay the proof from a measurable cardinal, he observed that the
proof needed only the existence of 0#.1

Similarly the proof—which we will present in this section—of Π1
1 deter-

minacy in a tree T goes through in ZFC plus the hypothesis that every subset
of |T | has a sharp. A theorem of Harrington shows that this hypothesis is op-
timal for countable T in that it follows from the determinacy of all Π1

1 games
in <ωω. (See Exercise 4.4.1.) For T = <ωω, this equivalence is lightface. (See
Theorem 4.4.3 and Exercise 4.4.1.)

We first prove a well-known lemma about the existence of definable strate-
gies for open and closed games.

If T is a game tree, then let us say that a subset D of T generates an
open subset A of dT e if

A = {x ∈ dT e | (∃d ∈D) d ⊆ x}.

Lemma 4.4.1. Let T be a game tree and let A ⊆ dT e. Let D ⊆ T be such
that D generates A or D generates ¬A. Let M be any transitive class model
of ZFC such that T ∈M and D ∈M . Let ≺ be any wellordering of field (T )
that belongs to M . Then there is a strategy σ ∈ M that is definable in M
from T , D, and ≺ and is a winning strategy for G(A;T ). Moreover, M |=
“σ is a winning strategy for G({x ∈ dT e | (∃d ∈D) d ⊆ x};T ).”

Proof. We may assume that D generates A.
We now give what is essentially the construction of Exercise 1.2.4. For

each ordinal number α, we define Pα, a set of positions of even length in T .
The definition proceeds by transfinite induction on α. Let p ∈ P0 if and only
if (∃d ∈ D) d ⊆ p. For α > 0, let p ∈ Pα if and only if p ∈ P0 or there is a
Move q at p such that either (i) q ∈ D ∩ dT e or (ii) q /∈ dT e and, for every
Move r at q, r ∈

⋃
β<α Pβ.

1I should have given credit for this to Solovay in [Martin, 1970].
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If we turn this inductive definition into an explicit definition in the stan-
dard way, then it is absolute for M : For α ∈ Ord ∩M , the Pα defined in M
is the same as that defined in V .

It is clear that
β < α→ Pβ ⊆ Pα.

Since each Pα ⊆ T , Comprehension in M gives that
⋃
α∈Ord∩M Pα ∈ M .

By Σ1 Replacement in M , there must then be an ordinal γ ∈ M such that
Pγ = Pγ+1. From this it follows that (∀α ≥ γ)Pα = Pγ. Let P∞ = Pγ.

Suppose first that ∅ ∈ P∞. Define a strategy σ for I as follows: If p ∈
P∞ \ P0, Let a be the ≺-least element of the field of T such that either (i)
p_〈a〉 ∈ D ∩ dT e or (ii), for every Move r at p_〈a〉,

r ∈ P∞ ∧ µβ (r ∈ Pβ) < µβ (p ∈ Pβ).

If p does not belong to P∞ \ P0, then let σ(p) be the ≺-least element of
field (T ). Evidently σ satisfies the definability condition. It is easy to show
by induction that every position consistent with σ belongs to P∞. To see
that σ is a winning strategy for G(A;T ), let x be a play consistent with σ.
For n ∈ ω and 2n ≤ `h(x), let

βn = µβ (x � 2n ∈ Pβ).

For each such n, it follows from the definitions that one of the following holds:

(a) βn = 0 and so (∃m≤ 2n)x �m ∈ D;

(b) `h(x) = 2n+ 1 and x ∈ D;

(c) `h(x) ≥ 2n+ 2 and βn+1 < βn.

Since (c) cannot hold for every n ∈ ω, there is an n for which (a) or (b) holds.
Thus x ∈ A. Notice that the argument shows that (∃d ⊆ x) d ∈ D. Hence in
M the strategy σ is winning in the game G({x ∈ dT e | (∃d ∈D) d ⊆ x};T ).

Now suppose that ∅ /∈ P∞. If p ∈ T \ P∞ and if `h(p) is even, then for
every Move q at p either q ∈ dT e\A or else there is an a ∈ field (T ) such that
q_〈a〉 ∈ T \ P∞. Define a strategy σ for II by letting σ(q) be the ≺-least a
such that q_〈a〉 ∈ T \ P∞ if such an a exists and 0 otherwise. It is easy to
check that σ has the required properties. �

Remark. The proof does not really require that M is a model of full ZFC.
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Theorem 4.4.2. Let λ be an infinite cardinal number. Assume that

(∀a⊆ λ) a# exists.

Then, for every game tree T such that |T | ≤ λ, all Π1
1 games in T are

determined.

Proof. Let T be a game tree with |T | ≤ λ. Without loss of generality,
assume that field (T ) ⊆ λ and that T has no terminal positions. Let A ⊆
dT e = [T ] with A ∈ Π1

1. Let p 7→<p and x 7→<x be as given by Lemma 4.1.4.
Let T ∗ be defined exactly as in the proof of Theorem 4.1.6, but with

κ = λ+. Let A∗ ⊆ dT ∗e be defined as in the proof of Theorem 4.1.6. As in
that proof, A∗ is closed and so G(A;T ∗) is determined.

The proof that if I has a winning strategy for G(A∗;T ∗) then I also has
a winning strategy for G(A;T ) is exactly like the corresponding part of the
proof of Theorem 4.1.6.

Suppose that G(A∗;T ∗) is a win for II.
Let g : <ωλ× ω × ω → λ be one-one and such that g ∈ L. Let

a = {g(〈p,m, n〉) | p ∈ T ∧ m <p n}.

Since
T = {p ∈ <ωλ | g(p, 1, 0) ∈ a},

we have that T ∈ L[a] and that T is definable from a in L[a]. Since T ∗ is
definable from T and λ+ in any transitive class model of ZFC to which both
T and λ+ belong, it follows that T ∗ is definable from a and λ+ in L[a]. Let
D∗ be the set of all p∗ ∈ T ∗ such that, for some n with 2n < `h(p∗), the
function i 7→ ξi given by p∗ does not embed (n + 1;<π(p∗)�n+1) into (λ+;<).
We also have that D∗ is definable from a and λ+ in L[a]. Let ≺∗ be the
restriction to field (T ∗) of the wellordering of Ord∪ (Ord×Ord) which is the
natural ordering of Ord followed by the lexicographic ordering of Ord×Ord.
The relation ≺∗ is definable from a and λ+ in L[a].

Let τ ∗ be the σ given by Lemma 4.4.1 with T ∗ for T , A∗ for A, L[a] for
M , D∗ for D, and ≺∗ for ≺. Since G(A∗;T ∗) is a win for II, τ ∗ is a strategy
for II. Thus τ ∗ is a winning strategy for II for G(A∗;T ∗), and τ ∗ is definable
from a and λ+ in L[a].

Define the positions q∗(p, v) as in the proof of Theorem 4.1.6. It is easy
to see that the function q∗ is definable from a and λ+ in L[a].
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By the hypothesis of the theorem, a# exists. Let Ca be the Silver class
of indiscernibles for L[a], a. Let α 7→ caα be the order-preserving bijection
between Ord and Ca. It follows from (iii) of Lemma 3.4.18 that caλ+ = λ+.

Define a strategy τ for II in T as follows. For n ∈ ω and p ∈ T with
`h(p) = 2n+ 1, let

τ(p) = τ ∗(q∗(p, {ca0, . . . , can})).

By indiscernibility and the fact that range (τ ∗) ⊆ λ, we have that

(∀v ∈ [Ca ∩ λ+]n+1) τ(p) = τ ∗(q∗(p, v)).

To show that τ is a winning strategy for G(A;T ), let x be a play consistent
with τ . Assume for a contradiction that x ∈ A. Then <x is a wellordering of
ω. Let i 7→ ξi embed (ω;<x) into (Ca∩λ+;<). Let x∗ be the play in T ∗ with
these values of the ξi and with π(x∗) = x. As in the proof of Theorem 4.1.6,
one can show that x∗ is consistent with τ ∗, contradicting the assumption that
x ∈ A. �

Here is the lightface version of Theorem 4.4.2.

Theorem 4.4.3. If 0# exists then all Π1
1 games in <ωω are determined.

Proof. Let A ⊆ ωω with A ∈ Π1
1. Let p 7→<p and x 7→<x be as given by

Lemma 4.1.5. Proceed as in the proof of Theorem 4.4.2, with T = <ωω and
λ = ω. The a we get is definable in L. Thus L[a] = L and the Silver indis-
cernibles for L are the Silver indiscernibles for L[a], a. Using the existence of
0#, we can then proceed as in the proof of Lemma 4.4.2. �

Exercise 4.4.1. Show that the determinacy of all Π1
1 games in <ωω implies

that 0# exists. From this, the main result of [Harrington, 1978], and from
Theorem 4.4.3, it follows that Π1

1 determinacy is equivalent with the existence
of 0#.

Hint. First show that the existence of 0# follows from the existence of an
a ∈ ωω such that every a-admissible ordinal is a cardinal in L. (This result
is due to Jack Silver, but the proof we now sketch is due to J.B. Paris.)

Let a ∈ ωω be such that every a-admissible is a cardinal in L. Work in
L[a]. Let X ≺ Lω3 [a] with |X| = ℵ1 and ωX ⊆ X. Let π : X ∼= Lα[a]. Note
that α is a-admissible.
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Let j = π−1 : Lα[a] ≺ Lω3 [a]. Let γ = crit(j). Let

U = {Y ∈ Lα[a] | Y ⊆ γ ∧ γ ∈ j(Y )}.

Show that U is a uniform normal L-ultrafilter on γ: i.e., that U is a filter on
γ, that every subset of γ in L belongs to U or else its complement does, that
for all f : γ → P(γ) with f ∈ L the set {β < γ | f(β) ∈ U} belongs to L,
and that U is uniform and normal in the obvious senses.

Prove that Rowbottom’s result, Lemma 3.1.8, holds for U in the following
sense. If n ∈ ω and Z ∈ L is a subset of [γ]n, then there is a Y ∈ U ∩ L
such that either [Y ]n ⊆ Z or [Y ]n ∩ Z = ∅. Use this fact and the countable
closure of X to get a set of indiscernibles for L of size γ.

Remark. The notion of an L-ultrafilter is from [Kunen, 1968]. There
Kunen proves that the existence of 0# follows from the existence of an ele-
mentary embedding j : L ≺ L. Kunen’s proof begins by using j to define
an L-ultrafilter U . But it then proceeds by forming iterated iterated ul-
trapowers Ultα(L;U), showing that they are all wellfounded, and showing
that {iU 0,β(γ) | β ∈ Ord} is a closed unbounded class of indiscernibles for L.
Kunen’s method also works here, and it could replace the argument suggested
in the preceding paragraph.

Now consider the following game G in <ωω. For each play of G let I’s
part of the play code a relation R in ω and let II’s part code a relation E
in ω. If R is not a wellordering of ω, then I loses. If R is a wellordering of
ω, let β be its order type. Then II wins if and only if (ω;E) is a model of
Extensionality and there is a

g : Lβ → ω

that embeds (Lβ;∈) into (ω;E) as an initial segment, i.e. such that

(a) (∀u ∈ Lβ)(∀v ∈ Lβ)(u ∈ v ↔ g(u)E g(v));

(b) (∀u ∈ Lβ)(∀mE g(u))(∃v ∈ Lβ)m = g(v).

Note that g is unique if it exists.
Show that G is Π1

1. Assume that σ is a winning strategy for I for G.
Show that there is a countable ordinal γ such that the β given by any play
consistent with σ is smaller than γ. Use this fact to get a contradiction.
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Assume Π1
1 determinacy, getting that G is a win for II. Let τ be a winning

strategy for II for G. Let a ∈ ωω code τ . To show that 0# exists, it is enough
to prove that every a-admissible ordinal is a cardinal in L. By absoluteness
under the collapse of cardinals, it is enough to prove that every countable
a-admissible ordinal is a cardinal in L.

Suppose that γ < β < ω1, that b is a subset of Lγ belonging to Lβ, and
that z is a play consistent with τ whose associated R is a wellordering of ω
of order type β. Show that b ∈ Lγ+ω[z]. To do this, first let g witness that z
is a win for II and prove that g � Lγ ∈ Lγ+ω.

For each ordinal α, let (Q(α);≤α) be the following partial ordering: The
members of Q(α) are those pairs 〈t, h〉 such that

(i) t is a finite tree on ω;

(ii) h : t→ ωα ∪ {∞};
(iii) h(∅) =∞;

(iv) (∀r ∈ t)(∀s ∈ t)((r ( s ∧ h(r) 6=∞) → h(s) < h(r)).

Let
〈t, h〉 ≤α 〈t′, h′〉 ↔ (t′ ⊆ t ∧ h � t′ = h′).

Show that if G is sufficiently Q(α)-generic and T and H are respectively
the union of all the first components of elements G and the union of all the
second components of elements of G, then (1) T is a tree on ω, (2) H is a
surjection from T onto ωα ∪ {∞}, and (3) (∀s ∈ T )H(s) = ‖s‖T . (Here
‖s‖T is ‖Ts‖ if Ts is wellfounded and is ∞ otherwise.)

If p = 〈t, h〉 ∈ Q(α) and ξ < α, define p(ξ) ∈ Q(ξ) by p(ξ) = 〈t, h′〉,
where

h′(s) =

{
h(s) if h(s) < ωξ;
∞ if h(s) ≥ ωξ

and where we consider ∞ > β for every ordinal β.
Let p ∈ Q(α), p′ ∈ Q(α′), and ξ ≤ min{α, α′}. Suppose that p(ξ + 1) =

p′(ξ + 1). Prove that

(∗) (∀q ≤α p)(∃q′ ≤α′ p′) q(ξ) = q′(ξ).

Define a class S, the class of ranked sentences, and an ordinal rank of
each element of S as follows:

(a) If s ∈ <ωω, then s ∈ T is a ranked sentence of rank 1.
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(b) If S ⊆ S then
∧
S ∈ S and

rank(
∧
S) = sup{rank(ϕ) + 1 | ϕ ∈ S}.

(c) If ϕ ∈ S, then ¬ϕ ∈ S and rank(¬ϕ) = rank(ϕ) + 1.

For any tree T on ω, each member of S has an obvious interpretation.
Define a forcing relation ‖−α between elements p of Q(α) and sentences

ϕ ∈ S inductively as follows:

(a) p ‖−α s ∈ T if and only if p = 〈t, h〉 and

s ∈ t ∨ (∃r ⊆ s)(`h(r) + 1 = `h(s) ∧ h(r) 6= 0).

(b) p ‖−α
∧
S if and only if (∀ϕ ∈ S) p ‖−α ϕ.

(c) p ‖−α ¬ϕ if and only if (∀q ≤α p) q 6‖−α ϕ.

Prove that if ξ ≤ α, ξ ≤ α′, p ∈ Qα, p′ ∈ Qα′ , and ϕ is a sentence of rank
ξ, then

(†) p(ξ) = p′(ξ) → (p ‖−α ϕ ↔ p′ ‖−α′ ϕ).

Proceed by induction on ξ, using (∗). (This result is from [Steel, 1976], where
the partial orderings Q(α) are introduced.)

Let α < ω1 be a-admissible. Assume for a contradiction that α is not a
cardinal in L. Then there are ordinals γ < α and β < ω1 and there is a set
b ∈ Lβ such that b ⊆ γ and b codes a wellordering of γ of order type α. Let
G be Q(β+ 1)-generic over Lωβ+ω[a]. Let 〈T,H〉 be given by G. There is an
s ∈ T such that ‖s‖T = β. Hence there is an x ∈ ωω such that x is recursive
in T and x codes a wellordering of ω of order type β. Let z be the play of G
consistent with τ in which I plays x. Then b ∈ Lγ+ω[z] and so b ∈ Lγ+ω[a, T ].
Prove that, for some n ∈ ω, there is in Lγ+ω[a] a function that associates
with each δ < γ a ranked sentence which we call δ ∈ b such that

(i) rank(δ ∈ b) < ω(γ + n);

(ii) δ ∈ b is true for T if and only if δ ∈ b.

To get the sentence δ ∈ b, let n > 0 be such that b ∈ Lγ+n[a, T ]. There is a
formula ψ(v) with parameters from Lγ+n−1[a] that defines b over Lγ+n−1[a, T ].
Show that for δ < γ there is a ranked formula of rank < ω(γ + n) that is
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true for any T ′ if and only if Lγ+n−1[a, T ′] |= ψ[δ]. Consider the ranked
sentence ϕ: ∧

({δ ∈ b | δ ∈ γ ∩ b} ∪ {¬ δ ∈ b | δ ∈ γ \ b}).

The sentence ϕ belongs to Lβ+ω[a] and has some rank ξ < ω(γ+ω). Since ϕ
is true for T , there is some p ∈ G such that p ‖−β+1 ϕ. By (†) it follows that
p(ξ) ‖−ξ ϕ. Hence p(ξ) ‖−ξ δ ∈ b if δ ∈ b and p(ξ) ‖−ξ ¬ δ ∈ b if δ /∈ b Since
{δ ∈ b | δ ∈ γ} belongs to Lγ+ω[a], it follows that b ∈ Lγ+ω[a]. But b codes
a wellordering of γ of order type α, and so this contradicts the a-admissiblity
of α.

Exercise 4.4.2. If every Π1
1 game in ωω is determined, then a# exists for

every a ∈ ωω.

The proof is like that of Exercise 4.4.1. The conclusion of the theorem—
and so its hypothesis—implies that every countable subset of ω1 has a sharp.
I don’t know whether the converse of Theorem 4.4.2 is true.
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Chapter 5

α–Π1
1 Games

Let T be a game tree and let α be a countable ordinal. Recall that a subset
A of dT e belongs to α–Π1

1, the αth level of the difference hierarchy on Π1
1, if

there exists 〈Aβ | β < α〉 such that each Aβ ⊆ dT e and such that

(1) each Aβ ∈ Π1
1;

(2) (∀x ∈ dT e)(x ∈ A ↔ µβ(x /∈ Aβ ∨ β = α) is odd).

Recall also that Diff(Π1
1) =

⋃
α<ω1

α–Π1
1. These definitions make sense for

arbitrary topological spaces in place of dT e.
In this chapter we aim to deduce α–Π1

1 determinacy from the weakest
possible large cardinal hypotheses. Ultimately we will succeed in this. We
will get implications whose converses are also theorems of ZFC.

Because such optimal results require the technical concepts of sharps and
iterated ultrapowers, we will begin with stronger hypotheses than we need.
In §5.1 we deduce (ωα)–Π1

1 determinacy for games in T from the existence
of (an increasing sequence of) α measurable cardinals larger that |T |. This
proof makes use of the concepts and results of §4.2. It needs no material on
measurable cardinals beyond what is found in §3.1.

In §5.2 we use iterated ultrapowers and ∆1
1 determinacy (Theorem 2.2.8)

to prove the determinacy of all games G(A;T ) such that both A and ¬A are
(ω2α + 1)–Π1

1 from the existence of α measurable cardinals larger than |T |.
A little use is made in §5.2 of the concept of relative constructibility that we
introduced in §3.4.

In §5.3 we prove the determinacy of α–Π1
1 games in T for all α < ω2 from

the existence of a# for all subsets a of |T |. We then combine this proof with

215
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the methods of §5.2 to get that

(∀β < ω2(α + 1)) all β–Π1
1 games in T are determined

from the existence, for each b ⊆ |T |, of indiscernibles for an inner model M
such that b ∈M and such that M |= “there are α measurable cardinals larger
than |T |.” The theorems of §5.3, including the lightface versions of those
just mentioned, are optimal: the converses also hold. (See Exercises 5.3.4
and 5.3.5.) All the results in the text of §5.1–§5.3 are due to the author. All
except Theorems 5.2.31 and 5.2.32 were proved during the 1970’s. Several of
the exercises of §5.3 are concerned with work of Derrick DuBose giving deter-
minacy equivalents of large cardinal hypotheses stronger than the existence
of 0# and weaker than the existence of a measurable cardinal.

In §5.4 we derive from large cardinal hypotheses the determinacy of games
in Σ0

1(Π1
1) (the class of countable unions of Boolean combinations of Π1

1

sets) and a little more. In Exercise 5.4.2, this is extended to games in
Diff(Π0

1(Π1
1)), where Π0

1(Π1
1) is the dual class of Σ0

1(Π1
1). The large car-

dinals involved are those in the hierarchy of generated from measurable car-
dinals by the operation of taking measurable limits. These results, due to
John Simms, are mostly known to be optimal. For converses, due mainly to
Simms and John Steel, see Exercises 5.4.5, 5.4.3, and 5.4.4.

5.1 α–Π1
1 Determinacy

In this section we will use Lemma 4.2.2 to construct semicoverings unraveling
sets belonging to Diff(Π1

1). To do this we first give some operations on
semicoverings analogous to the operations on coverings introduced in §2.1.

Suppose that C1 = 〈T1, π1, φ1,Ψ1〉 is a semicovering of T0 and that C2 =
〈T2, π2, φ2,Ψ2, 〉 is a semicovering of T1. We define the composition C1 ◦ C2

of C1 and C2 to be

〈T2, π1 ◦ π2, φ1 ◦ φ2,Ψ〉,

where Ψ(σ, x) = Ψ2(σ,Ψ1(φ2(σ), x)). (This definition implicitly determines
domain (Ψ).) Here is an analogue of Lemma 2.1.5:

Lemma 5.1.1. Let T0 be a game tree with taboos. Let A, B0, and B1 be
subsets of dT0e. Let C1 = 〈T1, π1, φ1,Ψ1〉 be an (A,B0)–semicovering of T0

and let C2 = 〈T2, π2, φ2,Ψ2, 〉 be a (π−1
1 (A),π−1

1 (B1))–semicovering of T1.
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Then C1 ◦ C2 is an (A,B0 ∩B1) semicovering of T0. If k1 and k2 are natural
numbers and C1 and C2 are k1- and k2-semicoverings respectively, then C1 ◦C2

is a min{k1, k2}-semicovering.

Proof. The proof is routine, so we omit it, except for the verification that
C1 ◦ C2 is an A semicovering. For that verification, let σ ∈ S(T2) and let
x ∈ dT0e witness that φ1(φ2(σ)) is not a winning strategy for G(A; T0). Then
Ψ1(φ2(σ), x) is defined, and clause (d) in the definition of a semicovering
implies that Ψ1(φ2(σ), x) witnesses that φ2(σ) is not a winning strategy for
G(π−1

1 (A); T1). Thus Ψ2(σ,Ψ1(φ2(σ), x)) is defined, as required. �

The next lemma is the analogue of Lemma 2.1.6.

Lemma 5.1.2. Let k ∈ ω. Let Ti, i ∈ ω, be game trees with taboos. Let A
and Bi, i ∈ ω, be subsets of dT0e. Let 〈kj,i, πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉 be such
that

(1) if i ≤ j ∈ ω then Cj,i = 〈Tj, πj,i, φj,i,Ψ
i,j〉 is a

(π0,i
−1(A),π0,i

−1(
⋂

i≤n<j

(Bn))

kj,i-semicovering of Ti;

(2) if i1 ≤ i2 ≤ i3 ∈ ω then Ci3,i1 = Ci2,i1 ◦ Ci3,i2;

(3) infi≤j∈ωkj,i ≥ k;

(4) limj∈ωinfj′≥jkj′,j =∞; i.e., for all n ∈ ω there is an i ∈ ω such that
kj′, j ≥ n for all j′ ≥ j ≥ i.

Then there is a T∞ with |T∞| ≤
∑

i∈ω |Ti| and there is a system

〈π∞,i, φ∞,i,Ψi,∞ | i ∈ ω〉

such that each C∞,i = 〈T∞, π∞,i, φ∞,i,Ψi,∞〉 is a

(π∞,i
−1(A),π∞,i

−1(
⋂

i≤n∈ω

Bn))

k-semicovering of Ti and such that, for i ≤ j ∈ ω, C∞,i = Cj,i ◦ C∞,j.
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Proof. The proof is similar to that of Lemma 2.1.6, and we omit it.
�

We begin for simplicity’s sake with an application of Lemmas 4.2.2, 5.1.1,
and 5.1.2, getting (by an appeal to Lemma 4.2.1) a proof of α–Π1

1 determi-
nacy for games in T from the existence of α measurable cardinals larger than
|T |. Later in this section, we will use Lemma 4.2.3 to improve the α of the
conclusion to ωα. In §5.2 we will use more sophisticated methods to get still
another factor of ω.

We first document a simple but useful fact about (A,B) semicoverings
and α–Π1

1 sets.

Lemma 5.1.3. Let T be a game tree with taboos. Let α be a countable
ordinal and let 〈Aβ | β < α〉 witness that A ∈ α–Π1

1. Let γ < α and let A′

be the set witnessed to belong to γ–Π1
1 by 〈Aβ | β < γ〉.

Then every (A′,
⋂
β<γ Aβ) semicovering of T is an (A,

⋂
β<γ Aβ) semicov-

ering of T.

Proof. Let C = 〈T̃, π, φ,Ψ〉 be an (A′,
⋂
β<γ Aβ) semicovering of T. Let

σ̃ ∈ S(T̃ ) and let x be a play in T consistent with φ(σ̃) such that x is a
loss in G(A; T) for the player for whom σ̃ is a strategy. We must show
that 〈σ̃, x〉 ∈ domain (Ψ). If x /∈

⋂
β<γ Aβ, then x is a loss for the same

player in G(A′; T), and so the fact that C is an A′ semicovering gives that
〈σ̃, x〉 ∈ domain (Ψ). If x ∈

⋂
β<γ Aβ, then the fact that C is an (A′,

⋂
β<γ Aβ)

semicovering gives directly that 〈σ̃, x〉 ∈ domain (Ψ). �

Theorem 5.1.4. Let α be a countable ordinal ≥ 1. Let T be a game tree with
taboos and let 〈κβ | β < α〉 be a strictly increasing sequence of measurable
cardinals with κ0 > |T |. Let 〈Aβ | β < α〉 witness that A ⊆ dTe belongs
to α–Π1

1. Let k ∈ ω. Then there is an (A,
⋂
β<αAβ) k-semicovering C =

〈T̃, π, φ,Ψ〉 of T such that |T̃ | ≤ supβ<α κβ.

Proof. We proceed by induction on α. Assume then that the lemma holds
for every β with 0 < β < α, for all trees, all sequences of measurable cardi-
nals, all sequences of Π1

1 sets, and all natural numbers.

Suppose first that α = γ + 1. We consider only the case that γ is even.
The other case is similar, with the roles of the two players reversed and with
the appeal to Lemma 4.2.2 (i) replaced by an appeal to Lemma 4.2.2 (ii).
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If γ > 0, we apply our induction hypothesis to T, to 〈κβ | β < γ〉, to
〈Aβ | β < γ〉, to the associated γ–Π1

1 set A′, and to k, getting

C ′ = 〈T′, π′, φ′,Ψ′〉.

If γ = 0, let C ′ = 〈T′, π′, φ′,Ψ′〉 be the trivial covering of T. If γ > 0 then
C ′ is an (A′,

⋂
β<γ Aβ) k-semicovering of T such that |T ′| ≤ supβ<γ κβ < κγ.

Whether or not γ > 0, we have that |T ′| < κγ. By Lemma 5.1.3, we get that
C ′ is an (A,

⋂
β<γ Aβ) semicovering of T.

We next apply Lemma 4.2.2 (i) with T′ as the T of that lemma, with
π′−1(Aγ) as the B, with κγ as the κ, and with k as the k. Let C∗ =
〈T∗, π∗, φ∗,Ψ∗〉 be the (π′−1(Aγ),π

′−1(Aγ)) k-semicovering of T′ given by
that lemma. Since every normal play in T′ belongs to π−1(

⋂
β<γ Aβ), we

get that π′−1(A) = π′−1(Aγ). Thus C∗ is also a (π′−1(A),π′−1(Aγ)) k-
semicovering of T′. By Lemma 5.1.1, we have that C = C ′ ◦ C∗ is an
(A,
⋂
β<αAβ) k-semicovering of T. Since |T ∗| ≤ κγ, C satisfies the condi-

tions of the lemma.

Now suppose that α is a limit ordinal. Let 〈ξi | i ∈ ω〉 be an increasing
sequence of nonzero ordinals such that supi∈ωξi = α.

We are going to do a construction analogous to the one that occurs in
the proof of Lemma 2.1.8. Let T0 = T. By induction on j′ ∈ ω, we define
Tj′ and Cj′,j = 〈Tj′ , πj′,j, φj′,j,Ψ

j,j′〉 for j ≤ j′ such that Cj′,i = Cj,i ◦ Cj′,j
for all i ≤ j ≤ j′, such that each Cj′,j is a (πj,0

−1(A),πj,0
−1(
⋂
ξj≤β<ξj′

Aβ))

(k + j)-semicovering of Tj, such that |Tj′| ≤ supβ<ξj′κβ for j′ > 0, and such

that Cj′,j′ is the trivial covering.
Suppose that we have defined Tj′ and the Cj′,j for all j′ ≤ n. For γ < α let

A′γ be the subset of dTe witnessed to be γ–Π1
1 by 〈Aβ | β < γ〉. By our induc-

tion hypothesis, let Cn = 〈T∗, π∗, φ∗,Ψ∗〉 be a (πn,0
−1(A′ξn+1

),πn,0
−1(
⋂
ξn≤β<ξn+1

Aβ))
(k + n)-semicovering of Tn such that |T ∗| ≤ supβ<ξn+1

κβ. By Lemma 5.1.3,
we have that Cn is a (πn,0

−1(A),πn,0
−1(
⋂
ξn≤β<ξn+1

Aβ)) (k+n)-semicovering
of Tn. For j ≤ n, let Cn+1,j = Cn,j ◦ Cn; let Cn+1,n+1 be the trivial covering.
The required properties of the Cn+1,j follow from Lemma 5.1.1.

If we let kj,i = k + i, then the hypotheses of Lemma 5.1.2 hold. Let T∞
and, for i ∈ ω, C∞,i = 〈T∞, π∞,i, φ∞,i,Ψi,∞〉 be as given by Lemma 5.1.2. If
C = C∞,0, then C is satisfies the conditions of the present lemma. �

Corollary 5.1.5. Let T be a game tree with taboos. Let α be a nonzero
countable ordinal. If the class of measurable cardinals larger than |T | has
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order type at least α, then every α–Π1
1 subset A of dTe is unraveled by an

A-semicovering of T.

Proof. Assume that 〈κβ | β < α〉 is a strictly increasing sequence of mea-
surable cardinals with κ0 > |T |. Let A ⊆ dTe and let 〈Aβ | β < α〉 witness
that A ∈ α–Π1

1. Let C = 〈T̃, π, φ,Ψ〉 be as given by Theorem 5.1.4. We need
only show that C unravels A. But π(dT̃e) ⊆

⋂
β<αAβ, and this set either is

contained in A or is disjoint from A, depending on whether α is odd or even.
Thus π−1(A) either is dT̃e or else is empty. �

Corollary 5.1.6. Let T be a game tree with taboos. If 0 < α < ω1 and if
the class of measurable cardinals larger than |T | has order type ≥ α, then all
α–Π1

1 games in T are determined.

Proof. The corollary is an immediate consequence of Corollary 5.1.5 and
Lemma 4.2.1. �

Our original proof of Corollary 5.1.6 was somewhat different from the one
given here. For each α, we directly constructed the T̃ of what we now call the
(A,
⋂
β<αAβ) semicovering of Theorem 5.1.4, and we used the determinacy

of what we now call G(π−1(A); T̃) to prove the determinacy of G(A;T ).
After we rearranged in terms of coverings our original proof (Martin [1975])
of Borel determinacy, we noticed that our proof of α–Π1

1 determinacy could
be similarly rearranged. The new way of presenting the proof has a number
of advantages, but it has the disadvantage that the structure of games in T̃
is not directly exhibited. In the next paragraph, we try to make up for this
omission by describing the T̃ given by the proof of Theorem 5.1.4.

In T̃ the players—in addition to making their moves ai in T—are choosing
ordinals ξβi < κβ for β < α. I chooses the ξβi for even β; II chooses the ξβi
for odd β. The purpose of the ξβi is to verify that x = 〈ai | i ∈ ω〉 belongs
to A by making i 7→ ξβi embed the ordering (ω;<β

x) into (κβ;<). If one of
the players is unable to do this, then the play is taboo for the first player
who reaches a position where it is impossible to to choose a required ξβi so
as to extend the embedding for β. If no one loses in this way and no taboo
position 〈ai | i < n〉 in T is reached, then I wins the game G(π−1(A); T̃) if
and only if α is odd.

We close this section by using Lemma 4.2.3 to improve the conclusion of
Theorem 5.1.4 by a factor of ω. What Lemma 4.2.3 allows us to do is to
reuse infinitely often a single measurable cardinal to unravel Π1

1 sets.
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Theorem 5.1.7. Let α be a countable ordinal ≥ 1. Let T be a game tree with
taboos and let 〈κβ | β < α〉 be a strictly increasing sequence of measurable
cardinals with κ0 > |T |. Let 1 ≤ δ ≤ ωα. Let 〈Aβ | β < δ〉 witness that
A ⊆ dTe belongs to δ–Π1

1. Let k ∈ ω. Then there is an (A,
⋂
β<δ Aβ) k-

semicovering C = 〈T̃, π, φ,Ψ〉 of T such that

(a) if δ = ωγ, then |T̃ | ≤ supβ<γ κβ;

(b) if n ∈ ω and δ = ωγ + n, then |T̃ | ≤ κγ and

(∃m̃ ∈ ω)(∀p̃ ∈ T̃ )(`h(p̃) > m̃ → |T̃p̃| < κγ).

Proof. The proof is like that of Theorem 5.1.4. An induction on δ replaces
the induction on α in the earlier proof, and the appeal to Lemma 4.2.2 in the
successor case of the earlier proof is replaced by an appeal to Lemma 4.2.3.
We omit the details. �

The T̃ given by the proof of Theorem 5.1.7 differs from the corresponding
tree (described above) given by the proof of Theorem 5.1.4 in that the ordinals
ξωγ+n
i are all chosen from the same measurable cardinal κγ. The trick that

makes this possible is embedded in the proof of Lemma 4.2.3, but we can say
how it works as follows: For n < n′ ∈ ω, the ordinal ξωγ+n

0 is chosen before

any of the ordinals ξωγ+n′

i . This means that, for plays consistent with some
strategy for the player choosing the ξωγ+n

i , all moves ξωγ+n
i that depend on

opponent’s moves ξωγ+n′

j are bounded by the ordinal ξωγ+n
0 < κγ. We call

this trick the ordering trick. Doing Exercise 5.1.2 is a good way to see how
the ordering trick works.

Corollary 5.1.8. Let T be a game tree with taboos. Let α be a nonzero
countable ordinal. If the class of measurable cardinals larger than |T | has
order type at least α, then every ωα–Π1

1 subset of dTe is unraveled by an A
semicovering of T.

Proof. The proof is just like that of Corollary 5.1.5, with the use of Theo-
rem 5.1.4 replaced by a use of Theorem 5.1.7. �

Corollary 5.1.9. Let T be a game tree with taboos. If 0 < α < ω1 and if
the class of measurable cardinals larger than |T | has order type ≥ α, then all
ωα–Π1

1 games in T are determined.
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Proof. The corollary is an immediate consequence of Corollary 5.1.8 and
Lemma 4.2.1. �

Exercise 5.1.1. Give a proof of Corollary 5.1.6 in the style suggested by
the remarks following that corollary. (For A an α–Π1

1 subset of dTe, directly
define T̃ and π and directly prove that the determinacy of G(π−1(A); T̃)
implies that of G(A;T ).)

Exercise 5.1.2. Do for Corollary 5.1.9 what you did in Exercise 5.1.1 for
Corollary 5.1.6.

5.2 A Factor of ω

Limits are known on how much determinacy can follow from measurable
cardinals. The existence of a measurable cardinal does not (if consistent)
imply the determinacy of all (ω2 + 1)–Π1

1 games in countable trees. (See
Exercise 5.3.5). In general (ω2α+ 1)–Π1

1 determinacy in trees of size λ does
not follow from the existence of α measurable cardinals larger than λ. (See
Exercise 5.3.6.) The goal of this section is to get the strongest determinacy
consequences of measurable cardinals that are not ruled out by these negative
theorems. We will first show that the existence of a measurable cardinal
larger than |T | does imply that all ω2–Π1

1 games in T are determined. Then
we use the results of §2.2 to improve the conclusion to the determinacy of
all G(A;T ) such that both A and ¬A belong to (ω2 + 1)–Π1

1. Finally we
deduce, for countable ordinals α, the determinacy of all G(A;T ) such that
both A and ¬A belong to (ω2α + 1)–Π1

1 from the hypothesis that there are
α measurable cardinals larger than |T |.

A good deal of preparation must be done before we can prove any of these
theorems. To see why this is so, let us consider informally the problem of
deducing ω2–Π1

1 determinacy for games in T from the existence of a mea-
surable cardinal larger than |T |. Let U be a uniform normal ultrafilter on a
measurable cardinal κ > |T |.

The ordering trick allows us to prove ω–Π1
1 determinacy in T, but clearly

that is all the work it will do. No ordinal larger than ω can be mapped in
an order preserving manner into ω. Another way of making this same point
is as follows: The number m in the hypothesis of Lemma 4.2.3 is smaller
than the number max{k,m}+ 1 of the conclusion of that lemma. Hence the
lemma licenses only ω reuses of a single measurable cardinal.



5.2. A FACTOR OF ω 223

To get ω2–Π1
1 determinacy, we need somehow to come up with infinitely

many copies of our measurable cardinal κ. The plan is to do this with the
aid of iterated ultrapowers. Let j = iU . The j0,n(κ), n ∈ ω (as defined on
page 153), are the desired infinitely many copies of κ.

Using the sequence 〈j0,n(κ) | n ∈ ω〉 to replace the sequence 〈κn |∈
ω〉 from the α = ω case of Theorem 5.1.7 does not, however, allow us to
prove the literal conclusion of that theorem. For n > 0 the j0,n(κ) are not
really measurable cardinals. The filters j0,n(U) are ultrafilters only in the
corresponding model M j

n. Thus they do not make it possible to prove the
relevant cases of Lemma 4.2.3.

It turns out, nevertheless, that the j0,n(U) are sufficiently like ultrafil-
ters to yield analogues of Theorem 5.1.7 and Corollary 5.1.8 that are strong
enough to imply the desired determinacy result. The reasons why this is so
turn up when we try to imitate the proof of the α = ω case of Theorem 5.1.7
using the j0,n(κ) in the roles of the κn. The first point is that we do not
need φ(σ̃) to be defined everywhere in S(T̃ ). We wish only to prove that
a game of the form G(A; T) is determined, and an inspection of the proof
of Lemma 4.2.1 (i.e., of the proof of Lemma 2.1.3) reveals that this requires
only that φ(σ̃) be defined for some winning strategy σ̃ for G(π−1(A); T̃).
The second point is that the definitions of T̃ and π depended only on T,
〈p 7→<β

p | β < ω2〉, 〈Aβ ∩T | β < ω2〉, and 〈κn | n ∈ ω〉; i.e., these definitions

did not involve the Un. Thus T̃ and π belong to any transitive class model
of ZFC that contains T, 〈p 7→<β

p | β < ω2〉, and 〈κn | n ∈ ω〉. In particular,
they belong to all the M j

n. The third point is that, because of the second
point, there is a winning strategy for the open or closed game G(π−1(A); T̃)
that belongs to all the M j

n. The final point is that to carry out the construc-
tion of φ(σ̃) and to define the corresponding Ψ(σ̃, x) for such a σ̃, it is enough
that in each model M j

n the filter j0,n(U) is an ultrafilter.

In our actual constructions, we will not use the j0,n(κ) and the j0,n(U).
Instead we will use the j0,ω1(n+1)(κ) and the j0,ω1(n+1)(U). This change in the
sketch just given is in preparation for the next section. For the results of this
section, the change is not necessary. (See Exercise 5.2.4.)

There will be very little in the way of really new ideas in this section,
which will consist primarily of adapting the constructions of §4.2 and §5.1
to fit into the plan just sketched. Nevertheless, the section will be very long,
and so it will be divided into subsections to help orient the reader.
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5.2.1 Semicoverings with Respect to Models

We first define the appropriate weak version of a semicovering:
If T̃ and T are game trees with taboos and M is a class, we write φ :

T̃
S,M⇒ T to mean that

(i) φ : domain (φ)→ S(T ), domain (φ) ⊆ S(T̃ ), and

{σ̃ ∈ S(T̃ ) | (∀n ∈ ω) σ̃ � nT̃ ∈M} ⊆ domain (φ);

(ii) each φ(σ̃) is a strategy for the same player as is σ̃;

(iii) for each n ∈ ω, the restriction of φ(σ̃) to postions of length < n depends
only on the restriction of σ̃ to positions of length < n; that is, if σ̃ and
σ̃′ both belong to domain (φ) and agree on positions of length < n,
then φ(σ̃) and φ(σ̃′) agree on positions of length < n.

This definition differs from that of φ : T̃
S⇒ T only in clause (i). The corre-

sponding clause in the definition of φ : T̃
S⇒ T requires that domain (φ) be

all of S(T̃ ). For almost all our applications, we could weaken the last clause
of (i) to require only that S(T ) ∩M ⊆ domain (φ). (See Exercise 5.2.4.)

If M is a class and T is a game tree with taboos, then a semicovering of
T with respect to M is a quadruple 〈T̃, π, φ,Ψ〉 that satisfies the definition
of a semicovering of T on page 191, with the following two changes: Clause

(c) is replaced by the condition that φ : T̃
S,M⇒ T. Clause (d) is modified by

replacing “σ̃ ∈ S(T̃ )” by “σ̃ ∈ domain (φ)” in the condition on the domain
of Ψ.

Related concepts have the obvious definitions: Let C = 〈T̃, π, φ,Ψ〉 be
a semicovering of T with respect to M . If A ⊆ dTe, then C unravels A if
π−1(A) is clopen, where π is defined as usual. If A is a subset of dTe, then C
is an A-semicovering of T with respect to M if 〈σ̃, x〉 ∈ domain (Ψ) whenever
x witnesses that φ(σ̃) is not a winning strategy for G(A; T). If A and B are
subsets of dTe, then C is an (A,B) semicovering of T with respect to M if it
is an A semicovering of T with respect to M and

(f) for every σ̃ ∈ domain (φ) and for every x ∈ B such that x is consistent
with φ(σ̃), the pair 〈σ̃, x〉 belongs to the domain of Ψ;

(g) every normal play in T̃ belongs to π−1(B).
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These are just clauses (f) and (g) in the definition of an (A,B) semicovering,
except that clause (f) has been modified in the obvious way. C is also a
k-semicovering of T with respect to M if

(i) kT̃ = kT;

(ii) π � kT̃ is the identity;

(iii) φ � {ρ̃ ∈ S(kT̃ ) | (∃σ̃ ∈ domain (φ)) ρ̃ ⊆ σ̃} is the identity.

These are just the clauses (i), (ii), and (iii) defining a k-semicovering of T,
except that (iii) has been modified in the natural way.

In all the definitions above, the only real change from the earlier concepts
concerns domain (φ). There is no change in the requirements on Ψ that is not
the direct result of the weakened demands on domain (φ). For example, if C
is an A-semicovering with respect to M and σ̃ ∈ domain (φ), then Ψ(σ̃, x) is
defined for every x ∈ V that witnesses that φ(σ̃) is not a winning strategy
for G(A; T), not just for every x ∈ M with this property. Furthermore, the
components of C do not have to belong to M , though in our applications T̃
and π—and sometimes the restrictions of φ to the S(nT̃ )—will belong to M .

5.2.2 Unraveling, Determinacy, and Codes

Here is the basic fact that makes semicoverings with respect to models useful
for proving determinacy.

Lemma 5.2.1. Let M be a transitive class model of ZFC. Let T be a game
tree with taboos. Let A ⊆ dTe. Let 〈T̃, π, φ,Ψ〉 be an A-semicovering of T
with respect to M such that T̃ ∈M . Assume that there is a winning strategy
σ̃ for G(π−1(A); T) such that σ̃ � nT̃ belongs to M for each n ∈ ω. Then
G(A; T) is determined.

Proof. Clause (i) of the definition of φ : T̃
S,M⇒ T implies that σ̃ ∈

domain (φ). As in the proof of Lemma 4.2.1, i.e., as in that of of Lemma 2.1.3,
φ(σ̃) is a winning strategy for G(A; T). �

Remarks:

(a) We could have weakened the hypothesis that T̃ ∈ M , but our appli-
cations give us no reasons to do so.
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(b) The hypothesis of Lemma 5.2.1 concerning σ̃ is true if σ̃ is a winning
strategy for G(π−1(A); T̃) that actually belongs to M . This will be the case
in most, but not quite all, of our applications.

We want to use Lemma 5.2.1 to get an appropriate version of Lemma 4.2.1.
In proving this and subsequent results, we will make use of the absoluteness
of wellfoundedness. Let us first officially document this simple but important
fact. Recall that a relation R is wellfounded if every nonempty set has an
element x that is minimal with respect to R (i.e. to which nothing bears R).

Lemma 5.2.2. Wellfoundedness is absolute for transisitive class models of
ZFC; that is, if M is a transitive class model of ZFC and R ∈M is a relation,
then R is wellfounded if and only if M |= “R is wellfounded.”

Proof. Suppose first that M |= “R is not wellfounded.” Let then Y ∈M be
such that M |= “Y is a nonempty set with no R-minimal element.” By easy
absoluteness facts, Y is a nonempty set with no R-minimal element. Thus
R is not wellfounded.

Now suppose that M |= “R is wellfounded.” Then we may define in M
by transfinite recursion on R ‖ ‖R : field (R)→ Ord ∩M by

‖x‖R = sup{‖y‖R + 1 | y Rx}.

(See Theorem 5.6 of Kunen [1980].) To see that R is wellfounded in V , let
Y 6= ∅. Let x ∈ Y be such that ‖x‖R is minimal. Clearly x is an R-minimal
element of Y . �

Now we prove our analogue of Lemma 4.2.1.

Lemma 5.2.3. Let M be a transitive class model of ZFC. Let T be a game
tree with taboos. Let A ⊆ dTe. Let 〈T̃, π, φ,Ψ〉 be an A-semicovering of T
with respect to M that unravels A and is such that T̃ ∈M . Let D̃ ∈M be a
subset of T̃ that generates an open subset B of dT̃ e with B ∩ dT̃e = π−1(A).
Then G(A; T) is determined.

Proof. By Lemma 5.2.1, it is enough to show that there is a winning strategy
σ̃ for G(π−1(A); T̃) such that σ̃ belongs to M .

To get such a σ̃, we argue as follows. In the model M , the set D̃ generates
B ∩ M and π−1(A) ∩ M = B ∩ M ∩ dT̃e. Thus in M the open game
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G(π−1(A) ∩ M ; T̃) is determined. In M let σ̃ be a winning strategy for
G(π−1(A)∩M ; T̃). We will argue that σ̃ is also in V a winning strategy for
G(π−1(A); T̃).

Assume first that σ̃ is a strategy for I. If x̃ is an infinite play consistent
with σ̃ such that x̃ ∈M , then x̃ extends some d̃ ∈ D̃. Thus the tree

S̃ = {p̃ ∈ T̃ | p̃ is consistent with σ̃ ∧ ¬(∃d̃ ∈ D̃) d̃ ⊆ p̃}

is wellfounded in the model M . By the absoluteness of wellfoundedness, S̃ is
wellfounded in V as well. Hence every infinite play consistent with σ̃ extends
some d̃ ∈ D̃ and so belongs to π−1(A). But every finite play consistent with
σ̃ belongs to M and so belongs to A ∩M or else is taboo for II in T̃. Thus
σ̃ is a winning strategy for G(π−1(A); T̃).

Now assume that σ̃ is a strategy for II. Suppose x̃ is an infinite play
consistent with σ̃ such that x̃ ∈ π−1(A). Then there is a d̃ ∈ D̃ such that
d̃ ⊆ x̃. Fix such a d̃. In the model M the tree

S̃ d̃ = {p̃ ∈ T̃d̃ | p̃ is consistent with σ̃}

is wellfounded. By absoluteness, we get the contradiction that S̃ p̃ is well-
founded in V also. As in the first case, it follows that σ̃ is a winning strategy
for G(π−1(A); T̃). �

Remarks:

(a) It looks at first as if the existence of σ̃ follows directly from Lemma 4.4.1.
But the earlier lemma is not about game trees with taboos, and G(π−1(A); T̃)
is not necessarily open as a game in T̃ . There are various ways to deal with
this fact, but the simple ones yield proofs of Lemma 5.2.3 that appeal both
to Lemma 4.4.1 and to the absoluteness of wellfoundedness. Therefore we
gave a direct proof using the absoluteness of wellfoundedness.

(b) As with Lemma 4.4.1, we do not need that M is a model of full ZFC.

We did not actually use the clopenness of π−1(A). Only the openness
of π−1(A) was used. But it was crucial that the open set π−1(A) was gen-
erated by a set D̃ ∈ M . We next want to get a more general result, with
openness replaced by quasi-Borelness or—equivalently, by Theorem 2.2.3—
by membership in ∆1

1. For this we need an appropriate notion of generating a
quasi-Borel set or of generating a ∆1

1 set. With an eye to other applications,
we will deal with ∆1

1 sets.
Let us say that c is a Π1

1 code if c is a triple 〈T, E, f〉, where
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(a) T is a game tree with taboos;

(b) E ⊆ T ∩ dTe;
(c) f is a function p 7→<p with domain T such that (1) for all p ∈ T , <p

is a linear ordering of `h(p) with greatest element 0 (if and (2), for all
p ⊆ q ∈ T , <p is the restriction of <q to `h(p).

If c = 〈T, E, f〉 is a Π1
1 code, then c is a Π1

1 code for A (equivalently, A
is the Π1

1 set coded by c) if

A = E ∪ {x ∈ [T ] |<x is a wellordering}.

By a ∆1
1 code we mean a pair 〈c1, c2〉 of Π1

1 codes with the same first
components T, such that the Π1

1 sets coded by c1 and c2 are complementary
subsets of dTe. If 〈c1, c2〉 is a ∆1

1 code, then 〈c1, c2〉 is a ∆1
1 code for A

(equivalently, A is the ∆1
1 set coded by 〈c1, c2〉) if A is the Π1

1 set coded by
c1 (and so ¬A is the Π1

1 set coded by c2).

Lemma 5.2.4. Let M be a transitive class model of ZFC. Let c = 〈T, E, f〉
belong to M . Then (1) c is a Π1

1 code if and only if M |= “c is a Π1
1 code,”

and (2) if c is a Π1
1 code then, for all x ∈ dTe ∩M , x belongs to the Π1

1 set
coded by c if and only if M |= “x belongs to the Π1

1 set coded by c.”

Remark. The lemma says precisely that the formulas expressing being a
Π1

1 code and belonging to the Π1
1 set coded by a Π1

1 code are absolute for
transitive class models of ZFC.

Proof. (1) is easy to verify. For (2), assume that c is a Π1
1 code. We have,

for all x ∈ dTe, that x belongs to the Π1
1 set coded by c if and only if x ∈ E

or else x ∈ [T ] and <x is a wellordering, where <x is given by f . Membership
in E and being an infinite element of dT e are easily seen to be absolute. Thus
it is enough to prove the absoluteness of “<x is a wellordering of ω.” But
this is another example of the absoluteness of wellfoundedness, since being a
linear ordering of ω is easily seen to be absolute. �

Lemma 5.2.5. let M be a transitive class model of ZFC with ω1 ∈ M . Let
〈c1, c2〉 ∈ M . Then (1) 〈c1, c2〉 is a ∆1

1 code if and only if M |= “〈c1, c2〉
is a ∆1

1 code,” and (2) if 〈c1, c2〉 is a ∆1
1 code then, for all x ∈ dTe ∩M , x

belongs to the ∆1
1 set coded by 〈c1, c2〉 if and only if M |= “x belongs to the

∆1
1 set coded by 〈c1, c2〉.”



5.2. A FACTOR OF ω 229

Proof. By part (1) of Lemma 5.2.4, we may assume without loss of generality
that c1 and c2 are Π1

1 codes, both in V and in M . Let A be the Π1
1 set coded

by c1 and let B be the Π1
1 set coded by c2. By part (2) of Lemma 5.2.4 the

Π1
1 sets coded in the model M by c1 and c2 are A ∩M and B ∩M . It is

clear that if A and B are complementary in V then A ∩M and B ∩M are
complementary inM . Assume then that A∩M andB∩M are complementary
in M . Let S be the set of all 〈〈〈p, 〈〈〈q1, q2〉〉〉〉〉〉 such that p ∈ T and, for i ∈
{1, 2}, qi is an embedding of (`h(p);<i

p) into (ω1;<), where <i
p is given by

the third component of ci. Since ω1 ∈ M it follows that S ∈ M . Since
A ∩ B ∩ [T ] ∩ M = ∅, where T is the first component of the ci, we have
that S is in M a wellfounded game tree. By absoluteness, it follows that S
is wellfounded in V as well and so that A ∩ B ∩ [T ] = ∅. Hence A ∩ B = ∅.
Now let S ′ be the set of all 〈〈〈p, 〈〈〈s1, s2〉〉〉〉〉〉 such that p ∈ T and, for i ∈ {1, 2},
si : `h(p)→ ω and

(∀n < `h(p))(∀n′ < n)((si(n) < `h(p) ∧ si(n
′) < `h(p)) → si(n) <i

p si(n
′)).

Then S ′ ∈ M . Moreover any member of [S ′] would give a member x of [T ]
and a witness that neither <1

x nor <2
x was a wellordering. Since (A ∩M) ∪

(B∩M) = dTe∩M , it follow that S ′ is in M a wellfounded game tree. From
this and absoluteness we get that A∪B = dTe. This completes the proof of
(1).

(2) follows from part (2) of Lemma 5.2.4. �

Remark. Lemma 5.2.5 remains true if the hypothesis that ω1 ∈ M is
replaced by the weaker hypothesis that M is uncountable. The same is true
of Lemma 5.2.6 below. (See Exercises 5.2.1 and 5.2.2.)

Lemma 5.2.6. Let M be a transitive class model of ZFC with ω1 ∈M . Let
c = 〈T, E, f〉 belong to M and be a Π1

1 code. Let A be the Π1
1 set coded by

c. Let σ ∈ S(T ) ∩M . Then σ is a winning strategy for G(A; T) if and only
if M |= “σ is a winning strategy for G(A ∩M ; T).”

Proof. The “only if” part of the lemma follows easily from Lemma 5.2.4. For
the “if” part, assume that M |= “σ is a winning strategy for G(A ∩M ; T).”

Suppose first that σ is a strategy for I. Let f be p 7→<p. Let S̄ ′ be the
tree of all 〈〈〈p, s〉〉〉 such that p ∈ T , s : `h(p)→ ω, and

(∀n < `h(p))(∀n′ < n)((s(n) < `h(p) ∧ s(n′) < `h(p)) → s(n) <p s(n
′)).
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Then S̄ ′ ∈ M and S̄ ′ is in M a wellfounded game tree. By absoluteness, S̄ ′

is wellfounded in V also. Thus there is no infinite play that witnesses that σ
is not a winning strategy. As in the proof of Lemma 5.2.3, it follows that σ
is a winning strategy.

Now suppose that σ is a strategy for II. Let S̄ be the tree of all 〈〈〈p, q〉〉〉
such that p is a position consistent with σ and such that q embeds (`h(p);<p)
into (ω1;<). In the model M , S̄ is a wellfounded game tree. Thus S̄ is in V
a wellfounded game tree. Once again it follows that σ is a winning strategy.
�

Lemma 5.2.7. Let M be a transitive class model of ZFC. Let T be a game
tree with taboos. Let A ⊆ dTe. Let 〈T̃, π, φ,Ψ〉 be an A-semicovering of T
with respect to M such that T̃ ∈ M . Let 〈c1, c2〉 ∈ M be a ∆1

1 code for
π−1(A). Then G(A; T) is determined.

Proof. By Lemma 5.2.1, it is enough to show that there is a winning strategy
σ̃ for G(π−1(A); T̃) that belongs to M .

To get such a σ̃, we first apply Theorem 2.2.8 in the model M to establish
the determinacy in M of the game G(π−1(A) ∩ M ; T̃). Theorem 2.2.8 is
applicable, since by Lemma 5.2.5 we have that π−1(A) ∩M is in M a ∆1

1

set, namely the ∆1
1 set coded by the ∆1

1 code 〈c1, c2〉 ∈M . Let then σ̃ be in
M a winning stategy for G(π−1(A) ∩M ; T̃).

By Lemma 5.2.6, σ̃ is also in V a winning strategy for G(π−1(A); T̃).
�

5.2.3 Operations for Unraveling Π1
1 Sets

Our next goal is to get a result that will play the role Lemma 4.2.3 played
in §5.1. One of the things we want to pay attention to is the operations that
gave us the components of the semicoverings of Lemma 4.2.2. We also want
to pay attention to the absoluteness of these operations. The basic picture
will be the following:

(a) The operations Ft and Fpi that gave the components T̃ and π are quite
absolute.

(b) The operation that gave φ can be relativized to any model M of ZFC.
The operation defined by this relativized definition generates an operation

that we call FMphi. The values of FMphi are functions φ : T̃
S,M⇒ T.
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(c) The operation that gave Ψ can be relativized to any model M of ZFC.
Moreover a restriction of the operation given by this relativized definition
can be extended to an operation that we call FMpsi. The values of FMpsi, to-
gether with those of the other operations, constitute (B,B) semicoverings
with respect to M .

We first consider the operations F t and Fpi given by the proof of Lemma 4.2.3.
The common domain of these two operations is the set of all 〈c, κ,m, k, i〉
such that

(i) c is a Π1
1 code;

(ii) κ is an ordinal number;

(iii) m ∈ ω;

(iv) k ∈ ω;

(v) i ∈ {1, 2}.

For i = 1 or 2, F t(c, κ,m, k, i) and Fpi(c, κ,m, k, i) are respectively the tree
T̃ and the function π given by the proof of part (i) of Lemma 4.2.3, with B as
the Π1

1 set coded by c and with the obvious values of the other parameters.
The construction and proof of Lemma 4.2.3 yields the following two lem-

mas.

Lemma 5.2.8. The operations F t and Fpi are absolute for transitive class
models of ZFC. That is, if M is a transitive class model of ZFC, then do-
main (F t) as defined in M is just domain (F t)∩M , and the two operations as
defined in M are just the restrictions of the operations to domain (F t) ∩M .

Lemma 5.2.9. Let M be a transitive class model of ZFC. Let

〈c, κ,m, k, i〉 ∈ domain (F t) ∩M

with c = 〈T, E, f〉. Let T̃ = F t(c, κ,m, k, i) and let π = Fpi(c, κ,m, k, i).
Then

(a) T̃ is a game tree with taboos;

(b) π : T̃⇒ T;

(c) both T̃ and π belong to M ;

(d) if M |= |T | ≤ |κ| then M |= |T̃ | ≤ κ
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(e) if (∀p ∈ T )(`h(p) > m → M |= |Tp| < |κ|), then (∀p̃ ∈ T̃ )(`h(p̃) >
max{k,m}+ 1→M |= |T̃p̃| < |κ|);

(f) kT̃ = kT;

(g) π � kT̃ is the identity;

(h) Every normal play in T̃ belongs to the Π1
1 set coded by c.

Proof. Clauses (a), (b), (f), (g), and (h) follow from the proof of Lemma 4.2.3.
Clauses (d) and (e) follow from the same proof as applied in M , and to apply
it in M is legitimate by Lemma 5.2.8, which also implies clause (c). �

The proof of Lemma 4.2.3 also gives an operation Fphi. The domain of
Fphi is the set of all 〈c, κ,m, k, i,U〉 such that

(i) 〈c, κ,m, k, i〉 ∈ domain (F t);

(ii) (∀p ∈ T )(`h(p) > m→ |Tp| < κ), where T is the first component of c;

(iii) U is a uniform normal ultrafilter on κ.

The value Fphi(c, κ,m, k, i,U) is the φ that comes from the proof of Lemma 4.2.2.
The following lemma then comes from the obvious application of the proof
of Lemma 4.2.3.

Lemma 5.2.10. Let 〈c, κ,m, k, i,U〉 ∈ domain (Fphi) with c = 〈T, E, f〉.
Let T̃ = F t(c, κ,m, k, i) and let φ = Fphi(c, κ,m, k, i,U). Then

(a) φ : T̃
S⇒ T;

(b) φ � S(kT̃ ) is the identity.

This operation is absolute for transitive models of ZFC, but that fact does
not interest us here, for we will be applying our operations in models where
there is a measurable cardinal that may not be measurable in V . For M
a transitive class model of ZFC, let us then define an operation FMphi whose
domain is the set of all 〈c, κ,m, k, i,U〉 ∈M such that

(i) 〈c, κ,m, k, i〉 ∈ domain (F t);

(ii) M |= (∀p∈T )(`h(p) > m→ |Tp| < κ), where T is the first component
of c;

(iii) M |= “U is a uniform normal ultrafilter on κ.”
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To define FMphi, first let (Fphi)
M be the operation given by the definition

of Fphi as applied in M . Now let 〈c, κ,m, k, i,U〉 belong to M and satisfy
(i)–(iii). We let

domain (FMphi(c, κ,m, k, i,U)) = {σ̃ ∈ S(T̃ ) | (∀k ∈ ω) σ̃ � kT̃ ∈M}.

For σ̃ ∈ domain (FMphi(c, κ,m, k, i,U)) and for k ∈ ω, we set

(FMphi(c, κ,m, k, i,U))(σ̃) = ((Fphi)
M(c, κ,m, k, i,U))(σ̃′),

for some σ̃′ ∈M such that σ̃ � kT̃ = σ̃′ � kT̃ . By clause (a) of Lemma 5.2.10,

applied in M , and by clause (iii) of the definition of φ : T̃
S⇒ T, there is no

dependence on the choice of σ̃′.
The close relationship between the operations (Fphi)

M and FMphi provides
at least some justification for our using almost the same notation for the two.

In all transitive class models N of ZFC such that M ⊆ N and M is a class
of N (is definable in N from members of N), one can define the operation
(Fphi)

M . If one applies the definition of FMphi in such an N , it may not give
the true FMphi, but only because there may be strategies σ̃ that do not belong
to N but all of whose restrictions to positions of length k do belong to N .

Clause (c) of the following lemma does not correspond to any clause of
Lemma 5.2.10. This clause follows from the fact that φ�S(nT̃ ) = φ�(S(nT̃ )∩
M) = ((Fphi)

M(c, κ,m, k, i,U)) � (S(nT̃ ) ∩M).

Lemma 5.2.11. Let M be a transitive class model of ZFC. Let

〈c, κ,m, k, i,U〉 ∈ domain (FMphi)

be such that c = 〈T, E, f〉. Let T̃ = F t(c, κ,m, k, i) and let φ = FMphi(c, κ,m, k, i,U).
Then

(a) φ : T̃
S,M⇒ T;

(b) φ � (S(kT̃ ) ∩M) is the identity.

(c) (∀n ∈ ω)φ � (S(nT̃ ) ∩M) ∈M .

The proof of Lemma 4.2.2 also gives us an operation Fpsi whose domain
is the same as that of Fphi. Fpsi(c, κ,m, k, i,U) is the Ψ given by the proof
of Lemma 4.2.2. We could catalogue the properties of this operation and
its relations to those already defined. Instead we proceed directly to the
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operations in which we are really interested. For each transitive class model
M of ZFC, we will define an operation FMpsi. The domain of FMpsi is the
set of all 〈c, κ,m, k, i,U〉 ∈ domain (FMphi) such that every intersection (in
V ) of countably many elements of U is nonempty. Since the complements
of singletons belong to U , this condition implies that every intersection of
countably many elements of U is uncountable. If 〈c, κ,m, k, i,U〉 belongs to
domain (FMpsi), then the domain of FMpsi(c, κ,m, k, i,U) is the set of all pairs

〈σ̃, x〉 such that σ̃ ∈ S(T̃) and (∀k ∈ ω) σ̃ � kT̃ ∈ M , such that x is a play
(not necessarily in M) that is consistent with (FMphi(c, κ,m, k, i,U))(σ̃), and
such that at least one of the following holds

(i) i = 1 and σ̃ is a strategy for I;

(ii) i = 2 and σ̃ is a strategy for II;

(iii) x is finite;

(iv) x belongs to the Π1
1 set coded by c.

Let us see how the proof of Lemma 4.2.3 yields such a function. Let
〈c, κ,m, k, i,U〉 ∈ domain (FMpsi). Let p 7→<p be the third component of c.

Let T̃ = F t(c, κ,m, k, i), let π = Fpi(c, κ,m, k, i), and let φ = FMphi(c, κ,m, k, i,U).
We want to define

Ψ = FMpsi(c, κ,m, k, i,U).

First let σ̃ ∈ SI(T̃ ) be such that each σ̃ ∩ kT̃ ∈M . Then it is easy to see
that, for every play x consistent with φ(σ̃), there is a unique play x̃ consistent
with σ̃ such that π(x̃) ⊆ x. Let Ψ(σ̃, x) = x̃.

Next let τ̃ ∈ SII(T̃ ) be such that each τ̃ ∩ kT̃ ∈M . Let B be the Π1
1 set

coded by c. For p ∈ T with `h(p) odd, let the set Xp be defined as in the
proof of Lemma 4.2.2. Each Xp belongs to U . For p ∈ T , define, as in the
proof of Lemma 4.2.3,

Xp =
⋂
{Xp′ | p′ ∈ Tp ∧ `h(p′) is odd}.

Since τ̃ need not belong to M , we cannot conclude that Xp ∈ U if `h(p) > m.
Nevertheless we have for each odd n > m that⋂

{Xp′ | p′ ∈ Tp ∧ `h(p′) = n} ∈ U .

Thus for `h(p) > m the set Xp is an intersection of countably many elements
of U . By the definition of domain (FMpsi), it follows that Xp is uncountable if
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`h(p) > m. Finite plays all belong to M , so we can define Ψ(τ̃ , x) for all finite
x by carrying out the proof of Lemma 4.2.2 in M . Thus we need consider
only infinite plays x ∈ V such that x is consistent with φ(τ̃) and x ∈ B. Fix
such an x. Then (ω;<x) is a wellordering. Let p ⊆ x with `h(p) = m + 1.
Since Xp is uncountable, its order type is ≥ ω1. Thus there is a function
i 7→ ξi embedding (ω;<x) into (Xp;<). We may then let Ψ(τ̃ , x) be a play
x̃ with π(x̃) = x and with the ξi given by such an embedding.

The following lemma generalizes Lemma 4.2.3, and provides the basic
ingredient for using measurable cardinals in iterated ultrapowers to replace
genuine measurable cardinals.

Lemma 5.2.12. Let M be a transitive class model of ZFC. Let c = 〈T, E, f〉
be a Π1

1 code belonging to M and let B ⊆ dTe be the Π1
1 set coded by c. Let

κ be an ordinal that is a measurable cardinal in the model M . Let U ∈ M
be such that M |= “U is a uniform normal ultrafilter on κ” and such that
every intersection of countably many elements of U is nonempty. Let m and
k belong to ω. Let m̃ = max{k,m}+ 1. Suppose that N |= |T | ≤ κ, and that

(∀p ∈ T )(`h(p) > m→ (M |= |Tp| < κ)).

For i ∈ {1, 2}, let

T̃i = F t(c, κ,m, k, i);

πi = Fpi(c, κ,m, k, i, );

φi = FMphi(c, κ,m, k, i,U);

Ψi = FMpsi(c, κ,m, k, i,U).

Then

(i) 〈T̃1, π1, φ1,Ψ1〉 is a (B,B) k-semicovering of T with respect to M
such that

(a) both T̃1 and π1 belong to M ;

(b) M |= |T̃1| ≤ κ;

(c) (∀p̃ ∈ T̃1)(`h(p̃) > m̃→ (M |= |(T̃1)p| < κ)).

(d) (∀n ∈ ω)φ1 � (S(nT̃1) ∩M) ∈M .

(ii) 〈T̃2, π2, φ2,Ψ2〉 is a (dTe \ B,B) k-semicovering of T with respect
to M such that
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(a) both T̃2 and π2 belong to M ;

(b) M |= |T̃2| ≤ κ;

(c) (∀p̃ ∈ T̃2)(`h(p̃) > m̃→ (M |= |(T̃2)p| < κ));

(d) (∀n ∈ ω)φ2 � (S(nT̃2) ∩M) ∈M .

Proof. The proof can readily be gotten from the proof of Lemma 4.2.2,
together with the arguments given in the course of defining FMpsi. �

5.2.4 Composition and Limit Operations

Our next task is to assemble the two basic kinds of operations needed for
iterating the operations Ft, etc.: composition and the formation of limits.

Suppose that C1 = 〈T1, π1, φ1,Ψ1〉 is a semicovering of T0 with respect
to M0 and that C2 = 〈T2, π2, φ2,Ψ2, 〉 is a semicovering of T1 with respect to
M1. We define the composition C1 ◦ C2 of C1 and C2 to be

〈T2, π1 ◦ π2, φ1 ◦ φ2,Ψ〉,

where Ψ(σ, x) = Ψ2(σ,Ψ1(φ2(σ), x)). (This definition implicitly determines
domain (φ) and domain (Ψ).)

Lemma 5.2.13. Let T0 be a game tree with taboos. Let A, B0, and B1 be
subsets of dT0e. Let M1 be a transitive class model of ZFC. Let M2 ⊆ M1.
Let C1 = 〈T1, π1, φ1,Ψ1〉 be an (A,B0) semicovering of T0 with respect to
M1 such that T1 ∈ M1. Let C2 = 〈T2, π2, φ2,Ψ2, 〉 be a (π−1

1 (A),π−1
1 (B1))

semicovering of T1 with respect to M2 such that T2 and π2 belong to M1 and
such that φ(σ)�nT1 belongs to M1 for every σ ∈ S(T2)∩M2 and every n ∈ ω.

Then C1 ◦ C2 is an (A,B0 ∩B1) semicovering of T with respect to M2. If
k1 and k2 are natural numbers and if, for i ∈ {1, 2}, Ci is a ki-semicovering
with respect to Mi, then C1 ◦ C2 is a min{k1, k2}-semicovering with respect to
M2.

Proof. Most of the proof is like the proofs of Lemmas 2.1.5 and 5.1.1.
In addition we must show, for every strategy σ ∈ S(T2) such that every
σ � nT2 ∈ M2, that σ belongs to the domain of φ1 ◦ φ2. This is true because
the φ2(σ) � nT1 belong to M1 and C1 is a semicovering with respect to M1.
We leave the rest of the proof to the reader. �
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The proof of Lemma 5.1.2 (or, more precisely, the construction given in
the proof of Lemma 2.1.6) gives us four limit operations.

First of all, it gives us operations It and Ipi. The domain of It is the set
of all

〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉

such that

(1) if i ≤ j ∈ ω then πj,i : Tj ⇒ Ti, and πi,i is the identity;

(2) if i1 ≤ i2 ≤ i3 ∈ ω then πi3,i1 = πi2,i1 ◦ πi3,i2 ;

(3) There exists 〈kj,i | i ≤ j ∈ ω〉 such that each kj,i ∈ ω and

(a) limj∈ωinfj′≥jkj′,j =∞;

(b) if i ≤ j ∈ ω then kj,iTj = kj,iTi;

(c) if i ≤ j ∈ ω then πj,i � kj,iTj is the identity.

The domain of Ipi is domain (It) × ω. If d ∈ domainIt, then It(d) is the
T∞ given by the proof of 5.1.2, and for j ∈ ω the value Ipi(d, j) is the π∞,j
given by that proof. 〈It(d), 〈Ipi(d, j) | j ∈ ω〉〉 is really just the inverse limit
of the system d. The existence of the inverse limit is guaranteed by clause
(3).

We omit the proofs of the following two lemmas.

Lemma 5.2.14. The operations It and Ipi are absolute for transitive class
models of ZFC.

Lemma 5.2.15. Let M be a transitive class model of ZFC. Let d = 〈〈Ti |
i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉 ∈ domain (It) ∩M . Let T∞ = It(d) and for i ∈ ω
let π∞,i = Ipi(d, i).

(1) T∞ is a game tree with taboos;

(2) if i ∈ ω, then π∞,i : T∞ ⇒ Ti;

(3) (∀i ∈ ω)(∀j ∈ ω)(i ≤ j → π∞,i = πj,i ◦ π∞,j);

(4) if 〈kj,i | i ≤ j ∈ ω〉 witnesses for d clause (3) in the definition of
domain (It) and if infi≤j∈ωkj,i ≥ k, then

(a) for all i ∈ ω, kT∞ = kTi;

(b) π∞,i � kT∞ is the identity.
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If d = 〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉 and if n ∈ ω, then let

dn = 〈〈Tn+i | i ∈ ω〉, 〈πn+j,n+i | i ≤ j ∈ ω〉〉.

Similarly, if d∗ = 〈T∞, 〈π∞,j | i ≤ j ∈ ω〉〉 and if n ∈ ω, then let

(d∗)n = 〈T∞, 〈π∞,n+j | i ≤ j ∈ ω〉〉.

An inspection of the construction in the proof of Lemma 2.1.6 shows that
the following lemma holds:

Lemma 5.2.16. If d ∈ domain (It) and n ∈ ω, then dn ∈ domain (It),
It(d

n) = (It(d))n, and

〈Ipi(d
n, i) | i ∈ ω〉 = (〈Ipi(d, i) | i ∈ ω〉)n.

Note that the T∞ given by the proof of Lemma 5.1.2 is a subset of the
union of the Ti. Thus we have the following absoluteness result:

Lemma 5.2.17. Let d = 〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉 belong to the
domain of It. Let M be any transitive class model of ZFC to which T∞ =
It(d) and 〈Ti | i ∈ ω〉 belong. Then

M |= |T∞| ≤ supi∈ω|Ti|.

A third kind of operation that can be extracted from the construction of
Lemma 2.1.6 is given as follows. Let 〈Mi | i ∈ ω〉 be a sequence of transitive
class models of ZFC such that Mi ⊇ Mj for i ≤ j ∈ ω and such that, for
all i ∈ ω, the subsequence 〈Mi+j | j ∈ ω〉 is a class in Mi, in the sense that
{〈j, a〉 | a ∈Mi+j} is a class in Mi (is a subclass of Mi and is definable in Mi

from members of Mi). Then we have an operation I〈Mi|i∈ω〉
phi whose domain is

the set of all 〈d′, n〉 with n ∈ ω and with

d′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i | i ≤ j ∈ ω〉〉,

where

(1) for each i ∈ ω, 〈〈Tj | i ≤ j ∈ ω〉, 〈πj′,j | i ≤ j ≤ j′ ∈ ω〉〉 ∈Mi;

(2) 〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉 ∈ domain (It);
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(3) if i ≤ j ∈ ω then domain (φj,i) = {σ ∈ S(Tj) | (∀n ∈ ω)σ � nTj ∈ Mj}
and φ : T̃j

S,Mj⇒ Ti; φi,i is the identity;

(4) if i ≤ j ∈ ω, if σ ∈ S(Tj) ∩Mj, and if n ∈ ω, then φj,i(σ) � nTi ∈Mi;

(5) if i1 ≤ i2 ≤ i3 ∈ ω then φi3,i1 = φi2,i1 ◦ φi3,i2 ;

(6) there exists 〈kj,i | i ≤ j ∈ ω〉 such that

(a) 〈kj,i | i ≤ j ∈ ω〉 satisfies for 〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉
clause (3) in the definition of domain (It);

(b) if i ≤ j ∈ ω then φj,i � S(kj,iT ) ∩Mj is the identity.

Remark. Clause (4) actually follows from clauses (3) and (5).

For 〈d′, n〉 ∈ domain (I〈Mi|i∈ω〉
phi ), the value I〈Mi|i∈ω〉

phi (d′, n) is the φ∞,n given
by the proof of Lemma 5.1.2. The φ∞,n have the common domain

{σ ∈ S(T∞) | (∀n ∈ ω)σ � nT∞ ∈
⋂
i∈ω

Mi}.

Lemma 5.2.18. Let 〈Mi | i ∈ ω〉 be such that I〈Mi|i∈ω〉
phi is defined. Let

d′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i | i ≤ j ∈ ω〉〉 be such that, for j ∈ ω, 〈d′, j〉
belongs to the domain of I〈Mi|i∈ω〉

phi . Let d be the member of domain (It)
associated with d′. Let T∞ = It(d). For i ∈ ω let π∞,i = Ipi(d, i) and let

φ∞,i = I〈Mi|i∈ω〉
phi (d′, i). Then

(a) if n ∈ ω then 〈φ∞,i � nT∞ | i ∈ ω〉 ∈M0;

(b) if i ∈ ω then φ∞,i : T∞
S,

⋂
j∈ωMj

=⇒ Ti;

(c) if i ≤ j ∈ ω then φ∞,i = φj,i ◦ φ∞,j;

(d) if i ∈ ω, if σ ∈ domain (φ∞,i), and if n ∈ ω, then φ∞,i(σ) �nTi ∈Mi;
if, for each i ∈ ω and each n ∈ ω, 〈φj′,j � (S(nTj′)∩Mj′) | i ≤ j ≤ j′ ∈
ω〉 ∈Mi, then 〈φ∞,j � S(nT∞) | i ≤ j ∈ ω〉 belongs to Mi;

(e) if 〈kj,i | i ≤ j ∈ ω〉 witnesses clause (6) in the definition of do-

main (I〈Mi|i∈ω〉
phi ), and if infi≤j∈ωkj,i ≥ k, then, for each i ∈ ω, φ∞,i �

(S(kTi) ∩Mi) is the identity.
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If d′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i | i ≤ j ∈ ω〉〉 and if n ∈ ω, then let

d′n = 〈〈Tn+i | i ∈ ω〉, 〈πn+j,n+i, φj+n,i+n | i ≤ j ∈ ω〉〉.

Similarly, if d′∗ = 〈T∞, 〈π∞,j, φ∞,j | i ≤ j ∈ ω〉〉 and if n ∈ ω, then let

(d′∗)n = 〈T∞, 〈π∞,n+j, φ∞,n+j | i ≤ j ∈ ω〉〉.

As with Lemma 5.2.16, we have the following:

Lemma 5.2.19. If n ∈ ω and if d′ is such that 〈d′, j〉 belongs to domain (I〈Mn+i|i∈ω〉
phi )

for all j ∈ ω, then (∀j ∈ ω)〈d′n, j〉 ∈ domain (I〈Mi|i∈ω〉
phi ) and

〈I〈Mn+i|i∈ω〉
phi (dn, i) | i ∈ ω〉 = (〈I〈Mi|i∈ω〉

phi (d, i) | i ∈ ω〉)n.

If 〈Mi | i ∈ ω〉 is such that the operation I〈Mi|i∈ω〉
phi is defined, then the

construction in the proof of Lemma 2.1.6 yields also an operation I〈Mi|i∈ω〉
psi .

The domain of I〈Mi|i∈ω〉
psi is the set of all 〈d′′, n〉 with n ∈ ω and with

d′′ = 〈〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉〉,

where

(1) 〈〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i, | i ≤ j ∈ ω〉〉, n〉 belongs to the domain of

I〈Mi|i∈ω〉
phi ;

(2) if i ≤ j ∈ ω, then 〈Tj, πj,i, φj,i,Ψ
i,j〉 satisfies clause (d) in the definition

of a semicovering of Ti;

(3) if i1 ≤ i2 ≤ i3 ∈ ω and 〈σ, x〉 ∈ domain (Ψi1,i3), then Ψi1,i3(σ, x) =
Ψi2,i3(σ,Ψi1,i2(φi3,i2(σ), x)).

If 〈d′′, n〉 ∈ domain (I〈Mi|i∈ω〉
psi ), then I〈Mi|i∈ω〉

psi (d′′, n) is just the Ψn,∞ given by
the proof of Lemma 5.1.2.

Lemma 5.2.20. Let k ∈ ω. Let Ti, i ∈ ω, be game trees with taboos. Let
Mi, i ∈ ω be transitive class models of ZFC such that, for each i ∈ ω,
the sequence 〈Mj | i ≤ j ∈ ω〉 is a a class in Mi (in the sense described
on page 238). Let A and Bi, i ∈ ω, be subsets of dT0e. Let k ∈ ω and
〈kj,i, πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉 be such that
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(1) if i ≤ j ∈ ω then Cj,i = 〈Tj, πj,i, φj,i,Ψ
i,j〉 is a

(π0,i
−1(A),π0,i

−1(
⋂

i≤n<j

(Bn))

kj,i-semicovering of Ti with respect to Mj;

(2) if i1 ≤ i2 ≤ i3 ∈ ω then Ci3,i1 = Ci2,i1 ◦ Ci3,i2;

(3) infi≤j∈ωkj,i ≥ k;

(4) limj∈ωinfj′≥jkj′,j =∞;

(5) (∀i ∈ ω) 〈Tj, πj,j′ | i ≤ j′ ≤ j ∈ ω〉 ∈Mi;

(6) if i ≤ j ∈ ω, then

(a) domain (φj,i) = {σ ∈ S(Tj) | (∀n ∈ ω)σ � nTj ∈Mj};
(b) if σ ∈ S(Tj) ∩Mj and n ∈ ω, then φj,i(σ) � nTi ∈Mi.

Let

T∞ = It(〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉).

For n ∈ ω, let

π∞,n = Ipi(〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉, n);

φ∞,n = I〈Mi|i∈ω〉
phi (〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i | i ≤ j ∈ ω〉〉, n);

Ψn,∞ = I〈Mi|i∈ω〉
psi (〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉〉, n).

Then

(a) each C∞,i = 〈T∞, π∞,i, φ∞,i,Ψi,∞〉 is a

(π∞,i
−1(A),π∞,i

−1(
⋂

i≤n∈ω

Bn))

k-semicovering of Ti with respect to
⋂
i≤j∈ωMj;

(b) (∀i ∈ ω)(∀j ∈ ω)(i ≤ j → C∞,i = Cj,i ◦ C∞,j).

Proof. The only thing left to check is the properties of the Ψi,∞. We leave
this task to the reader. �
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5.2.5 Operations for Unraveling ω–Π1
1 Sets

We have now assembled all the ingredients necessary for iterating the op-
erations Ft, etc. Our first step in this iteration process is to define some
operations F̄t, etc. that do for ω–Π1

1 pretty much what the operations Ft,
etc. do for Π1

1.
First we define operations F̄ t and F̄pi. The common domain of these two

operations is the set of all 〈〈ci | i ∈ ω〉, κ, k〉 such that

(i) 〈ci | i ∈ ω〉 is a sequence of Π1
1 codes, all with the same first component;

(ii) κ is an ordinal number;

(iii) k ∈ ω.

For 〈〈ci | i ∈ ω〉, κ, k〉 belonging to this common domain, we define
F̄ t(〈ci | i ∈ ω〉, κ, k) and F̄pi(〈ci | i ∈ ω〉, κ, k) as follows:

First we define by induction a system

d = 〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉.

Let T0 be the first component of the ci. Assume that Ti and πj,i have been
defined for all i ≤ j ≤ n ∈ ω and that they satisfy:

(1) if i ≤ j ≤ n then πj,i : Tj ⇒ Ti, and πi,i is the identity;

(2) if i1 ≤ i2 ≤ i3 ≤ n then πi3,i1 = πi2,i1 ◦ πi3,i2 ;

For i ∈ ω, let ci = 〈T0, Ei, fi〉, where fi is p 7→<i
p. For i ∈ ω, let

cni = 〈Tn,π
−1
n,0(Ei), f

n
i 〉,

where
fni (p) =<i

πn,0(p) .

Thus cni is a Π1
1 code for π−1

n,0(p).
Now let

Tn+1 = Ft(c
n
n, κ,mn, k + n, in);

πn+1,n = Fpi(c
n
n, κ,mn, k + n, in),

where mn = k+n, and where in is 1 if n is even and 2 if n is odd. For i < n,
let πn+1,i = πn,i ◦ πn+1,n. It is clear that (1) and (2) are satisfied.
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Conditions (1), (2), and (3) on membership in domain (It) are satisfied by
the system d we have defined. The values kj,i = k+ i witness that condition
(4) is satisfied as well. Thus we may let

F̄ t(〈ci | i ∈ ω〉, κ, k) = It(d);

F̄pi(〈ci | i ∈ ω〉, κ, k) = Ipi(d, 0).

By the definitions and by Lemmas 5.2.8 and 5.2.14, we get the following
lemma:

Lemma 5.2.21. The operations F̄ t and F̄pi are absolute for transitive class
models of ZFC.

We also have the following analogue of Lemma 5.2.9:

Lemma 5.2.22. Let M be a transitive class model of ZFC. Let

〈〈ci | i ∈ ω〉, κ, k〉 ∈ domain (F̄ t) ∩M,

with T the common first component of the ci. Let T̃ = F̄ t(〈ci | i ∈ ω〉, κ, k)
and let π = F̄pi(〈ci | i ∈ ω〉, κ, k). Then

(a) T̃ is a game tree with taboos;

(b) π : T̃⇒ T;

(c) T̃ and π belong to M ;

(d) if M |= |T | < |κ| then M |= |T̃ | ≤ |κ|;
(e) kT̃ = kT;

(f) π � kT̃ is the identity;

(g) Every normal play in T̃ belongs to the intersection of the Π1
1 sets

coded by the ci.

Proof. The lemma follows easily from the definitions and Lemmas 5.2.9,
5.2.15, 5.2.17, and 5.2.21. Perhaps a word about clause (d) is in order. The
hypothesis of (d) guarantees that the hypothesis of clause (d) of Lemma 5.2.9
holds, with m = 0, for the T0 of our inductive construction, namely for T.
The construction gives inductively that the hypothesis of clause (d) holds,
with m = k + n, for the Tn of the construction. The concnlusion of clause
(d) then follows by Lemma 5.2.17.



244 CHAPTER 5. α–Π1
1 GAMES

�

We next define, for each transitive class model M of ZFC, an operation
F̄Mphi whose domain is the set of all 〈〈ci | i ∈ ω〉, κ, k,U〉 ∈M such that

(i) 〈〈ci | i ∈ ω〉, κ, k〉 ∈ domain (F t);

(ii) M |= |T | < κ, where T is the common first component of the ci;

(iii) M |= “U is a uniform normal ultrafilter on κ.”

To define F̄Mphi(〈ci | i ∈ ω〉, κ, k,U), we repeat the construction of the Ti

and the πj,i used in defining F̄ t and F̄pi, except that we also define φj,i for
i ≤ j ∈ ω, thus producing a system

d′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i | i ≤ j ∈ ω〉〉.

We assume inductively that

(1) if i ≤ j ≤ n then φj,i : Tj
S,M⇒ Ti;

(2) if i1 ≤ i2 ≤ i3 ≤ n then φi3,i1 = φi2,i1 ◦ φi3,i2 .

(3) if m ∈ ω and i ≤ j ≤ n then φj,i � S(mTj) ∈M ;

In the induction step, we set

φn+1,n = FMphi(c
n
n, κ,mn, k + n, in,U).

For i < n we let φn+1,i = φn,i ◦ φn+1,n. We finally define

F̄Mphi(〈ci | i ∈ ω〉, κ, k,U) = I〈M |i∈ω〉phi (d′, 0).

Lemma 5.2.23. Let M be a transitive class model of ZFC. Let

〈〈ci | i ∈ ω〉, κ, k,U〉 ∈ domain (F̄Mphi)

be such that T is the first component of all the ci. Let T̃ = F̄ t(〈ci | i ∈
ω〉, κ, k) and let φ = F̄Mphi(〈ci | i ∈ ω〉, κ, k,U). Then

(a) φ : T̃
S,M⇒ T;

(b) φ � (S(kT̃ ) ∩M) is the identity;

(c) for all n ∈ ω, φ � (S(nT̃ ) ∩M) ∈M .
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Finally we define, for each transitive class model M of ZFC, an operation
F̄Mpsi whose domain is the set of all 〈〈ci | i ∈ ω〉, κ, k,U〉 ∈ domain (F̄Mphi)
such that every intersection of countably many elements of U is nonempty.
The definition of F̄Mpsi(〈ci | i ∈ ω〉, κ, k,U) is the obvious one: We repeat the
construction of the sytem d′, execept that we also define Ψi,j for i ≤ j ∈ ω,
producing a system

d′′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉〉.

In the induction step, we set

Ψn,n+1 = FMpsi(c
n
n, κ, k,U).

Ψi,n+1(σ, x) = Ψn,n+1(σ,Ψi,n(φn+1,n(σ), x)). We finally define

F̄Mpsi(〈ci | i ∈ ω〉, κ, k,U) = I〈Mi|i∈ω〉
psi (d′′, 0).

We are almost ready to state our analogue of Lemma 5.2.12. Before doing
so, we note that Lemma 5.1.3 holds also for semicoverings with respect to
M :

Lemma 5.2.24. Let T be a game tree with taboos and let M be any class.
Let α be a countable ordinal and let 〈Aβ | β < α〉 witness that A ∈ α–Π1

1.
Let γ < α and let A′ be the set witnessed to belong to γ–Π1

1 by 〈Aβ | β < γ〉.
Then every (A′,

⋂
β<γ Aβ) semicovering of T with respect to M is an

(A,
⋂
β<γ Aβ) semicovering of T with respect to M .

Proof. The proof of Lemma 5.1.3 goes through without change. �

Here finally is the analogue of Lemma 5.2.12. The only extra ingredient
beyond what would be in a pure analogue of the earlier lemma is the appear-
ance of the model N . In our applications, the model N will be Ultω1(M ;U).

Lemma 5.2.25. Let N and M ⊇ N be transitive class models of ZFC. Let
〈ci | i ∈ ω〉 ∈ N be a sequence of Π1

1 codes with the same first component
T. For i ∈ ω let Ai be the Π1

1 set coded by ci. Let A be the subset of dTe
that 〈Ai | i ∈ ω〉 witnesses to belong to ω–Π1

1. Let κ be an ordinal that is a
measurable cardinal in the model M . Let U ∈ M be such that M |= “U is a
uniform normal ultrafilter on κ” and such that every intersection of countably
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many elements of U is nonempty. Let k ∈ ω. Suppose that M |= |T | < κ.
Let

T̃ = F̄ t(〈ci | i ∈ ω〉, κ, k);

π = F̄pi(〈ci | i ∈ ω〉, κ, k);

φ = F̄Mphi(〈ci | i ∈ ω〉, κ, k,U);

Ψ = F̄Mpsi(〈ci | i ∈ ω〉, κ, k,U).

Then

(i) 〈T̃, π1, φ1,Ψ1〉 is a (A,
⋂
i∈ω Ai) k-semicovering of T with respect to

M ;

(ii) both T̃ and π belong to N , and N |= |T̃ | ≤ κ;

(iii) for all n ∈ ω, φ � (S(nT̃ ) ∩M) belongs to M .

Proof. The lemma follows easily from our earlier lemmas. In particu-
lar, Lemma 5.2.24 giving that the 〈Ti, πj,i, φj,i,Ψ

i,j〉 occurring in the defi-
nition of Ψ are (πi,0(A),

⋂
i≤n<j An) semicoverings, as required for applying

Lemma 5.2.20. That N |= |T | ≤ κ can be seen as follows. Since κ is a
cardinal in M and M |= |T | < κ, it must be that N |= |T | < κ. Thus
Lemma 5.2.22 is applicable with N as the M of that Lemma. Clause (c) of
that lemma gives that N |= |T̃ | ≤ κ. �

5.2.6 Operations for Unraveling ω2–Π1
1 Sets

We are now going to define operations ¯̄F t, etc. that do for ω2–Π1
1 something

like what the operations F̄t, etc. do for ω–Π1
1. In doing so, we will at last

use iterated ultrapowers with respect to an ultrafilter U .

We begin with the operations ¯̄F t and ¯̄Fpi. The common domain of these
two operations is the set of all 〈〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k〉 such that

(i) 〈cβ | β < ω2〉 is a sequence of Π1
1 codes, all with the same first compo-

nent;

(ii) 〈λi | i ∈ ω〉 is an increasing sequence of ordinal numbers;

(iii) k ∈ ω.
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For 〈〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k〉 belonging to this common domain, we

define ¯̄F t(〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k) and ¯̄Fpi(〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k)
as follows.

First we define by induction a system

d = 〈〈Ti | i ∈ ω〉, 〈πj,i | i ≤ j ∈ ω〉〉.

Let T0 be the first component of the cβ. Assume that Ti and πj,i have been
defined for all i ≤ j ≤ n ∈ ω and that they satisfy:

(1) if i ≤ j ≤ n then πj,i : Tj ⇒ Ti, and πi,i is the identity;

(2) if i1 ≤ i2 ≤ i3 ≤ n then πi3,i1 = πi2,i1 ◦ πi3,i2 ;

For β < ω2, let cβ = 〈T0, Eβ, fβ〉, where fβ is p 7→<β
p . For β < ω2, let

cnβ = 〈Tn,π
−1
n,0(Eβ), fnβ 〉,

where
fnβ (p) =<β

πn,0(p) .

If cβ is a Π1
1 code for a set B, then cnβ is a Π1

1 code for π−1
n,0(B).

Now let

Tn+1 = F̄t(〈cnωn+i | i ∈ ω〉, λn, k + n)

πn+1 = F̄pi(〈cnωn+i | i ∈ ω〉, λn, k + n).

For i < n, let πn+1,i = πn,i ◦ πn+1,n. It is clear that (1) and (2) are satisfied.
Conditions (1), (2), and (3) on membership in domain (It) are satisfied by

the system d we have defined. The values kj,i = k+ i witness that condition
(4) is satisfied as well. Thus we may let

¯̄F t(〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k) = It(d);
¯̄Fpi(〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k) = Ipi(d, 0).

By the definitions and by Lemmas 5.2.21 and 5.2.14, we get the following
lemma:

Lemma 5.2.26. The operations ¯̄F t and ¯̄Fpi are absolute for transitive class
models of ZFC.
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We also have the following analogue of Lemma 5.2.22:

Lemma 5.2.27. Let M be a transitive class model of ZFC. Let

〈〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k〉 ∈ domain ( ¯̄F t) ∩M

with T the common first component of the ci. Let T̃ = ¯̄F t(〈cβ | β < ω2〉, 〈λi |
i ∈ ω〉, k) and let π = ¯̄Fpi(〈cβ | β < ω2〉, 〈λi | i ∈ ω〉, k). Then

(a) T̃ is a game tree with taboos;

(b) π : T̃⇒ T;

(c) both T̃ and π belong to M ;

(d) if M |= |T | < |λ| then M |= |T̃ | ≤ supi∈ω|λi|;
(e) kT̃ = kT;

(f) π � kT̃ is the identity;

(g) Every normal play in T̃ belongs to the intersection of the Π1
1 sets

coded by the cβ.

Proof. The lemma follows easily from the definitions and Lemmas 5.2.22,
5.2.15, and 5.2.26. �

We next define, for each uncountable transitive class model M of ZFC, an
operation ¯̄FMphi. To make this definition, we introduce the following notation:
If M is an uncountable transitive class model of ZFC satisfying “U is a
uniform normal ultrafilter on the measurable cardinal κ,” then, for all n ∈ ω,
let

Mn(U) = Ultω1(n+1)(M ;U);

λn(U) = iMU 0,ω1(n+1)(κ)

Vn(U) = iMU 0,ω1(n+1)(U).

Remark. Lemma 3.3.12 implies that, for each n ∈ ω, every intersection
of countably many elements of Vn(U) is nonempty.

The domain of ¯̄FMphi is the set of all 〈〈cβ | β < ω2〉, κ, k,U〉 ∈M such that

(i) M |= “|T | < κ,” where T is the common first element of the cβ;

(ii) M |= “U is a uniform normal ultrafilter on κ”;
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(iii) 〈〈cβ | β < ω2〉, 〈λi(U) | i ∈ ω〉, k〉 ∈ domain ( ¯̄F t).

To define ¯̄FMphi(〈cβ | β < ω2〉, κ, k), we repeat the construction of the Ti

and the πj,i used in defining ¯̄F t and ¯̄Fpi, with λi = λn(U), except that we
also define φj,i for i ≤ j ∈ ω, thus producing a system

d′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i | i ≤ j ∈ ω〉〉.

We assume inductively that

(1) if i ≤ j ≤ n then φj,i : Tj
S,Mj(U)⇒ Ti;

(2) if i1 ≤ i2 ≤ i3 ≤ n then φi3,i1 = φi2,i1 ◦ φi3,i2 .

(3) if m ∈ ω and i ≤ j ≤ n then φj,i � S(mTj) ∈Mi(U);

In the induction step, we set

φn+1,n = F̄Mn(U)
phi (〈cnωn+i | i ∈ ω〉, λn(U), k + n,Vn(U)),

and we let φn+1,i = φn,i ◦ φn+1,n for i < n. We finally define

¯̄FMphi(〈cβ | β < ω2〉, κ, k,U) = I〈Mi(U)|i∈ω〉
phi (d′, 0).

Lemma 5.2.28. Let M be an uncountable transitive class model of ZFC.
Let

〈〈cβ | β < ω2〉, κ, k,U〉 ∈ domain ( ¯̄FMphi)

be such that T is the first component of all the cβ. Let T̃ = ¯̄F t(〈cβ | β <

ω2〉, 〈λi(U) | i ∈ ω〉, k), and let φ = ¯̄FMphi(〈cβ | β < ω2〉, κ, k,U). Then

(a) φ : T̃
S,

⋂
i∈ωMi(U)
⇒ T;

(b) φ � (S(kT̃ ) ∩
⋂
i∈ωMi(U) is the identity;

(c) for all n ∈ ω, φ � S(nT̃ ) ∈M .

Finally we define, for each uncountable transitive class model M of ZFC,
an operation ¯̄FMpsi whose domain is the same as that of ¯̄FMphi. To define
¯̄FMpsi(〈cβ | β < ω2〉, κ, k,U), we repeat the construction of the sytem d′ used

in defining ¯̄FMphi, execept that we also define Ψi,j for i ≤ j ∈ ω, producing a
system

d′′ = 〈〈Ti | i ∈ ω〉, 〈πj,i, φj,i,Ψi,j | i ≤ j ∈ ω〉〉.
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In the induction step, we appeal to the remark after the definition of Vn(U)
and set

Ψn,n+1 = F̄Mn(U)
psi (〈cnωn+i | i ∈ ω〉, λn(U), k,Vn(U)).

For i < n we let Ψi,n+1(σ, x) = Ψn,n+1(σ,Ψi,n(φn+1,n(σ), x)). We finally
define

¯̄FMpsi(〈ci | i ∈ ω〉, κ, k,U) = I〈Mi(U)|i∈ω〉
psi (d′′, 0).

The next lemma is the analogue for ω2–Π1
1 of Lemma 5.2.25. The only

disanalogy is that the earlier lemma yielded a semicovering with respect toM ,
while the lemma below gives only a semicovering with respect to

⋂
i∈ωMi(U).

In our applications, we will have N ⊆
⋂
i∈ωMi(U).

Lemma 5.2.29. Let N and M ⊇ N be uncountable transitive class models
of ZFC. Let 〈cβ | β < ω2〉 ∈ N be a sequence of Π1

1 codes with the same
first component T. For β < ω2 let Aβ be the Π1

1 set coded by cβ. Let A
be the subset of dTe that 〈Aβ | β < ω2〉 witnesses to belong to ω2–Π1

1. Let
κ be an ordinal that is a measurable cardinal in the model M . Let U ∈ M
be such that M |= “U is a uniform normal ultrafilter on κ.” Assume that
〈Vi(U) | i ∈ ω〉 ∈ N . Assume also that M |= |T | < κ. Let k ∈ ω. Let

T̃ = ¯̄F t(〈cβ | β < ω2〉, 〈λi(U) | i ∈ ω〉, k);

π = ¯̄Fpi(〈cβ | β < ω2〉, 〈λi(U) | i ∈ ω〉, k);

φ = ¯̄FMphi(〈cβ | β < ω2〉, κ, k,U);

Ψ = ¯̄FMpsi(〈cβ | β < ω2〉, κ, k,U).

Then

(i) 〈T̃, π, φ,Ψ〉 is a (A,
⋂
β<ω2 Aβ) k-semicovering of T with respect to⋂

i∈ωMi(U);

(ii) both T̃ and π belong to N , and N |= |T̃ | ≤ κ;

(iii) for all n ∈ ω, φ � (S(nT̃ ) ∩
⋂
i∈ωMi(U)) belongs to M .

Proof. The lemma follows easily from our earlier lemmas. �
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5.2.7 The Main Theorems

Theorem 5.2.30. If T is a game tree with taboos and there is a measurable
cardinal greater than |T |, then all ω2–Π1

1 games in T are determined.

Proof. Let T be a game tree with taboos. Let 〈Aβ | β < ω2〉 witness that
A ⊆ dTe belongs to ω2–Π1

1. Let U be a uniform normal ultrafilter on a
cardinal κ > |T |. We will show that G(A; T) is determined. We may assume
without loss of generality that field (T ) ⊆ δ for some cardinal δ < κ. Let
〈cβ | β < ω2〉 be such that each cβ is a Π1

1 code for Aβ. Let M = V . Let N
be any transitive class model of ZFC such that

(i) {T, 〈cβ | β < ω2〉, 〈λi(U) | i ∈ ω〉} ⊆ N ;

(ii) N ⊆
⋂
n∈ωMn(U).

For example, we could take N to be the smallest transitive proper class model
of ZFC such that (i) is satisfied. (Formally this model is L[a], where a is the
set of all

〈p, p1, p2, β, p
′,m, n, i, λ〉

such that p ∈ T , p1 ∈ TI or p1 = δ, p2 ∈ TII or p2 = δ, β < ω2, p′ ∈ Eβ
or p′ = δ, 〈m,n〉 ∈ fβ(p), i ∈ ω, and λ = λi(U), where cβ = 〈T, Eβ, fβ〉.)
Alternatively, N could be taken as the smallest transitive class model N ′ of
ZFC such that {〈λi(U) | i ∈ ω〉} ∪ Ultω1ω(V ;U) ⊆ N ′.

Apply Lemma 5.2.29 with k = 0. Let 〈T̃, π, φ,Ψ〉 be given by that lemma.
Then 〈T̃, π, φ,Ψ〉 is (A,

⋂
β<ω2 Aβ) semicovering of T with respect to N .

Moreover π−1(A) = ∅, and so 〈T̃, π, φ,Ψ〉 is an A-semicovering with respect
to N that unravels A. By Lemma 5.2.26, T̃ ∈ N . If we set D̃ = ∅, the
hypotheses of Lemma 5.2.3 are satisfied. Thus G(A; T) is determined. �

Derrick DuBose noticed that Theorem 5.2.30 could be improved by an
appeal to Borel determinacy. Suppose everything is as in the proof of the
theorem, except that we have 〈Aβ | β ≤ ω2〉 witnessing that A is (ω2 +1)–Π1

1

instead of 〈Aβ | β < ω2〉 witnessing that A is ω2–Π1
1. Suppose further that

Aω2 is Borel. Repeat the construction as in the proof of the theorem, ignoring
Aω2 . The 〈T̃, π, φ,Ψ〉 we get is still an A-semicovering with respect to M ,
but it no longer unravels A. Nevertheless, we have that π−1(A) = π−1(Aω2)
is a Borel subset of dT̃e and so is determined. We can also argue that
G(π−1(A); T̃) has a winning strategy in N and deduce that it is determined.



252 CHAPTER 5. α–Π1
1 GAMES

The results of Section 2.2 were proved in order to make the application below
of DuBose’s idea.

Theorem 5.2.31. (Martin [1990]) If T is a game tree with taboos and there
is a measurable cardinal greater than |T |, then G(A; T) is determined for
every A ⊆ dTe such that both A and dTe \ A belong to (ω2 + 1)–Π1

1.

Proof. Let T be a game tree with taboos. Let 〈Bβ | β < ω2 + 1〉 witness
that A ⊆ dTe belongs to (ω2 + 1)–Π1

1 and let 〈Cβ | β < ω2 + 1〉 witness that
dTe \ A belongs to (ω2 + 1)–Π1

1. Let

Aβ+1 = Cβ ∩Bβ+1 for β < ω2;
Aωn = Bωn for n ∈ ω.

Note that

(a) 〈Aβ | β < ω2〉 ∪ {〈ω2, Bω2〉} witnesses that A belongs to (ω2 + 1)–Π1
1;

(b) for all x ∈ dTe, if x ∈
⋂
β<ω2 Aβ, then

x ∈ A↔ x ∈ Bω2 ↔ x /∈ Cω2 .

Let U be a uniform normal ultrafilter on a cardinal κ > |T |. We will
show that G(A; T) is determined. As in the proof of Theorem 5.2.30, we
may assume without loss of generality that field (T ) ⊆ δ for some cardinal
δ < κ. Let 〈cβ | β < ω2〉 be such that each cβ is a Π1

1 code for Aβ. Let c′ be
a Π1

1 code for Bω2 and let c′′ be a Π1
1 code for Cω2 . Let M = V . Let N be

any transitive class model of ZFC satisfying

(i) {〈cβ | β < ω2〉, c′, c′′, 〈λi(U) | i ∈ ω〉} ⊆ N ;

(ii) N ⊆
⋂
n∈ωMn(U).

(The second version of the N of the proof of Theorem 5.2.30 will also work
for N here, and the first version can easily be modified to work here.)

As in the proof of Theorem 5.2.30, we apply Lemma 5.2.29 with V as the
M of that lemma and with k = 0. Let C = 〈T̃, π, φ,Ψ〉 be given by that
lemma. By Lemma 5.2.24, C is an (A;

⋂
β<ω2 Aβ) semicovering of T with

respect to N . Let c′ = 〈T, E ′, f ′〉 and let c′′ = 〈T, E ′′, f ′′〉. Let

c∗ = 〈T̃,π−1(E ′), f ∗〉;
c∗∗ = 〈T̃,π−1(E ′′), f ∗∗〉,
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where f ∗(p̃) = f ′(π(p̃)) and f ∗∗(p̃) = f ′′(π(p̃)). The pair 〈c∗, c∗∗〉 belongs to
the model N . Moreover c∗ and c∗∗ are Π1

1 codes for π−1(Bω2) and π−1(Cω2)
respectively. By (b) above, the pair 〈c∗, c∗∗〉 is a ∆1

1 code for π−1(A). Thus
we may apply Lemma 5.2.7 with N as the M of that lemma and with 〈c∗, c∗∗〉
as its 〈c1, c2〉, concluding that G(A; T) is determined. �

An alternative way to prove Theorem 5.2.31 would have been via an A-
semicovering that actually unravels A. See Exercise 5.2.3.

The next theorem gives an optimal determinacy consequence of the exis-
tence of α measurable cardinals.

Theorem 5.2.32. Let α be a countable ordinal. If T is a game tree with
taboos and the class of measurable cardinals greater than |T | has order type
≥ α, then G(A; T) is determined for every A ⊆ dTe such that both A and
dTe \ A belong to (ω2α + 1)–Π1

1.

Proof. Let T be a game tree with taboos. Let 〈Bβ | β < ω2α + 1〉 witness
that A ⊆ dTe belongs to (ω2α + 1)–Π1

1 and let 〈Cβ | β < ω2α + 1〉 witness
that dTe \ A belongs to (ω2α + 1)–Π1

1. Let

Aβ+1 = Cβ ∩Bβ+1 for β < ω2α;

Aωγ = Bωγ for γ < ωα.

Note that

(a) 〈Aβ | β < ω2α〉_〈Bω2α〉 witnesses that A belongs to (ω2α + 1)–Π1
1;

(b) for all x ∈ dTe, if x ∈
⋂
β<ω2αAβ, then

x ∈ A↔ x ∈ Bω2α ↔ x /∈ Cω2α.

Let 〈κγ | γ < α〉 be an strictly increasing sequence of measurable cardinals
with κ0 > |T |. For each γ < α, let Uγ be a uniform normal ultrafilter on κγ.
We will show that G(A; T) is determined. We may assume without loss of
generality that field (T ) ⊆ λ for some cardinal λ < κ0. Let 〈cβ | β < ω2α〉
be such that each cβ is a Π1

1 code for Aβ. Let c′ be a Π1
1 code for Bω2α and

let c′′ be a Π1
1 code for Cω2α.

Let a ⊆ λ be such that 〈cβ | β < ω2α〉, c′, and c′′ all belong to L[a] and
such that α is countable in L[a].
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We define transitive class models Mγ, γ ≤ α, of ZFC and simultaneously
define ordinals λγi , γ < α and i ∈ ω. Let

M0 = L[a, -〈Uγ | γ < α〉-];
λγi = λi(Uγ ∩Mγ);

Mγ = L[a, -〈λξi | ξ < γ, i ∈ ω〉-, -〈Uξ | γ ≤ ξ < α〉-].

By Lemma 3.5.2, Uξ∩Mγ is in Mγ a uniform normal ultrafilter on κξ whenever
γ ≤ ξ < α. Note that, for each γ < α, the sequence 〈Mη | γ ≤ η ≤ α〉 is (in
the sense of page 238) a class in Mγ.

For each limit γ ≤ α, let gγ : ω → γ be a strictly increasing function
whose range is cofinal in γ and such that gγ(0) = 0. Choose the gγ such that
〈gγ | γ ≤ α〉 ∈Mα.

For β < ω2α, let cβ = 〈T0, Eβ, fβ〉, where fβ is p 7→<β
p .

We define by induction on γ ≤ α a system

〈〈Tγ | γ < α〉, 〈πγ,ξ, φγ,ξ,Ψξ,γ | ξ ≤ γ ≤ α〉〉.

Our definition will be such that

(i) if ξ ≤ γ ≤ α and
Cγ,ξ = 〈Tγ, πγ,ξ, φγ,ξ,Ψ

ξ,γ〉,
then Cγ,ξ is a (π−1

ξ,0(A),π−1
ξ,0(
⋂
ωξ≤β<ωγ Aβ)) semicovering of Tξ with

respect to Mγ such that Tγ and πγ,ξ belong to Mγ and such that
φγ,ξ � S(nTγ ∩Mγ) ∈Mξ for all n ∈ ω;

(ii) if ρ ≤ ξ ≤ γ ≤ α then Cγ,ρ = Cξ,ρ ◦ Cγ,ξ.

We begin the inductive definition by setting T0 = T.
Next we deal with the case of successor ordinals γ+ 1 ≤ α. For β < ω2α,

let
cγβ = 〈Tγ, π

−1
γ,0(Eβ), fγβ 〉,

where fγβ (p) =<β
πγ,0(p). We define Cγ+1,γ by setting

Tγ+1 = ¯̄F t(〈cγβ | ω
2γ ≤ β < ω2(γ + 1)〉, 〈λγi | i ∈ ω〉, k(γ));

πγ+1,γ = ¯̄Fpi(〈cγβ | ω
2γ ≤ β < ω2(γ + 1)〉, 〈λγi | i ∈ ω〉, k(γ));

φγ+1,γ = ¯̄FMγ

phi (〈c
γ
β | ω

2γ ≤ β < ω2(γ + 1)〉, κγ, k(γ),Uγ ∩Mγ);

Ψγ,γ+1 = ¯̄FMγ

psi (〈cγβ | ω
2γ ≤ β < ω2(γ + 1)〉, κγ, k(γ),Uγ ∩Mγ).
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To complete the successor case, we preserve commutativity by defining, for
ξ < γ,

πγ+1,ξ = πγ,ξ ◦ πγ+1,γ;

φγ+1,ξ = φγ,ξ ◦ φγ+1,γ;

Ψξ,γ+1(σ, x) = Ψγ+1,γ(σ,Ψξ,γ(φγ+1,γ(σ), x)).

To complete the definition, let γ be a limit ordinal ≤ α. For i ∈ ω, let us
write ı̂ for gγ(i). We set

Tγ = It(〈Tı̂ | i ∈ ω〉, 〈π̂,̂ı | i ≤ j ∈ ω〉);
πγ,̂ı = Ipi(〈Tı̂ | i ∈ ω〉, 〈π̂,̂ı | i ≤ j ∈ ω〉, i);
φγ,̂ı = I〈Mn̂|n∈ω〉

phi (〈Tı̂ | i ∈ ω〉, 〈π̂,̂ı, φ̂,̂ı | i ≤ j ∈ ω〉, i);

Ψγ,̂ı = I〈Mn̂|n∈ω〉
psi (〈Tı̂ | i ∈ ω〉, 〈π̂,̂ı, φ̂,̂ı,Ψı̂,̂ | i ≤ j ∈ ω〉, i).

For i ∈ ω and ı̂ < ξ < î+ 1, we preserve commutativity by defining

πγ,ξ = π
î+1,ξ
◦ π

γ,̂i+1
;

φγ,ξ = φ
î+1,ξ
◦ φ

γ,̂i+1
;

Ψξ,γ(σ, x) = Ψγ,̂i+1(σ,Ψξ,̂i+1(φ
γ,̂i+1

(σ), x)).

We leave to the reader the verification that this inductive definition makes
sense and has the stated properties. In particular, this means that that
〈Tα, πα,0, φα,0,Ψ

0,α〉 is a an (A,
⋂
β<ω2αAβ) semicovering of T with respect

to Mα. The rest of the proof is like that of Theorem 5.2.31.
�

Exercise 5.2.1. Prove the assertion that results if, in the statement of
Lemma 5.2.5, the condition “ω1 ∈ M” is replaced by the weaker “M is
uncountable.”

Exercise 5.2.2. If U is a tree on field (T )×ω and c is a Π1
1 code for a subset

B of dUe, then we say that c is a Σ1
2 code and the Σ1

2 set coded by c is

{x ∈ dTe | U(x) 6= ∅}.

(U(x) is defined on page 197.)
Prove the following version of the Shoenfield Absoluteness Theorem (Shoen-

field [1961]): If c is a Σ1
2 code, then membership in the Σ1

2 set coded by c
is absolute for uncountable transitive class models of ZFC. Use this result to
do Exercise 5.2.1 and to reprove Lemma 5.2.6.
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Exercise 5.2.3. Let T be a game tree with taboos. Let A ⊆ dTe be such
that both A and dTe \ A belong to (ω2 + 1)–Π1

1. Assume that there is a
measurable cardinal larger than dTe. Prove that there is a transitive class
model N of ZFC such that there is an A-semicovering C∗ = 〈T∗, π∗, φ∗,Ψ∗〉
of T with respect to N that unravels A such that T∗ ∈ N . (From this it
follows by Lemma 5.2.3 that G(A; T) is determined.)

Hint. Proceed exactly as in the proof of Theorem 5.2.31, getting a transi-
tive class model N of ZFC and a (A,

⋂
β<ω2 Aβ) semicovering C = 〈T̃, π, φ,Ψ〉

of T with respect to N such that there is a ∆1
1 code in N for π−1(A). Note

that the proof gives that T̃ and π belong to N . Now show that the proofs
of Theorems 2.2.6 and 2.2.3 actually give a covering C ′ = 〈T′, π′, φ′,Ψ′〉 of of
T that unravels π−1(A) and is such that T′, π′, and φ′ belong to N . Now
apply Lemma 5.2.13 to show that C ◦ C ′ is the desired C∗.

Exercise 5.2.4. Redo (and simplify) Section 5.2 as follows.

(1) In the definition of φ : T̃
S,M⇒ T, replace the last conjunct of clause (i)

by
S(T̃ ) ∩M ⊆ domain (φ).

(2) Strengthen the hypothesis of Lemma 5.2.1 to require that σ̃ ∈M .

(3) Redefine FMphi to be (Fphi)
M .

(4) Replace clause (c) of Lemmas 5.2.11, 5.2.23, and 5.2.28 by

φ ∈M.

Replace clause (i)(d) and (ii)(d) of Lemma 5.2.12 by the assertions that φ1

and φ2 belong toM . Make similar changes in the hypotheses of Lemma 5.2.13,
the definition of I〈Mi|i∈ω〉

phi , clause (d) of Lemma 5.2.18, and the hypotheses

of Lemma 5.2.20, the definitions of F̄Mphi and ¯̄Fphi
M , and the conclusions of

Lemma 5.2.25 and 5.2.29.

(5) (Optional) Replace, in the definitions of the domains of FMpsi and F̄Mpsi,
the requirement that the intersection of countably many elements of U be
nonempty by the requirement that κ ≥ ω1. Add the latter requirement to
the definition of domain ( ¯̄Fphi

M). Add κ ≥ ω1 to the hypotheses of Lem-
mas 5.2.12, 5.2.25, and 5.2.29.

(6) In the definitions of Mn(U), λn(U), and Vn(U), replace “ω1(n + 1)” by
“n.”
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5.3 Reversible Implications

Let λ be an infinite cardinal number. Theorem 4.4.2 shows that if a# exists
for every a ⊆ λ then all Π1

1 games in trees of size ≤ λ are determined.
Our first goal in this section is to improve that theorem, replacing “Π1

1” by
“
⋃
β<ω2 β–Π1

1” in its conclusion. Afterward we will generalize this result. We

will prove, for all α < ω1 and for all β < ω2(α + 1), that the determinacy of
all β–Π1

1 games in trees of size λ follows from the existence, for each a ⊆ λ,
of indiscernibles for M,a, where M is a transitive class model of ZFC with α
measurable cardinals. (Our first result will thus be the special case α = 0.)
For countable λ, the conclusion of this implication implies its hypothesis for
every α, and so the implication is really half of an equivalence. This is also
true of the lightface version. (See Exercises 4.4.1 and 5.3.4, 5.3.5, and 5.3.6
for the converses.)

The proof of Theorem 4.4.2 is like that of Theorem 4.1.6, except that λ+

replaces the measurable cardinal of the proof of Theorem 4.1.6. Assuming
the hypothesis of Theorem 4.4.2 and using

λ+, λ++, . . . , λ

n︷ ︸︸ ︷
+ · · ·+

in place of n measurable cardinals, one can imitate the proof of Theorem
5.1.4 and prove the determinacy of n–Π1

1 games. With the aid of the ordering
trick (see page 221), one can prove the determinacy of ωn–Π1

1 games for each
n ∈ ω. (One cannot get an even stronger conclusion by using infinitely many
cardinals. To see why the attempt to do so breaks down, note, for example,
that any finite set of cardinals belongs to L but, if 0# exists, then no infinite
set of uncountable cardinals belongs to L.)

We present the details in terms of semicoverings. We begin with an
analogue of Lemma 4.2.2.

Lemma 5.3.1. Let b be a set such that b ∈ L[b] and such that b# exists. Let
T ∈ L[b] be a game tree with taboos. Let B ⊆ dTe be such that B ∈ Π1

1 and
such that some Π1

1 code c for B belongs to L[b]. Let k ∈ ω. Suppose that κ
is an uncountable cardinal (of V ) such that b and T belong to Lκ[b].

(i) There is a (B,B) k-semicovering 〈T̃, π, φ,Ψ〉 of T with respect to L[b]
such that T̃ and π belong to L[b], such that φ(σ̃)�nT belongs to L[b] for every
σ̃ ∈ domain (φ) and for every n ∈ ω, and such that L[b] |= |T̃ | ≤ κ.
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(ii) There is a (dTe \B,B) k-semicovering 〈T̃, π, φ,Ψ〉 of T with respect
to L[b] such that T̃ and π belong to L[b], such that φ(σ̃) � nT belongs to L[b]
for every σ̃ ∈ domain (φ) and for every n ∈ ω, and such that L[b] |= |T̃ | ≤ κ.

Proof. As in the proof of Lemma 4.2.2, we consider only (i) and only the
case k = 0. Define T̃ and π as in the proof of Lemma 4.2.2, with the third
component of c as p 7→<p.

The domain of φ will be the set of all σ̃ ∈ S(T̃ ) such that σ̃ � nT̃ ∈ L[b]
for each n ∈ ω.

For σ̃ ∈ SI(T̃ ) ∩ L[b], define φ(σ̃) as in the proof of Lemma 4.2.2. It is
clear that φ(σ̃) ∈ L[b] for such σ̃. Now extend φ(σ̃) in the obvious to its full
domain. Define Ψ(σ̃, x), for x a play consistent with φ(σ̃), as in the proof of
Lemma 4.2.2.

Suppose that τ̃ ∈ SII(T̃ ) belongs to domain (φ). For p ∈ T with `h(p) =
2n+ 1 and for v ∈ [κ]n+1, define q̃(p, v) as in the proof of Lemma 4.2.2. Let
γ0, . . . , γm be such that both τ̃ � 2n+1T̃ and q̃ are definable in L[b] from b and
cbγ0
, . . . , cbγm . Let βn < κ be larger than any γi that is smaller than κ. For

p ∈ T with `h(p) = 2n+ 1, let

(φ(τ̃))(p) = τ̃(q̃(p, {cbβn , . . . , c
b
βn+n})).

Note that the restriction of φ(τ̃) to positions of length 2n+1 is defined in L[b]
from b, cbβn , . . . , c

b
βn+n, c

b
γ0
, . . . , cbγm . Thus φ(τ̃) � nT belongs to L[b] for each

n ∈ ω. For n ∈ ω, let Xn = {cbξ | βn ≤ ξ < κ}. By indiscernibility and the
fact that τ̃ takes fewer than κ values, for every p ∈ T with `h(p) = 2n+ 1,

(∀v ∈ [Xn]n+1) τ̃(q̃(p, v)) = (φ(τ̃))(p).

For plays x consistent with φ(τ̃), define Ψ(τ̃ , x) as in the proof of Lemma 4.2.2,
with

⋂
n∈ωXn replacing the X of the earlier proof. �

Next we prove an analogue of Lemma 4.2.3.

Lemma 5.3.2. Let b be a set such that b ∈ L[b] and such that b# exists. Let
T ∈ L[b] be a game tree with taboos. Let B ⊆ dTe be such that B ∈ Π1

1

and such that some Π1
1 code c for B belongs to L[b]. Let k ∈ ω and m ∈ ω.

Suppose that κ is an uncountable cardinal such that b ∈ Lκ[b], T ⊆ Lκ[b],
and

(∀p ∈ T )(`h(p) > m → Tp ∈ Lκ[b]).
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(i) There is a (B,B) k-semicovering 〈T̃, π, φ,Ψ〉 of T with respect to L[b]
such that T̃ and π belong to L[b], such that φ(σ̃)�nT belongs to L[b] for every
σ̃ ∈ domain (φ) and for every n ∈ ω, such that T̃ ⊆ Lκ[b], and such that

(∀p̃ ∈ T̃ )(`h(p̃) > max{k,m}+ 1 → T̃p̃ ∈ Lκ[b]).

(ii) There is a (dTe\B,B) k-semicovering 〈T̃, π, φ,Ψ〉 of T of with respect
to L[b] such that T̃ and π belong to L[b], φ(σ̃) � nT belongs to L[b] for every
σ̃ ∈ domain (φ) and for every n ∈ ω, such that T̃ ⊆ Lκ[b], and such that

(∀p̃ ∈ T̃ )(`h(p̃) > max{k,m}+ 1 → T̃p̃ ∈ Lκ[b]).

Proof. Define j, T̃, and π as in the proof of Lemma 4.2.3. Define φ and
the Xn as in the proof of Lemma 5.3.2, but replace “`h(p) = 2n + 1” by
“`h(p) = 2(j + n) + 1.” For p ∈ T with `h(p) = 2(j + n) + 1, we have that

n > m → (∀v ∈ [Xn]n+1) τ̃(q̃(p, v)) = (φ(τ̃))(p).

This allows us to define Ψ as in the proof of Lemma 5.3.1, i.e., as in the proof
of Lemma 4.2.2. �

Next we want to extract the operations implicit in the proof of Lemma 5.3.2.

The operations giving T̃ and π are just those of §5.2.3, Ft and Fpi re-
spectively.

The operation giving φ we call F∗phi. The domain of F∗phi is the set of all
〈b, c, κ,m, k, i〉, where

(i) 〈c, κ,m, k, i〉 ∈ domain (Ft);

(ii) b ∈ L[b] and b# exists;

(iii) c ∈ L[b];

(iv) κ is an uncountable cardinal number such that b ∈ Lκ[b], T ⊆ Lκ[b],
and

(∀p ∈ T )(`h(p) > m → Tp ∈ Lκ[b]),

where T is the first component of c.

The analogue of Lemma 5.2.11 holds:
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Lemma 5.3.3. Let

〈b, c, κ,m, k, i〉 ∈ domain (F∗phi)

be such that c = 〈T, E, f〉. Let T̃ = F t(c, κ,m, k, i) and let φ = F∗phi(b, c, κ,m, k, i).
Then

(a) φ : T̃
S,L[b]⇒ T;

(b) φ � (S(kT̃ ) ∩ L[b]) is the identity;

(c) for all σ̃ ∈ domain (φ) and for all n ∈ ω, φ(σ̃) � nT belongs to L[b].

The operation F∗psi giving the Ψ of the proof of Lemma 5.3.2 has the
same domain as F∗phi. Moreover, if 〈b, c, κ,m, k, i〉 ∈ domain (F∗psi), then
the domain of F∗psi(b, c, κ,m, k, i) is the set of all pairs 〈σ̃, x〉 such that σ̃ ∈
domain (φ), such that x is a play (not necessarily in L[b]) that is consistent
with (F∗phi(b, c, κ,m, k, i))(σ̃), and such that at least one of the following holds

(i) i = 1 and σ̃ is a strategy for I;

(ii) i = 2 and σ̃ is a strategy for II;

(iii) x is finite;

(iv) x belongs to the Π1
1 set coded by c.

The next lemma is analogous to Lemma 5.2.12.

Lemma 5.3.4. Let b be a set such that b ∈ L[b] and such that b# exists. Let
c = 〈T, E, f〉 be a Π1

1 code belonging to L[b] and let B ⊆ dTe be the Π1
1 set

coded by c. Let m and k belong to ω. Let m̃ = max{k,m}+ 1. Suppose that
κ is an uncountable cardinal such that b ∈ Lκ[b], T ⊆ Lκ[b], and

(∀p ∈ T )(`h(p) > m → Tp ∈ Lκ[b]).

For i ∈ {1, 2}, let

T̃i = F t(c, κ,m, k, i);

πi = Fpi(c, κ,m, k, i, );

φi = F∗phi(b, c, κ,m, k, i);

Ψi = F∗psi(b, c, κ,m, k, i).

Then
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(i) 〈T̃1, π1, φ1,Ψ1〉 is a (B,B) k-semicovering of T with respect to L[b]
such that

(a) both T̃1 and π1 belong to L[b];

(b) T̃1 ⊆ Lκ[b];

(c) (∀p̃ ∈ T̃1)(`h(p̃) > m̃ → (T̃1)p ∈ Lκ[b]);

(d) (∀σ̃ ∈ domain(φ1))(∀n ∈ ω)φ2(σ̃) � nT ∈ L[b].

(v) 〈T̃2, π2, φ2,Ψ2〉 is a (dTe \ B,B) k-semicovering of T with respect
to L[b] such that

(a) both T̃2 and π2 belong to L[b];

(b) T̃2 ⊆ Lκ[b];

(c) (∀p̃ ∈ T̃2)(`h(p̃) > m̃ → (T̃2)p ∈ Lκ[b]);

(d) (∀σ̃ ∈ domain(φ2))(∀n ∈ ω)φ2(σ̃) � nT ∈ L[b].

We do not need to define any new composition and limit operations, so
we turn to the task of defining operations for unraveling ω–Π1

1 sets.
The old operations F̄t and F̄pi will still play their roles in the present

context. We have the following refinement of clause (c) of Lemma 5.2.22.

Lemma 5.3.5. Let b be a set and let

〈〈ci | i ∈ ω〉, κ, k〉 ∈ domain (F̄t) ∩ L[b],

with T the common first component of the ci and with κ an uncountable
cardinal number. Let T̃ = F̄t(〈ci | i ∈ ω〉, κ, k). Then

T ∈ Lκ[b] → T̃ ⊆ Lκ[b].

We next define a opertion F̄∗phi whose domain is the set of all 〈b, 〈ci | i ∈
ω〉, κ, k〉 such that

(i) 〈〈ci | i ∈ ω〉, κ, k〉 ∈ domain (F̄t);

(ii) b ∈ L[b] and b# exists;

(iii) c ∈ L[b];

(iv) κ is an uncountable cardinal number such that T ∈ Lκ[b], where T is
the common first component of the ci.
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The definition of F̄∗phi(b, 〈ci | i ∈ ω〉, κ, k) is exactly like that of F̄L[b]
phi (〈ci | i ∈

ω〉, κ, k,U), with two exceptions. First, induction hypothesis (3) is replaced
by

(3′) if m ∈ ω and i ≤ j ≤ n then φj,i(σ) � mTi belongs to L[b] for all
σ ∈ domain (φj,i).

Second, in the induction step of the definition of d′, we set

φn+1,n = F∗phi(b, c
n
n, κ,mn, k + n, in).

We have the following analogue of Lemma 5.2.23.

Lemma 5.3.6. Let

〈b, 〈ci | i ∈ ω〉, κ, k〉 ∈ domain (F̄∗phi),

with T is the common first component of the ci. Let T̃ = F̄ t(〈ci | i ∈ ω〉, κ, k)
and let φ = F̄∗phi(b, 〈ci | i ∈ ω〉, κ, k). Then

(a) φ : T̃
S,L[b]⇒ T;

(b) φ � (S(kT̃ ) ∩ L[b]) is the identity.

(c) for all σ̃ ∈ domain (φ) and for all n ∈ ω, φ(σ̃) � nT belongs to L[b].

Proof. We content ourselves with sketching the proof of (c). Let Ti, i ∈ ω,
be as in the definiton of F̄t and let φj,i, i ≤ j ∈ ω, be as in the definition
of F̄Mphi, for M = L[b]. For i ∈ ω, let φ∞,i : S(T̃ ) → S(Ti) be the canonical
function. Then φ = φi,0 ◦ φ∞,i. For each n, there is an i such that φ∞,i �
S(nT̃ ) is the identity. Thus (c) follows from the definitions and clause (c) of
Lemma 5.3.3. �

Finally we define an operation F̄∗psi whose domain is the same as that
of F̄∗phi. The definition of F̄∗psi(b, 〈ci | i ∈ ω〉, κ, k) is exactly like that of

F̄L[b]
psi (〈ci | i ∈ ω〉, κ, k,U), except that, in the definition of d′′, we make the

changes noted above when we defined F̄∗psi(b, 〈ci | i ∈ ω〉, κ, k), and, in the
induction step, we set

Ψn,n+1 = F∗psi(b, c
n
n, κ,mn, k + n, in).

We have the following analogue of Lemma 5.2.25.
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Lemma 5.3.7. Let b be a set such that b ∈ L[b] and such that b# exists. Let
〈ci | i ∈ ω〉 ∈ L[b] be a sequence of Π1

1 codes with the same first component
T. For i ∈ ω let Ai be the Π1

1 set coded by ci. Let A be the subset of dTe that
〈Ai | i ∈ ω〉 witnesses to belong to ω–Π1

1. Let κ be an uncountable cardinal
such that b and T belong to Lκ[b]. Let k ∈ ω. Let

T̃ = F̄ t(〈ci | i ∈ ω〉, κ, k);

π = F̄pi(〈ci | i ∈ ω〉, κ, k);

φ = F̄∗phi(b, 〈ci | i ∈ ω〉, κ, k);

Ψ = F̄∗psi(b, 〈ci | i ∈ ω〉, κ, k).

Then

(i) 〈T̃, π1, φ1,Ψ1〉 is a (A,
⋂
i∈ω Ai) k-semicovering of T with respect to

M ;

(ii) both T̃ and π belong to L[b] and T ⊆ Lκ[b];

(iii) for all σ̃ ∈ domain (φ) and for all n ∈ ω, φ(σ̃) � nT belongs to L[b].

We are now ready to deal with ωn–Π1
1 sets.

Lemma 5.3.8. Let b be a set such that b ∈ L[b] and such that b# exists. Let
n ∈ ω. Let 〈cβ | β < ωn〉 ∈ L[b] be a sequence of Π1

1 codes with the same
first component T. For β < ωn let Aβ be the Π1

1 set coded by cβ. Let A be
the subset of dTe that 〈Aβ | β < ωn〉 witnesses to belong to ω–Π1

1. Then
G(A; T) is determined. Indeed, there is a winning strategy σ for G(A; T)
such that σ � iT belongs to L[b] for each i ∈ ω.

Proof. Let κ be an uncountable cardinal such that b and T belong to Lκ[b].
Let κ1 = κ and, for 1 ≤ m < n, let κm+1 = (κm)+.

For β < ωn, let cβ = 〈T0, Eβ, fβ〉, where fβ is p 7→<β
p .

By induction on m ≤ n we define a system

〈Tm | m < n〉, 〈πm,m′ , φm,m′ ,Ψm′,m | m ≤ m′ ≤ n〉〉.

Our definition will be such that

(i) if m ≤ m′ ≤ n and

Cm′,m = 〈Tm′ , πm′,m, φm′,m,Ψm,m′〉,
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then Cm′,m is a (π−1
m,0(A),π−1

m,0(
⋂
ωm≤β<ωm′ Aβ)) semicovering of Tm

with respect to L[b] such that Tm′ and πm′,m belong to L[b], such that
Tm′ ⊆ Lκm′ [b], and such that φm′,m(σ) � iTm belongs to L[b] for every
σ ∈ domain (φm′,m) and every i ∈ ω.

(ii) if m ≤ m′ ≤ m′′ ≤ n then Cm′′,m = Cm′′,m′ ◦ Cm′,m.

We begin by setting T0 = T.
Now let 0 ≤ m < n. For β < ωn, set

cmβ = 〈Tm, π
−1
m,0(Eβ), fmβ 〉,

where fmβ (p) =<β
πm,0(p). We define Cm+1,m by setting

Tm+1 = F̄t(〈cmβ | ωm ≤ β < ω(m+ 1)〉, κ, 0〉);
πm+1,m = F̄pi(〈cmβ | ωm ≤ β < ω(m+ 1)〉, κ, 0〉);
φm+1,m = F̄∗phi(b, 〈cmβ | ωm ≤ β < ω(m+ 1)〉, κ, 0〉);
Ψm,m+1 = F̄∗psi(b, 〈cmβ | ωm ≤ β < ω(m+ 1)〉, κ, 0〉).

For m′ < m we define πm+1,m′ , φm+1,m′ , and Ψm,m+1 as required by (ii).
By (i), Cn,0 is an (A,

⋂
β<ωn) semicovering of T with respect to L[b]. Since

π−1
n,0(A) is empty, Cn,0 unravels A. �

Lemma 5.3.8 gives us our strengthening of Theorem 4.4.2:

Theorem 5.3.9. Let λ be an infinite cardinal number. Assume that

(∀a⊆ λ) a# exists.

Then, for every n ∈ ω and every game tree T such that |T | ≤ λ, all ωn–Π1
1

games in T are determined.

Proof. Let T be a game tree with taboos with |T | ≤ λ. Let n ∈ ω. Let
〈Aβ | β < ωn〉 witness that A ⊆ dTe belongs to ωn–Π1

1. We will show
that G(A; T) is determined. We may assume without loss of generality that
field (T ) ⊆ λ. Let 〈cβ | β < ωn〉 be such that each cβ is a Π1

1 code for Aβ. It
is easy to see that there is a b ⊆ λ such that both 〈cβ | β < ωn〉 belongs to
Lλ+ [b]. Since b# exists, Lemma 5.3.8 implies that G(A; T) is determined. �

Remarks:
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(a) (Exercise 4.4.2) implies the converse of Theorem 5.3.9 for the case
of countable λ. Thus the two theorems together give that the determinacy
of all Π1

1 games in countable trees implies the determinacy of all all β–Π1
1

games in countable trees for all β < ω2. To my knowledge, no direct proof is
known of this latter fact.

(b) A special case of Theorem 5.3.9 is due to Friedman [1971a]. (See
remark (b) following Theorem 5.3.10 below.)

(c) The converse of Theorem 5.3.9 was first proved by the author. (See
remark (c) following Theorem 5.3.10.)

Suppose that α is an ordinal smaller than the ordinal called ωCK
1 ; i.e.,

suppose there is a recursive wellordering of a (recursive) subset of ω of order
type α. If A ⊆ ωω, then A belongs to the lightface class α–Π1

1 if there are
sets Aβ, β < α, and there is a one-one g : α→ ω such that

(1) {〈g(γ), g(β)〉 | γ < β < α} is recursive;

(2) {〈g(β), x〉 | β < α ∧ x ∈ Aβ} ∈ Π1
1.

Condition (1) can be modified without changing the concept defined. One
can replace “recursive” by “∆1

1,” and, in the other direction, one can require
that range (g) = ω for α infinite. There are fairly reasonable notions of α–Π1

1

for larger classes of countable ordinals, notions that we will not discuss.
Here is the lightface version of Theorem 5.3.9.

Theorem 5.3.10. If 0# exists then, for all n ∈ ω, all ωn–Π1
1 games in <ωω

are determined.

Proof. The proof of Theorem 5.3.9 proves the present theorem, for our
hypotheses allow us to take the b of that proof to be ∅. �

Remarks:

(a) Harrington’s Exercise 4.4.1 implies the converse of Theorem 5.3.10.
The two theorems together imply that, for all n ∈ ω, the determinacy of all
ωn–Π1

1 games in <ωω is a consequence of the determinacy of all Π1
1 games in

<ωω. No direct proof is known of this last fact.

(b) In Friedman [1971a] there is a proof of the determinacy of all 3–
Π1

1 games from the existence of 0#. That proof easily generalizes to n–Π1
1.
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(Friedman apparently did not notice that the class he was considering was
the third level of a hierarchy.)

(c) The converse of Theorem 5.3.10 was proved by the author before
Harrington’s result, but after Theorem 5.3.10 itself. He showed that the
determinacy of all 3–Π1

1 games in <ωω implies the existence of 0#.

We now turn to the many-measurable-cardinals generalization of Theo-
rem 5.3.9. For this we will need a slight strengthening of the basic determi-
nacy result, Lemma 5.2.1.

Lemma 5.3.11. Let M be a transitive class model of ZFC. Let T be a game
tree with taboos. Let A ⊆ dTe. Let 〈T̃, π, φ,Ψ〉 be an A-semicovering of T
with respect to M that unravels A and is such that T̃ ∈ M . Assume that
there is a winning strategy σ̃ for G(π−1(A); T) such that, for every k ∈ ω,
σ̃ � kT belongs to M . Then G(A; T) is determined.

Proof. Since σ̃ ∈M , σ̃ ∈ domain (φ). As in the proof of Lemma 4.2.1, i.e.,
as in that of of Lemma 2.1.3, φ(σ̃) is a winning strategy for G(A; T). �

Theorem 5.3.12. Let α be a countable ordinal. Let λ be an infinite cardinal
number. Assume that for every a ⊆ λ there is a transitive proper class model
M of ZFC such that

(i) the class of κ > λ such that M |= “κ is a measurable cardinal” has
order type ≥ α;

(ii) there is a proper class C of indiscernibles for M,a.

Then, for every β < ω2(α + 1), all β–Π1
1 games in trees of size λ are deter-

mined.

Proof. Let n ∈ ω. Let T be a game tree with taboos with field (T ) ⊆ λ.
Let 〈Aβ | β < ω2α + ωn〉 witness that A ⊆ dTe belongs to (ω2α + ωn)–Π1

1.
For β < ω2α + ωn, let cβ be a Π1

1 code for Aβ.
Let a ⊆ λ be such that 〈cβ | β < ω2α+ωn〉 belongs to L[a] and such that

α is countable in L[a]. Let M be as given by the hypotheses of the theorem.
Let 〈κγ | γ < α〉 enumerate the first α measurable cardinals of M in order

of magnitude. Let 〈Uγ | γ < α〉 ∈ M be such that M |= “Uγ is a uniform
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normal ultrafilter on κγ” for every γ < α. Replacing M by Ultω1(M ;U0) if
necessary, we may assume that κ0 ≥ ω1. Let

N = L[a, -〈Uγ | γ < α〉-].

By Theorem 3.5.4, 〈Uγ ∩ N | γ < α〉 is definable in M from a and
〈κγ | γ < α〉. Thus property (ii) of M gives us the existence of (-〈a, -〈Uγ ∩N |
γ < α〉-〉-)#.

Observe that the construction and proof of Theorem 5.2.32 go through
unchanged if we replace the assumption that each Uγ is in V a uniform normal
ultrafilter on κγ by the hypothesis that each Uγ ∩ L[a, -〈Uγ | γ < α〉-] is in
L[a, -〈Uγ | γ < α〉-] a uniform normal ultrafilter on κγ, provided that we add
the assumption that κ0 ≥ ω1. (Without this last assumption, we might have
λγi ≥ κγ′ for with γ < γ′ < α.) In the present context, we can thus repeat
the earlier definitions and construction, getting a Cα,0 = 〈Tα, πα,0, φα,0,Ψ

0,α〉
that is an (A,

⋂
β<ω2αAβ) semicovering of T with respect to Mα = L[a, 〈λξi |

ξ < α ∧ i ∈ ω〉].
Note that the existence of (-〈a, -〈Uγ ∩N | γ < α〉-〉-)# implies the existence

of (-〈a, 〈λξi | ξ < α ∧ i ∈ ω〉〉-)#.
The hypotheses of Lemma 5.3.8 are satisfied with -〈a, 〈λξi | ξ < α ∧ i ∈ ω〉〉-

as b, with and 〈cαω2α+ξ | ξ < ωn〉 as 〈cβ | β < ωn〉, and with Â, the set

witnessed to be ωn–Π1
1 by 〈π−1

α,0(Aω2α+ξ) | ξ < ωn〉, as A. Hence Lemma 5.3.8

gives us a winning strategy σ for the game G(Â; Tα) with the property that,
for every i ∈ ω, σ � iTα ∈ Mα. But Â = π−1

α,0(A), and so we get the
determinacy of G(A; T) as in the proofs of Theorems 5.2.31 and 5.2.32. �

Remarks:

(a) For ordinals such that a lightface notion α–Π1
1 is definable, the light-

face version of Theorem 5.3.12 holds. See Exercise 5.3.1.

(b) For each α and λ, the converse of Theorem 5.3.12 holds. (This is also
true of the lightface version.) See Exercises 5.3.4, 5.3.5, and 5.3.6.

(c) Using the Diff∗(Π1
1) hierarchy, one can remove the condition that

α be countable from Theorem 5.3.12 and its converse. See Exercises 5.3.2
and 5.3.7.

Theorem 5.3.12 and Exercise 5.3.6 imply that, for all countable ordinals α,
for all infinite cardinals λ, and for all ordinals β and γ with 1 ≤ β ≤ γ < ω2,
the determinacy of (ω2α+β)–Π1

1 games is equivalent to that of (ω2α+γ)–Π1
1
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games. Analogous results hold for uncountable α (Exercises 5.3.2 and 5.3.7)
and for the lightface case. For classes of the form (ω2α)–Π1

1, determinacy
turns out not to be provably equivalent to the determinacy of any of the
classes just mentioned. We already know half of this fact. Consider, for
simplicity, the lightface case, for small enough α. The determinacy of (ω2α+
1)–Π1

1 games implies the existence of indiscernibles for a transitive proper
class model of ZFC with α measurable cardinals, and the strictly weaker
assumption that there exists a transitive proper class model of ZFC with α
measurable cardinals implies ω2α–Π1

1 determinacy.
It turns out that there is a rich structure of classes lying between

⋃
n∈ω ωn–Π1

1

and (ω2 + 1)–Π1
1 with inequivalent determinacy questions.

Derrick DuBose has found classes whose determinacy is equivalent with

(1) the existence of 0k#, where 01# = 0# and 0(k+1)# = (0k#)# for 1 ≤ k ∈
ω (DuBose [1990] and Exercise 5.3.10);

(2) the existence of a proper class of indiscernibles for L[#1], where #1 is
the sharp function on ωω (DuBose [1992] and Exercise 5.3.14;

(3) the existence of a proper class of indiscernibles for L[#k], where #k

is the sharp function on type k objects (DuBose [1995] and Exer-
cise 5.3.15).

Equivalence results for classes intermediate between those of (2) and (3) are
in DuBose [1992a] and DuBose [199?].

DuBose and the author independently proved that determinacy for a cer-
tain class is equivalent with the existence of a proper class of indiscernibles for
L[#], where # is the sharp function on arbitrary objects. See Exercise5.3.17.

Philip Welch has found a large cardinal hypothesis equivalent with the
determinacy ω2–Π1

1 games. Indeed, Welch [1996] gives large cardinal equiva-
lents for ω2γ–Π1

1 determinacy for, e.g., all recursive ordinals γ. Welch [19??]
gives, for each such γ, an equivalent for the determinacy of games G(A; <ωω)
such that both A and ¬A belong to ω2γ–Π1

1.

Exercise 5.3.1. Let α < ωCK
1 . Assume that there is a transitive proper

class M such that {κ | M |= “κ is a measurable cardinal”} has order type
≥ α and such that there is a proper class of indiscernibles for M . Prove that,
for every β < ω2(α + 1), all β–Π1

1 games are determined.

Remark. The lightface version of Exercise 5.3.6 gives a strong converse
to this result, with “β = ω2α + 1” replacing “for every β < ω2(α + 1).”
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Exercise 5.3.2. Show that Theorem 5.3.12 remains true if the restriction
that α be countable is removed, provided that “β–Π1

1” is replaced by “(β–
Π1

1)∗” in its statement. (See page 50 for the definition of the generalized
difference hierarchy.) This theorem of the author was proved around 1990.

Hint. Use the methods of §2.2 to generalize the limit operations of §5.2.4.

Exercise 5.3.3. Work in ZF and assume the Axiom of Determinacy. Prove
that ω1 is a measurable cardinal. Indeed prove that the filter generated by
the closed unbounded subsets of ω1 is an ultrafilter. (This result of Solovay
was perhaps the main cause for set theorists’ becoming interested in AD.)

Hint. Let X ⊆ ω1. We define a game G = G(A; <ωω), describing A im-
plicitly as follows. Dividing the even and odd natural numbers into infinitely
many infinite sets, construe I’s part of a play z as a sequence 〈xzi | i ∈ ω〉 of el-
ements of ωω and construe II’s part as a sequence 〈yzi | i ∈ ω〉. For each i ∈ ω,
let rzi = {〈m,n〉 | xzi (m) < xzi (n)} and let szi = {〈m,n〉 | yzi (m) < yzi (n)}. If
rzi is a wellordering, let ηzi be its order type. If szi is a wellordering, let ζzi be
its order type.

The winning conditions for G are as follows:

(1) If some rzi or szi is not a wellordering, then I wins if and only if, for the
least such i, rzi is a wellordering.

(2) If all rzi and all szi are wellorderings, then let

ρz = supi∈ωmax{ηzi , ζzi }.

I wins if and only if ρz ∈ X.

Assume for definiteness I has a winning strategy σ for G.
For i ∈ ω, show that there is a closed unbounded subset Ci of ω1 such

that, for all plays z consistent with σ and all ξ ∈ C,

(∀j < i)(ζzj is defined and ζzj < ξ → ηzi is defined and ηzi < ξ).

To do this, note that if ξ < ω1 and

Bξ = {xzi | z is consistent with σ ∧ (∀j < i)(ζzj is defined and ζzj < ξ)},

then Bξ ∈ Σ1
1 and the rzi associated with members of Bξ are all wellorderings.

By the boundedness principle (Moschovakis [1980], Exercise 4A6), the set of
all order types of these wellorderings is bounded in ω1.
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Let C =
⋂
i∈ω Ci. Show that every member of Ci is ρz for some play z

consistent with σ. Thus C is a closed, unbounded subset of X.

Remark. The proof outlined in the hint is Solovay’s original proof. Varia-
tions of it are used in the following exercises. There are other, very different,
proofs. One such proof, due to the author, uses Turing determinacy, i.e.,
P(ωω) Turing determinacy as defined in Exercise 1.4.3. By Exercise 1.4.4,
Turing determinacy gives a countably complete ultrafilter on the set of all
degrees of unsolvability. Mapping each Turing degree d to, e.g., the least
d-admissible ordinal, one induces a countably complete ultrafilter on ω1.

Exercise 5.3.4. Assume that all lightface (ω2+1)–Π1
1 games are determined

and prove that there is a transitive proper class model for ZFC + “There is
a measurable cardinal.”

Hint. Divide up the natural numbers as in the hint to Exercise 5.3.3, but
now let let I’s part of a play z give z(0) plus 〈xzβ | β ≤ ω2〉 and let II’s part
give 〈yzβ | β < ω2〉. For β ≤ ω2, define rzβ, szβ, ηzβ, and ζzβ by analogy with
(and under the same conditions as) the corresponding concepts in the earlier
hint. For n ∈ ω, let

ρzn = supi∈ωmax{ηzωn+i, ζ
z
ωn+i},

provided that all the ηzωn+i and all the ζzωn+i are defined.
Let G be the game in <ωω with the following winning conditions:

(1) If some rzβ or szβ is not a wellordering, then I wins if and only if, for the
least such β, rzβ is a wellordering.

(2) If all rzβ and all szβ are wellorderings, let κz = supn∈ωρ
z
n and let U z be

the filter on κz generated by the tails of the sequence 〈ρzn | n ∈ ω〉, i.e., let

U z = {X ⊆ κz | (∃m)(∀n≥m) ρzn ∈ X}.

I wins if and only if

(i) there is f : κz → κz such that f ∈ Lηz
ω2

[U z], such that {γ | f(γ) <

γ} ∈ U z, and such that f is not constant on a set belonging to U z;
(ii) for f z the <L[Uz ]-least f witnessing (i),

(a) (∀n ∈ ω) f z(ρzn) < ρzn;
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(b) f z(ρz1) > f z(ρz0) ↔ z(0) > 0.

Prove that G is (ω2 + 1)–Π1
1.

Assume that σ is a winning strategy for I for G.
Use the boundedness principle to show that there is a closed unbounded

subset C of ω1 such that for every strictly increasing sequence 〈ξn | n ∈ ω〉 of
elements of C there is a play z consistent with σ such that (∀n∈ ω) ρzn = ξn.

Let 〈ρξ | ξ < ω1〉 enumerate C in order of magnitude. Let λ be a limit
ordinal such that ρλ = λ. Let κ = ρλ+ω. Let U be the filter on κ generated
by the tails of the sequence 〈ρλ+n | n ∈ ω〉.

Let f be least in the canonical wellordering of L[U ] such that {γ | f(γ) <
γ} ∈ U but such that f is not constant on an element of U . (Because there
is a play z̄ consistent with σ such that each ρz̄n = ρλ+n, there must be such
an f .)

First show that

(†) (∀ξ < λ+ ω) f(ρξ) < ρξ.

To do this, assume for a contradiction that ξ < λ + ω and f(ρξ) ≥ ρξ. Let
z be a play consistent with σ such that ρz0 = ρξ and ρzn = ρmax{λ,ξ}+n for
all n > 0. It is clear that U z = U . Therefore f z = f , and so f(ρz0) ≥ ρz0,
contrary to the assumption that σ is a winning strategy for I for G.

Assume that σ calls for I to play z(0) = 0. There must be an n ∈ ω
such that f(ρλ+n+1) > f(ρλ+n), for otherwise f would be constant on a tail
of the ρλ+n and so on an element of U . Let m be the least such n and let
z be a play consistent with σ such that ρzn = ρλ+m+n for all n ∈ ω. Then
f z(ρz1) > f z(ρz0), contradicting the assumption that σ is a winning strategy.

Thus σ calls for I to play z(0) > 0. If there exist ξ0 and ξ1 such that
ξ0 < ξ1 < λ and such that f(ρξ1) ≤ f(ρξ0), then one can contradict the
assumption that σ is a winning strategy by letting z be consistent with σ
and such that ρz0 = ρξ0 , ρz1 = ρξ1 , and ρzn = ρλ+n for all n ≥ 2. Thus f �(C∩λ)
is order preserving. From (†) it follows that f � (C ∩ λ) : C ∩ λ → λ. But
λ was chosen such that C ∩ λ has order type λ. Thus range (f � (C ∩ λ)) is
unbounded in λ. Since f(ρλ) < λ by (†), there must be a ξ < λ such that
f(ρξ) > f(ρλ). From this one can once again contradict the assumption that
σ is a winning strategy.

By the determinacy assumption, let τ be a winning strategy for II for G.
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Use the boundedness principle to show that there is a closed unbounded
subset C of ω1 such that for every k ∈ ω, for every strictly increasing sequence
〈ξn | n ∈ ω〉 of elements of C, and for every δ < ω1, there is a play z consistent
with G such that z(0) = k, such that (∀n∈ω) ρzn = ξn, and such that ηzω2 ≥ δ

Let 〈ξn | n ∈ ω〉 be an increasing sequence of elements of C and let
κ = supn∈ωξn. Let U be the filter generated by the tails of the sequence
〈ξn | n ∈ ω〉.

Assume that U ∩L[U ] is not in L[U ] a uniform normal ultrafilter on κ. By
an absoluteness argument, there is a countable δ such that U ∩ L[U ] is not
in Lδ[U ] a uniform normal ultrafilter on κ. Let f be least in the canonical
wellordering of L[U ] such that {γ | f(γ) < γ} ∈ U but such that f is not
constant on an element of U . Thus f ∈ Lδ[U ]. Let m be least number such
that f(ξn) < ξn for all n ≥ m. Let z be a play consistent with τ such that
ρzn = ξm+n for all n ∈ ω, such that z(0) = 0 if and only if f(ξm+1) ≤ f(ξm),
and such that ηzω2 = δ. Then z is a win for I, contradicting the assumption
that τ is a winning strategy for II for G.

Remark. The result of the exercise, the a partial converse of Theo-
rem 4.4.2, is due to the author. The earliest result of this general kind
was proved by Robert Solovay, who deduced the existence of a transitive
proper class model for ZFC + “There is a measurable cardinal” from the
hypothesis that all Π1

3 games in <ωω are determined. After further results
by Harvey Friedman (in Friedman [1971a]) and by the author, Solovay suc-
ceeded in weakening his hypothesis to the determinacy of all ∆1

2 games and
in improving his conclusion to get models with many measurable cardinals.
All these results were based on the author’s proof of the measurabilty of ω1

under AD, the proof sketched in the remark after the hint to Exercise 5.3.3.
(Note that the proof of the optimal result, that of the present exercise, is
based on Solovay’s original proof of the measurability of ω1.)

To get a model with a single measurable cardinal, Solovay proceeded as
follows. To each degree of unsolvability d, he associated the sequence of
the first ω d-admissibles. He thus associated with d the filter generated by
the tails of this sequence. Turing determinacy guarantees that any question
about d and its associated sequence is constant on a cone. A result of Ronald
Jensen guarantees that any infinite increasing sequence of d-admissibles is
the sequence of the first ω d′-admissibles for some d′-admissibles for some
d′ > d. These facts make possible an argument much like that given in the
hint to the exercise.
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Exercise 5.3.5. Assume that all lightface (ω2+1)–Π1
1 games are determined

and prove that 0† exists. (See page 180 for the definition of 0†.)

Hint. Consider a game G like that of the hint to Exercise 5.3.4, but
modify the earlier game so that II’s part of a play z also gives a yzω2 , and
so an associated szω2 . For convenience, arrange the division of ω so that
the moves related only to xzω2 and yzω2 consititute, when all other moves are
ignored, a genuine play of a game with I and II moving alternately. By
regarding rzω2 as R and szω2 as E, one may construe this play as a play of
the G of the hint to Exercise 4.4.1 and so as a play of the Gb of the hint to
Exercise 4.4.2, for any subset b of a countable ordinal.

Player I wins a play of G if (a) I wins according to conditions (1) and
(2) as on page 270 or (b) the ρzn, n ∈ ω, are all defined and I wins the play
of G{ρzn|n∈ω} given by xzω2 and yzω2 .

The game G is (ω2 + 1)–Π1
1 and so is determined by assumption.

Assume that σ is a winning strategy for I for G. Use the boundedness
principle and the argument of the hint to Exercise 5.3.4 to show that there
is a closed unbounded subset C of ω1 such that for every strictly increasing
sequence 〈ρn | n ∈ ω〉 of elements of C there is a sequence 〈yβ | β < ω2〉 of
elements of ωω such that, for every yω2 ∈ ωω, the play z consistent with σ
with each yzβ = yβ has the following properties:

(i) z does not satisfy condition (a), i.e., z is no a win for I via condi-
tions (1) and (2);

(ii) (∀n ∈ ω) ρzn = ρn;

(iii) ηzω2 is less than the next element of C after
⋃
n∈ω ρn.

Let 〈ρn | n ∈ ω〉 be any strictly increasing sequence of elements of C. Fix
〈yβ | β < ω2〉 as given by 〈ρn | n ∈ ω〉 and the stated property of C. Letting
yω2 range over ωω, one sees that σ gives a winning strategy fo I for G{ρn|n∈ω}.
But, as in the hint to Exercise 4.4.1, it is easy to see that I cannot have such
a winning strategy.

Let τ be a winning strategy for II for G. Use the boundedness principle
to show that there is a closed unbounded subset C of ω1 such that for every
strictly increasing sequence 〈ρn | n ∈ ω〉 of elements of C there is a sequence
〈xβ | β < ω2〉 of elements of ωω such that, for every k ∈ ω and every
xω2 ∈ ωω, the play z consistent with τ with z(0) = k and each yzβ = yβ
satisfies (∀n ∈ ω) ρzn = ρn.
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Let 〈ρn | n ∈ ω〉 be any strictly increasing sequence of elements of C. By
the argument of the hint to Exercise 5.3.4, U ∩ L[U ] is in L[U ] a uniform
normal ultrafilter on supn∈ωρn, where U is the filter generated by the tails of
the sequence.

Fix 〈xβ | β < ω2〉 as given by 〈ρn | n ∈ ω〉 and the stated property of
C. Letting yω2 vary over ωω, one sees that τ gives a winning strategy for
G{ρn|n∈ω}. But this means that {ρn | n ∈ ω}# exists and thus that (U∩L[U ])#

exists. Thus 0† exists.

Remarks:

(a) The results of this exercise and the next were proved by the author
shortly after Harrington proved the result of Exercise 4.4.1. Harrington’s
argument made it possible to weaken the hypotheses of earlier theorems of
the author.

(b) By the case α = 1 of Exercise 5.3.1. the existence of 0† implies the
determinacy of all β–Π1

1 games for every β < ω22. The result of the present
exercise is a strong converse of that result. Combining the two, we get that
the determinacy of all (ω2 +1)–Π1

1 games implies the determinacy of all β–Π1
1

games for every β < ω22.

Exercise 5.3.6. Let α be a countable ordinal, and let λ be an infinite car-
dinal number. Assume that all (ω2α + 1)–Π1

1 games in trees of size ≤ λ are
determined. Prove that for every a ⊆ λ there is a transitive proper class
model M of ZFC such that

(a) the class of κ > λ such that M |= “κ is a measurable cardinal” has
order type ≥ α;

(b) there is a proper class C of indiscernibles for M,a.

Hint. The proof is a fairly routine modification of the proof for Exer-
cise 5.3.5. (Exercise 5.3.5 is the lightface version of the case α = 1.) One
difference is in the properties of the sets C given by the boundedness prin-
ciple: “for every strictly increasing sequence 〈ρn | n ∈ ω〉 of elements of C”
should be replaced by “for every strictly increasing sequence 〈ργ | γ < ωα〉
of elements of C containing none of its limit points.” Another difference is
that the method of Exercise 4.4.2 has to be used when λ is uncountable.

Remarks:
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(a) Essentially the same proof gives the lightface version of the exercise,
for ordinals α such that the lightface version makes sense.

(b) Combining the exercise with Theorem 5.3.12, one gets the equivalence,
for all α and λ, of (1) the hypotheses of Theorem 5.3.12 (i.e., the conclusion
of the exercise), (2) the conclusion Theorem 5.3.12, and (3) the hypotheses
of the exercise. By the equivalence of (2) and (3), the determinacy of all
(ω2α+ 1)–Π1

1 games in trees of size ≤ λ implies the determinacy of all β–Π1
1

games in such trees for every β < ω2(α+ 1). An analogous remark applies to
the combination of the lightface version of the exercise with Exercise 5.3.1.

Exercise 5.3.7. Show the result of Exercise 5.3.6 remains true if the restric-
tion that α be countable is removed, provided that “β–Π1

1” is replaced by
“(β–Π1

1)∗” in its statement. (See page 50 for the definition of the generalized
difference hierarchy.)

Hint. The method for modifying the proof of Exercise 5.3.6 is analo-
gous to the method for modifying the proof of Exercise 4.4.1 to get that of
Exercise 4.4.2.

Exercise 5.3.8. The remaining exercises for this section concern results giv-
ing equivalents of determinacy for classes between the classes ωn–Π1

1 and the
class ω2–Π1

1. Each of these results is due entirely or (in one case) partly to
Derrick DuBose.

DuBose [1990] introduces, for classes Γ, two notions of what one might
describe as “ωn–Π1

1 with n given by a Γ condition.” Both notions allow for
the possibility that the “Γ condition” fails to yield a number n. The two
notions differ precisely in how such failure is treated.

If Γ is a class of sets, then say a subset A of ωω belongs to (Γ)∗ if there
are 〈Aβ | β < ω2〉 and g : ω2 → ω witnessing that some set is ω2–Π1

1 and
there is a B ∈ Γ with B ⊆ ω × ωω such that, for all x ∈ ωω,

x ∈ A ↔ (∃n)(〈n, x〉 ∈ B ∧ (∀n′ < n) 〈n, x〉 /∈ B ∧ x ∈ Âωn),

where, for β ≤ ω2, Âβ is the set witnessed β–Π1
1 by 〈Aγ | γ < β〉, and where

we construe 0–Π1
1 as having ∅ as its unique member.

Say that A ⊆ ωω belongs to (Γ)∗+ if there are 〈Aβ | β < ω2〉, g, and
B witnessing that some set A∗ belongs to (Γ)∗ and there are m ∈ ω and
D ∈ ωm–Π1

1 such that, for all x ∈ω ω,

x ∈ A ↔ (x ∈ A∗ ∨ ((∀n)(n, x) /∈ B ∧ x ∈ D)).
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The boldface notions (Γ)∗∗ and (Γ)∗∗+ are analogously defined, with “Π1
1”

replacing “Π1
1.”

Remark. Note that the definitions for (Γ)∗ and (Γ)∗+ agree when there
is an n such that 〈n, x〉 ∈ B. When there is no such n, the (Γ)∗ definition
stipulates that x /∈ A, but the (Γ)∗+ definition stipulates that x ∈ A↔ x ∈ D.

(a) Show that (Σ1
1)∗ = ω2–Π1

1.
(b) Let Γ ⊆ ∆1

1 and let A ∈ (Γ)∗. Show that there are 〈Aβ | β < ω2〉, g,
and B witnessing that A ∈ (Γ)∗ such that

(i) if β < γ < ω2 then Aβ ⊇ Aγ;

(ii) if n < m ∈ ω and 〈n, x〉 ∈ B, then x ∈ A if and only if x ∈ Âωm,
where the Âβ, β < ω2 are as above;

(iii)
⋂
β<ω2 Aβ = ∅.

Hint. In (b), to arrange for (ii) and (iii), intersect the given Π1
1 sets A′β

with

{x ∈ ωω | (∃n ∈ ω) 〈n, x〉 ∈ B ∧ (∀m ∈ ω)(ωm ≤ β → 〈m,x〉 /∈ B)}.

Exercise 5.3.9. Let A ∈ (∆1
1)∗. Prove that both A and ωω \ A belong to

ω2–Π1
1.

Exercise 5.3.10. Let 1 ≤ k ∈ ω, let Γ be a class of sets, and let X be a
topological space. A subset B of ω ×X belongs to the class (k ∗ Γ) if there
are R0, . . . , Rk−1, such that

(1) each Ri is subset of ω ×X belonging to Γ;

(2) for all 〈n, x〉 ∈ ω × X, 〈n, x〉 belongs to B if and only if there are
i < k and j ∈ ω with 〈j, x〉 ∈ Ri and, for the lexicographically least
such 〈i, j〉, j = n.

Let 00# = ∅ and, for k ∈ ω, let 0(k+1)# = (0k#)#.
Let 1 ≤ k ∈ ω. Prove that 0k# exists if and only if of all (k ∗Σ0

1)∗ games
are determined.

Remark. The definition and the theorem are from DuBose [1990]. For
the case k = 1, the theorem gives a new equivalent of the existence of 0#.
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For each k, the boldface version of “only if” part gives a new equivalent of
“(∀x ∈ ωω)x# exists.”

Hint. For the “only if” part, proceed by induction on k as follows.
First let b ∈ L[b] such that b# exists, let A ⊆ ωω, and let c be a (1∗Σ0

1)∗∗

code (in the obvious sense) for A that belongs to L[b]. (See Exercise 5.3.8 for
the definition of (Γ)∗∗.) Prove that there is a winning strategy for G(A; <ωω)
that belongs to L[b#]. To do this, use c and the proof of part (b) of Ex-
ercise 5.3.8 to get 〈Aβ | β < ω2〉 and B that belong to L[b], witness that
A ∈ (1 ∗ Σ0

1)∗∗, and satisfy (i)–(iii) of part (b) of Exercise 5.3.8. Let
〈cβ | β < ω2〉 ∈ L[b] be such that each cβ is a Π1

1 code for Aβ. Let R
be the witness given by c that B ∈ (1 ∗Σ0

1).
For any p ∈ T and for any n ∈ ω, if

(∀x ∈ dTpe) 〈n, x〉 ∈ R,

then (ii) implies that A ∩ dTpe is the same as the ωn–Π1
1 set given by 〈Aβ |

β < ωn〉. Therefore the proof of Lemma 5.3.8, applied in L[b#], shows that
there is a winning strategy G(A;Tp) that belongs to L[b#].

Now let k ≥ 1 and assume by induction that if 0k# exists then every
(k ∗ Σ0

1)∗ game has a winning strategy belonging to L[0k#]. Assume that
0(k+1)# exists and let A ∈ (k+ 1 ∗Σ0

1)∗. Let 〈Aβ | β < ω2〉, g, and B witness
that A ∈ (k + 1 ∗ Σ0

1)∗. Let R0 . . . , Rk witness that B ∈ (k + 1 ∗ Σ0
1). Using

Rk and R0, . . . , Rk−1 respectively, define Ā ∈ (1 ∗ Σ0
1)∗ and Ã ∈ (k ∗ Σ0

1)∗ in
the obvious way.

Let E be the set of all x ∈ ωω such that one of the following holds:

(a) x ∈ Ā and (∀m< k)(∀n ∈ ω) 〈n, x〉 /∈ Rm;

(b) (a) fails, and there is a position p ⊆ x such that (∃m < k)(∃n ∈
ω)(∀x ∈ dT e) 〈n, x〉 ∈ Rm, and, for the shortest such p, player I has a
winning strategy for G(Ã; <ωω) that belongs to L[0k#].

The set E has a (1 ∗ Σ0
1)∗∗ code belonging to L[0k#]. Therefore there is a

winning strategy for G(E; <ωω) that belongs to L[0(k+1)#]. Show that such a
strategy yields a winning strategy for G(A; <ωω) that belongs to L[0(k+1)#].

For the “if” direction of the Exercise, also proceed by induction. Let
k ∈ ω, and assume that 0k# exists.

Let ϕ(v0, . . . , vj) be a formula of the language of set theory. Consider a
game G in <ωω defined as follows. Construe I’s part of a play x as giving
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〈xzn | n ∈ ω〉 with each xzn ∈ ωω, and let xz0 code a relation rz in ω. Similarly
let II’s part of the play give 〈yzn | n ∈ ω〉 and let yz0 code a relation sz in ω. For
n and i ∈ ω, if the restriction of rz to {a ∈ ω | a rz xzn+1} is a wellordering,
then let ηzωn+i be the order type of this wellordering. Analogously define
ordinals ζzωn+i. For n ∈ ω, if ηzβ and ζzβ are defined for all β < ω(n + 1),
then let ρzn = supi∈ωmax{ηzωn+i, ζ

z
ωn+i}. The winning conditions for G are as

follows.

(1) Let ZFCn̂ be the conjunction of the first n̂ axioms of ZFC, for some large
enough natural number N , which we leave unspecified. Unless (ω; rz) is a
isomorphic to an ω-model MI of ZFCn̂ + V = L[0k#] and unless (ω; rz) |=
“xzn+1(i) is an ordinal” for all n and i ∈ ω, I loses. (See page 44 for the
definition of ω-model.)

(2) Unless either I loses by (1) or else (ω; sz) is a isomorphic to an ω-model
MII of ZFCn̂ + V = L[0k#] and (ω; sz) |= “yzn+1(i) is an ordinal” for all n
and i ∈ ω, II loses.

(3) Suppose that no one loses because of (1) or (2). Suppose also that there
is a k′ such that 1 ≤ k′ ≤ k and

(0k
′#)MI 6= (0k

′#)MII .

Let kz be the least such k′, and let the formula ψz(v0, . . . , vmz) be such that
nψz(v0,...,vmz ) is the smallest number d such that

d ∈ (0k
z#)MI ↔ d /∈ (0k

z#)MII .

(Here and in the remaining exercises of for this secition, assume that nϕ ≥ m
whenever vm is free in ϕ.) If there is a β < ω(mz + 1) such that at least one
of ηzβ and ζzβ is undefined, then I wins if and only if, for the least such β, ηzβ
is defined. If there is no such β, then let

a = (0(kz−1)#)MI = (0(kz−1)#)MII .

Then I wins if and only if

Lρzmz [a] |= ψz[a, ρz0, . . . , ρ
z
mz−1].

(4) Suppose that no one loses because of (1)–(3). If there is a β < ω(n+ 1)
such that at least one of ηzβ and ζzβ is undefined, then I wins if and only if,
for the least such β, ηzβ is defined.
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(5) Suppose that no one loses because of (1)–(4). Let b = (0k#)MI =
(0k#)MII . Then I wins if and only if

Lρzj [b] |= ϕ[b, ρz0, . . . , ρ
z
j−1].

Show that G is (k + 1 ∗ Σ0
1)∗. Indeed, show that G ∈ (k ∗ Σ0

1)∗+.
Assume that σ is a winning strategy for I for G. Use the boundedness

principle to show that there is a closed unbounded subset C of ω1 such that
every member of C is a Silver indiscernible for each L[0k

′#], k′ < k, and
such that the following condition holds: Let 〈ξi | i ∈ ω〉 be any strictly
increasing sequence of elements of C. Then there is a play z consistent with
σ such that MII |= ZFCn̂, such that MII

∼= Lγ for some γ > supi∈ωξi, such
that (0k

′#)MI = 0k
′# for each k′ ≤ k, and such that, if mz is defined and

m < mz + 1 or if mz is undefined and m < j + 1, then ρzm = ξm. Deduce
that, for 〈ξm | m < n〉 any strictly increasing n-tuple of elements of C,

L[0k#] |= ϕ[0k#, ξ1, . . . , ξn].

Prove an analogous result under the assumption that II has a winning
strategy for G. Deduce that 0(k+1)# exists.

Exercise 5.3.11. Let 1 ≤ k ∈ ω. Prove that the existence of 0k# is equiva-
lent with the determinacy of all (k − 1 ∗ Σ0

1)∗+ games.

Remark. This result is also from DuBose [1990]. It would remain true
if we redefined (Γ)∗+ by requiring that D ∈ Π1

1 rather than merely that
D ∈ ωm–Π1

1 for some m. Then one would have to use a game like that of
Exercise 4.4.1 in place of part of the game in the hint to the “if” half of
Exercise 5.3.11 (the part involving the formuala ϕ).

Exercise 5.3.12. Generalize the both the definitions and the theorem of
Exercise 5.3.11 from k ∈ ω to, say, the case α < ωCK

1 .

Exercise 5.3.13. Let M be a transitive class model of ZFC and let T ∈M
be a game tree with taboos. A strong M-covering of T is a C = 〈T̃, π, φ,Ψ〉
such that

(1) in M , C has properties (a), (b), and (c) of a covering of T, as defined
on page 66;
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(2) for every σ̃ ∈ S(T̃ ) ∩M and for every x ∈ dT e such that x is con-
sistent with σ̃, Ψ(σ̃, x) is defined and satisfies (c)(i), (c)(ii), and (c)(iii)
on page 66.

Let A ⊆ dTe be such that A has a ∆1
1 code that belongs to M . Prove

that there is a strong M -covering of of T that unravels A (in the obvious
sense).

Hint. Verify that when the constructions of Chapter 2 are applied in M
they yield strong M -coverings.

Remark. This observation is literally due to the author, though DuBose
had earlier in effect made use of special cases.

Exercise 5.3.14. Let #1 be the function x 7→ x# with domain a subset of
P(ω)

(a) Prove that if

L[#1] |= (∀x⊆ ω)x#exists,

then all (Π0
1)∗ games are determined.

(b) Prove that the existence of a proper class of indiscernibles for L[#1]
is equivalent with the determinacy of all (Π0

1)∗+ games.

Remark. These results are from DuBose [1992]. The boldface version of
(a) gives a new equivalent of the hypothesis that every subset of ω has a
sharp.

Hint. For (a) suppose that 〈Aβ | β < ω2〉, g, and B witness that A
belongs to (Π0

1)∗. Let 〈cβ | β < ω2〉 ∈ L be such that each cβ is a Π1
1 code

for Aβ. For β < ω2, let Âβ be the set witnessed to be β–Π1
1 by 〈Aγ | γ < β〉.

Let T = (<ωω, ∅, ∅), a game tree with taboos.
Define T̃, another game tree with taboos, as follows. A play x̃ in T̃ begins

with a (possible empty) sequence of pairs of moves, with pair number i being

I 〈m2i, Xi〉
II 〈〈2, r〉,m2i+1〉

The play may simply consist of infinitely many such pairs, or there may be
a number k = kx̃ such that the play continues by

I 〈m2k, Xk〉 m2k+2 . . .
II 〈1,m2k+1〉 m2k+3 . . .
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When kx̃ exists, the play may be finite or infinite.
For uniformity, let us regard kx̃ as always existing, taking it to be ω when

it is not a finite number. A play x̃ must satisfy the following conditions.

(1) Each mj belongs to ω.

(2) Each Xn belongs to L[#1].

(3) X0 is a subtree of (<ωω)〈m0〉.

(4) For n > 0, Xn is a subtree of (Xn−1)〈mj |j≤2n〉.

(5) For n < kx̃,

(a) rn ∈ Xn;

(b) `h(rn) ≥ 2n+ 2,;

(c) rn ⊇ 〈mi | i ≤ 2n+ 1〉;
(d) rn ⊇ rn′ for all n′ < n;

(e) {x ∈ ωω | rn ⊆ x ∧ 〈n, x〉 ∈ B} = ∅.

(6) For n < kx̃ and i < `h(rn), 〈mj | j < i〉 ⊆ rn.

(7) If kx̃ is finite, 2kx̃ + 2 ≤ i, and 〈mj | j < i〉 /∈ Xkx̃ , then `h(x̃) = i
and x̃ is taboo for I in T̃.

(8) If kx̃ is finite and {x ∈ ωω | 〈mj | j < i〉 ⊆ x ∧ 〈kx̃, x〉 ∈ B} = ∅,
then `h(x̃) = i and x̃ is taboo for II in T̃.

(9) Unless x � i is terminal because of (7) or (8), x̃ is infinite.

Note that T̃ belongs to L[#1].
Show that there are π, φ, and Ψ such that C = 〈T̃, π, φ,Ψ〉 is a strong

L[#1]-covering of T. (This is a minor variation on the constructions of §2.1.)
Prove that G(π−1(A); T̃) has a winning strategy that belongs to L[#1].

For this observe that, for a position p̃ ⊆ x̃ witnessing that kx̃ is finite,
G(π−1(A); T̃p̃) is essentially identical with G(Âωkx̃ ; T

′
π(p̃)) for a tree T′ ∈

L[Xkx̃ ]. The existence of (Xkx̃)
# guarantees that the latter game is deter-

mined (and has a winning strategy belonging to L[#1]).
The proof that the existence of a proper class of indiscernibles for L[#1]

implies the determinacy of all (Π0
1)∗+ games (half of part (b) of the exercise)

is similar to the proof of (a). Begin by deducing the hypothesis of (a) from
the current hypothesis. Next ignore the set D and define T̃ and C as before.
Given D and given 〈Dβ | β < ωm〉 and h witnessing that D ∈ ωn–Π1

1, let
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〈dβ | β < ωm〉 ∈ L be such that each dβ is a Π1
1 code for Dβ. Finally use

the (D,
⋂
β<ωmDβ) semicovering of T̃ with respect to L[#1] that is given by

the proof of Lemma 5.3.8.
Now consider the other half of (b). Assume that all (Π0

1)∗ games are
determined.

Assume first that there is an x ∈ P(ω) ∩ L[#1] such that x# does not
exist. Let u be the <L[#1]-least such x. Let ϕ(v0, . . . , vk) a formula such that
there is no closed unbounded subset C of ω1 such that

ϕ(u, α1, . . . , αk) ↔ ϕ(u, β1, . . . , βk)

for 〈α1, . . . , αk〉 and 〈β1, . . . , βk〉 any two increasing sequences of elements of
C.

Consider the following game G in <ωω. Let the objects xzn, yzn, rz, sz,
ηβ, ζβ, and ρzn be as in the hint for Exercise 5.3.10. The winning conditions
for G are as follows, where ZFCn̂ is as in the hint for Exercise 5.3.10.

(1) Unless (ω; rz) is a isomorphic to an ω-model MI of ZFCn̂ + V = L[#1]
and unless (ω; rz) |= “xzn+1(i) is an ordinal” for all n and i ∈ ω with n ≥ 1
and also |= “there is an x ∈ P(ω) ∩ Lxz1(0)[#1] such that x# does not exist,”
I loses.

(2) Unless either I loses by (1) or else (ω; sz) is a isomorphic to an ω-model
MII of ZFC + V = L[#1] and (ω; sz) |= “yzn+1(i) is an ordinal” for all n and
i ∈ ω with n ≥ 1 and also |= and “there is an x ∈ P(ω) ∩ Lyz1(0)[#1] such
that x# does not exist,” II loses.

(3) Suppose that no one loses because of (1) or (2). Suppose also that there
is a w ∈ P(ω)∩MI ∩MII such that bothMI andMII satisfy “w# exists”
and such that

(w#)MI 6= (w#)MII .

For any such w, let izw be the element of ω sent to w by any isomorphism from
(ω; rz) to MI , and let jzw be the defined analogously from sz and MII . Let
the formula ψzw(v0, . . . , vmzw) be such that nψzw(v0,...,vm) is the smallest number
d such that

d ∈ (w#)MI ↔ d /∈ (w#)MII .

Let wz and ψz be such that 〈izw, jzw, nψzw(v0,...,vmzw )〉 has the least possible value,
where the ordering is first by maximum and then by the lexicographic order-
ing.
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If there is a β < ω(mz+1) such that at least one of ηzβ and ζzβ is undefined,
then I wins if and only if, for the least such β, ηzβ is defined. If there is no
such β, then I wins if and only if

Lρzmz [wz] |= ψz[wz, ρz0, . . . , ρ
z
mz−1].

(4) Suppose that no one loses because of (1)–(3). If there is a β < ω(2k+ 1)
such that at least one of ηzβ and ζzβ is undefined, then I wins if and only if,
for the least such β, ηzβ is defined.

(5) Suppose that no one loses because of (1)–(4). Then ρz2k belongs to the
wellfounded parts of bothMI andMII . Let αz < ηz0 be the order type of the
initial segment of uzI = uMI with respect to the (<L[#1])

MI and let βz < ζz0
be the corresponding ordinal for uzII = uMII and MII .

(a) Assume first that αz < βz. It follows that uzI ∈ MII . Then II wins
if and only if

Lρz2k [uI ] |= ϕ[uzI , ρ
z
0, . . . , ρ

z
k−1]↔ ϕ[uzI , ρ

z
k, . . . , ρ

z
2k−1].

(b) Assume next that βz < αz. Then I wins if and only if

Lρz2k [uII ] |= ϕ[uzII , ρ
z
0, . . . , ρ

z
k−1]↔ ϕ[uzII , ρ

z
k, . . . , ρ

z
2k−1].

(c) Assume finally that αz = βz. It follows that uzI = uzII . Then I wins if
and only if

Lρzk [u
z
I ] |= ϕ[uzI , ρ

z
0, . . . , ρ

z
k−1].

Prove that G is (Π0
1)∗+.

Assume that σ is a winning strategy for I for G. Use the boundedness
principle to show that there is a closed unbounded subset C of ω1 such that
the following condition holds: Let 〈ξi | i ∈ ω〉 be any strictly increasing
sequence of elements of C and let γ > supi∈ωξi. There is a play z consistent
with σ such that MI

∼= Lγ[#1] and such that ρzm = ξm for all m such that
mz exists and m ≤ mz or mz does not exist and m ≤ 2k. Argue that, for
any such play z, uzI = uzII = u and

L[u] |= ϕ[u, ξ1, . . . , ξk].

This contradicts the definition of u.
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Get a similar contradiction from the assumption that II has a winning
strategy for G.

Now prove that a proper class of indiscernibles exist for L[#1] by consid-
ering a game like G, but where clauses (4) and (5) are replaced by clauses
analogous to the (4) and (5) of the hint to Exercise 5.3.10.

Remarks:

(a) The use of the machinery of Chapter 2 is not really needed for the
exercise, and it was not used in DuBose’s original proof (though it was used
in the proof in DuBose [1992]). This machinery is needed, however, for the
following exercise.

(b) If (Γ)∗+ were redefined as suggested in the remarks to Exercise 5.3.11,
then the result of the present exercise would still hold.

Exercise 5.3.15. For 1 ≤ k ∈ ω, let #k be the function x 7→ x# with
domain a subset of Pk(ω). (See page 94 for the definition of Pα(X).)

(a) Prove that if k ∈ ω and

L[#k] |= (∀x ∈ Pk(ω)x# exists,

then all (Π0
k)
∗ games are determined.

(b) Prove that, for k ∈ ω, the existence of a proper class of indiscernibles
for L[#k] and is equivalent with the determinacy of all (Π0

k)
∗
+ games.

(c) Generalize the results of (a) and (b), which are proved in DuBose
[199?], from the case k ∈ ω to the case k < ωCK

1 .

Hint. For (a) and one part of (b), use the constructions of Chapter 2 (of
§2.3, in particular) followed by the construction of the hint to Exercise 5.3.14
For the other part of (b), imitate the proofs for the corresponding part of
Exercise 5.3.14.

Exercise 5.3.16. (a) Let A ∈ (Π1
1)∗. Prove that there are 〈Aβ | β < ω2〉, g,

and B witnessing that A ∈ (Π1
1)∗ such that for every x ∈ ωω there is at most

one n such that 〈n, x〉 ∈ B.
(b) Prove the result analogous to that of (a) with “(Π1

1)∗+” replacing
“(Π1

1)∗.”

Remark. This observation is due to DuBose.
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Hint. Let 〈A′β | β < ω2〉, g, and B′ witnessing that A ∈ (Π1
1)∗. Let B

belong to Π1
1 and uniformize B′. Let

x ∈ Aωk+i ↔ ((∃n > k) 〈n, x〉 ∈ B ∧ (x ∈ A′ωk+i ∨ (∃j ≤ k) 〈j, x〉 ∈ B′)) .

Exercise 5.3.17. Let # be the class function x 7→ x# with domain a sub-
class of the class of all sets of ordinals.

(i) Prove that the existence of a proper class of indiscernibles for L[#]
implies the determinacy of all (Π1

1)∗+ games.
(ii) Prove that the determinacy of all (Π1

1)∗ games implies that

L[#] |= (∀x⊆Ord)x#exists.

(iii) Prove the converse of (i).

Remarks:

(a) The class L[#] would be unaffected if # were the general sharp func-
tion, defined on every set that has a #. Similarly, the conclusion of (ii) would
be unaffected if “⊆ Ord” were deleted.

(b) Part (i) is due to DuBose and the author jointly. The proofs outlined
in the hints to Exercise 5.3.14 and 5.3.15 incorporate elements of the more
recent proof of (i).

(c) Part (ii) is due to the author. Note that it implies the failure of the
analogue of Exercise 5.3.14, part (a) and Exercise 5.3.15, part (a).

(d) At the time when DuBose proved the theorems of Exercises 5.3.14
and 5.3.15, Philip Welch and the author independently noticed that Du-
Bose’s methods would yield part (iii) of the present exercise. This led to the
conjecture that part (i) should hold.

(e) It seems likely that the determinacy of all (Π1
1)∗ games implies the

existence of a proper class of indiscernibles for L[#] (and so implies the
determinacy of all (Π1

1)∗+ games). Using techniques of Steel [1982] and Ronald
Jensen’s theorem on the Σ1

3 correctness of the core model, the author has
proved that this implication holds under the assumption that every subset
of ω has a #.

Hint. For (i), assume that there is a proper class of indiscernibles for
L[#]. For classes X ⊆ L[#], define H(L[#], X) just as H(L,X) was defined
on page 167, but using L[#] and <L[#] in place of L and <L. Show there
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is a closed unbounded proper class C of indiscernibles for L[#] such that C
generates L and such that, for every uncountable cardinal η,H(L[#], C∩η) =
Lη[#]. To do this, imitate the proof of Theorem 3.4.8.

First consider the case of (Π1
1)∗. Let 〈Aβ | β < ω2〉, g, and B be as given

by Exercise 5.3.16. Let 〈cβ | β < ω2〉, 〈Âβ | β < ω2〉, and T be as in the hint
to Exercise 5.3.14.

Let
B∗ = {x ∈ ωω | (∃n) | 〈n, x〉 ∈ B}.

Let c ∈ L be a Π1
1 code for B∗. Imitating the proof of part (i) of Lemma 5.3.1,

show that there is a (B∗, B∗) semicovering C ′ = 〈T′, π′, ψ′,Ψ′〉 of T with
respect to L[#] such that T′ and π′ belong to L[#] and such that |T ′| = ℵ1.

Since every normal play in T′ belongs to π′−1(B∗), it follows that π′−1(B)
has a ∆1

1 code belonging to L[#]. By a sequence of applications of Exer-
cise 5.3.13, let C = 〈T̃, π, φ,Ψ〉 be a strong L[#]-covering of T′ that unravels
π′−1({x | 〈n, x〉 ∈ B}) for each n ∈ ω. Because, T̃# belongs to L[#], the
game G(π−1(π′−1(A)); T̃) has a winning strategy σ̃ that belongs to L[#].
(One way to prove this is to generalize to uncountable trees the k = 1 case
of Exercise 5.3.10.) Since C is a strong L[#]-covering, it follows that φ(σ̃) is
defined and is a winning strategy for G(π′−1(A); T′). Since φ(σ̃) belongs to
L[#], this implies that φ′(φ(σ̃)) is a winning strategy for G(A; T).

Now let A ∈ (Π1
1)∗+ and let 〈Aβ | β < ω2〉, g, B, and D be as given by

Exercise 5.3.16. Let 〈cβ | β < ω2〉, 〈Âβ | β < ω2〉, T and B∗ be as above.
Let D, 〈Dβ | β < ωm〉, h, and 〈dβ | β < ωm〉 ∈ L be as in the hint to
Exercise 5.3.14. For β < ωm, let

D∗β = Dβ ∪B∗.

Let D∗ωn = B∗. Let D∗ be the set witnessed (ωm+ 1)–Π1
1 by 〈D∗β | β ≤ ωm〉.

Imitate the proof of Lemma 5.3.8 to show that there is a (D∗,
⋂
β≤ωmD

∗
β)

semicovering C ′ = 〈T′, π′ψ′,Ψ′〉 of T with respect to L[#] such that T′ and
π′ belong to L[#] and such that |T ′| = ℵm+1. Now let C = 〈T̃, π, φ,Ψ〉 be
a strong L[#]-covering of T′ that unravels π′−1({x | 〈n, x〉 ∈ B}) for each
n ∈ ω. Argue more or less as above.

For (ii), assume that there is a set a of ordinals such that a ∈ L[#]
and such that a# does not exist. Let u be the <L[#]-least such a. Define
ϕ(v0, . . . , vk) as in the hint to Exercise 5.3.14, with “L[#]” replacing “L[#1].”

Define a game G in <ωω as follows. Let the objects xzn, y
z
n, rz, sz, ηβ,

ξβ, and ρzn be as in the hint for the last half of part (b) of Exercise 5.3.14.
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Winning conditions (1) and (2) are like (1) and (2) for the earlier game,
except that “#1” is replaced by “#” and “P(ω)” is replaced by “P(xz1(0).”

(3) Recall from the definition of “ω-model” on page 44 that the wellfounded
parts of MI and MII are identical with the transitive sets to which they
are isomorphic. Suppose that no one loses because of (1) or (2). If ηz0 is
undefined, then I loses. If ηz0 is defined and and does not belong to the
wellfounded part ofMII , then II loses. Assume that neither player loses for
these reasons. Then there is a set w ⊆ ηz0 such that w ∈MI ∩MII and such
that at least one of the following holds.

(a) w = uMI .

(b) w = uMII .

(c) Both MI and MII satisfy “w# exists,” and (w#)MI 6= (w#)MII .

Let wz be the (<L[#])
MI -least such w. If (c) holds, let dz be the least number

d such that
d ∈ ((wz)#)MI ↔ d /∈ ((wz)#)MII .

Determine which player wins as in the last part of (3) in the hint to Exer-
cise 5.3.14. If (a) or (b) holds, determine who wins as in (4) and (5) of the
hint to Exercise 5.3.14.

Prove that G ∈ (Π1
1)∗ and then proceed as in the hint to Exercise 5.3.14.

The proof of (iii) is similar to that of the analogous part of Exercise 5.3.14.

5.4 Σ0
1(Π1

1) Games

In this section we go beyond the difference hierarchy on Π1
1 and present work

of John Simms (Simms [1979]) concerning the first level of the σ-algebra
generated by Boolean combinations of Π1

1 sets. In any topological space, let
Σ0

1(Π1
1) be the collection of all countable unions of Boolean combinations of

sets belonging to Π1
1. We prove Simms’ result that the determinacy of all

Σ0
1(Π1

1) games in a game tree T follows from the existence of a κ > |T | such
that κ is a measurable limit of measurable cardinals. Simms [1979], plus later
work of John Steel, William Mitchell, and the author, further shows, for any
infinite cardinal λ, that the determinacy of all Σ0

1(Π1
1) games in trees of size

λ is equivalent to the existence, for each subset a of λ, of a proper class of
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indiscernibles for M,a, where M is a transitive proper class model ZFC +
“There is a proper class of measurable cardinals” with a ∈ M . We prove
one half of this equivalence and also a strong version, due to Simms, of this
half. We outline in hints to the exercises the proofs of the other half of the
equivalence and of related results. We also present lightface equivalences. In
the exercises we indicate how to generalize the equivalence theorems to the
difference hierarchy on the dual class Π0

1(Π1
1), using the “measurable limit

of” hierarchy.
The following lemma shows that “differences of Π1

1 sets” can replace
“Boolean combinations of Π1

1” sets in the definition of Σ0
1(Π1

1).

Lemma 5.4.1. Let T be a game tree and let A ⊆ dT e. Then A ∈ Σ1
0(Π1

1) if
and only if A is a countable union of differences of Π1

1 sets.

Proof. The “if” part of the lemma is trivial. For the “only if” part, let
A =

⋃
n∈ω Bn with each Bn a Boolean combination of Π1

1 sets. Using the
basic properties of Boolean algebras, we can show that, for each n ∈ ω,

Bn =
⋃
i≤mn

Bn,i,

where each mn ∈ ω and each Bn,i is a finite intersection of Π1
1 sets and

complements of Π1
1 sets. Since Π1

1 is closed under finite intersections and
unions, each Bn,i is a difference of Π1

1 sets. But then

A =
⋃
n ∈ ω
i ≤ mn

Bn,i,

so A is a countable union of differences of Π1
1 sets. �

We can also define Σ0
1(Π1

1), the lightface version of Σ0
1(Π1

1). Say that
A ⊆ ωω belongs to Σ0

1(Π1
1) if there are C ⊆ ω × ωω and D ⊆ ω × ωω such

that C and D belong to Π1
1 and such that

A = {x ∈ ωω | (∃n ∈ ω) (n, x) ∈ C \D}.

We next present a characterization of Σ0
1(Π1

1) that will be a key ingredient
in the determinacy proofs for games in this class. In order to do this, we will
first prove a technical result.
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For any class linear ordering A, define wfo(A) as follows. If every ordinal
is order isomorphic to an initial segment of A, let wfo(A) = Ord. Otherwise
let wfo(A) be the largest ordinal that is order isomorphic to an initial segment
of A.

Let us extend our notion of a Π1
1 code (defined on page 228) to the simpler

case of game trees without taboos or terminal positions. For such a tree T ,
say that 〈T, p 7→<p〉 is a Π1

1 code if 〈T, ∅, p 7→<p〉 is a Π1
1 code, where

T = 〈T, ∅, ∅〉. Let us also define a lightface notion. Say that 〈<ωω, p 7→<p〉
is a Π1

1 code if it is a Π1
1 code and p 7→<p is recursive.

Lemma 5.4.2. Let T be a game tree without terminal positions. For each
n ∈ ω let cn = 〈T, p 7→<n

p〉 be a Π1
1 code. Then there is a Π1

1 code c =
〈T, p 7→<p〉 such that, for all x ∈ [T ],

(1) the induced ordering <x of ω is not a wellordering;

(2) every non-zero i ∈ ω has an immediate successor with respect to <x;

(3) for every n ∈ ω, if <n
x is a wellordering then there is an i ∈ ω such

that
(ω;<n

x) ∼= ({j ∈ ω | j <x i};<x);

i.e., wfo(ω;<x) is larger than the order type of any of the (ω;<n
x) that

are wellorderings.

Moreover, if T = <ωω and if 〈n, p〉 7→<n
p is recursive, then c is a Π1

1 code.

Remark. The essential clause of the lemma is (3). If we deleted clauses
(1) and (2)—and so deleted the corresponding clauses from Lemmas 5.4.3
and 5.4.4, only slight changes would be needed in the proofs of our determi-
nacy theorems.

Proof. Our proof will proceed in three steps:

(i) We define a continuous function x 7→ Sx with domain [T ]. Each Sx

will be a game subtree of <ωω.

(ii) We show that, for each x ∈ [T ], the restriction of the Brouwer–Kleene
ordering <BK to Sx has wfo larger than the order types of the (ω;<n

x)
that are wellorderings. (The ordering <BK is defined on page 183.)

(iii) We use (ii) to construct p 7→<p.
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For step (i), let 〈n, i〉 7→ kni be a bijection from ω × ω onto ω with the
property that kni < knj whenever i < j. For q ∈ <ωω, let q ∈ Sx provided
that, for all n such that kn0 < `h(q) and q(kn0 ) = 0,

(∀i≥ 1)(kni+1 < `h(q) → q(kni+1) <n
x q(k

n
i ).

The idea is that, for each n, the value q(kn0 ) is a guess at whether or not
<n
x is a wellordering. The value 0 is a guess that it is not a wellordering. If

q(kn0 ) = 0, then the values of q on the arguments kn1 , k
n
2 , . . . must must verify

the correctness of this guess by forming a strictly decreasing sequence with
respect to <n

x. If q(kn0 ) > 0, then the guess is that <n
x is a wellordering, and

no conditions are placed on the values of q on arguments of the form kni .
For step (ii), fix x ∈ [T ].
We show that [Sx] is nonempty by defining y ∈ [Sx] as follows. For each

n ∈ ω, set

y(kn0 ) =

{
0 if <n

x is not a wellordering;
1 otherwise.

If n ∈ ω and y(kn0 ) = 0, then let 〈y(kni ) | 1 ≤ i ∈ ω〉 be a strictly decreasing
sequence with respect to <n

x. If n ∈ ω and y(kn0 ) > 0, then let y(kni ) = 0 for
all i ≥ 1. Evidently y belongs to [Sx].

Now let z be the leftmost branch of Sx, defined inductively by:

z(i) = min{m ∈ ω | [Sxz�i_〈m〉] 6= ∅}.

Thus z ∈ [Sx] and, for all y ∈ [Sx] with y 6= z, z(i) < y(i) for the least i
such that z(i) 6= y(i). By the definition of <BK, this means that the subtree
S∗ of Sx defined by

S∗ = {q ∈ Sx | (∀i ∈ ω) q <BK z � i}

is wellfounded. By Lemma 4.1.3, it follows that the restriction of <BK to S∗

is wellfounded.
Let n ∈ ω be such that <n

x is a wellordering. Let q∗ = (z � kn0 )_〈0〉.
Clearly [(Sx)q∗ ] = ∅. Hence z(kn0 ) > 0, and so q∗ ∈ S∗. We will prove that
the restriction of <BK to {q∈Sx | q < q∗}, i.e., to {q∈S∗ | q < q∗}, has order
type at least as great as that of <n

x. Since whenever q and q′ are elements of
<ωω with q ( q′ then q′ <BK q, it suffices to prove that ‖q∗‖Sx is at least as
great as the order type of <n

x.
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Let S̄ be the subtree of (Sx)q∗ defined by

S̄ = {q ∈ (Sx)q∗ | (∀m)(∀i)((m 6= n ∧ kmi < `h(q))→ q(kmi ) = z(kmi ))}.

It is enough to prove that ‖q∗‖S̄ is at least as great as the order type of <n
x.

There is a natural embedding h of the tree U of all finite sequences that are
strictly descending with respect to <n

x into the tree S̄q∗ , and embedding that
sends ∅ to q∗. Thus ‖U‖ ≤ ‖S̄q∗‖, and a routine induction shows that ‖U‖
is at least as great as the order type of <n

x.
For step (iii), let i 7→ si be a bijection from ω to <ωω as on page 185. De-

fine x 7→<∗x by letting <∗x be the natural ordering of ω\{i | si /∈ Sx} followed
by the ordering of {i | si ∈ Sx} that makes i 7→ si an order isomorphism into
of (Sx;<BK). For each x ∈ [T ], <∗x is a linear ordering of ω that is not a
wellordering, and its wellordered initial segment has order type greater than
that of any of the <n

x that are wellorderings.
The function x 7→<∗x is continuous in the sense that <∗x � {i ∈ ω | i < j}

is determined by x � j′ for some j′ ∈ ω. But it is not continuous in a strong
enough sense to induce the desired p 7→<p.

We deal with this problem as follows. For each x ∈ [T ] and each j ∈ ω,
let fx(j) be the least j′ > fx(j) such that <∗x �{i ∈ ω | i < j} is determined
by x � j′. Note that fx(0) = 0 and that fx(1) = 1. For each x ∈ [T ], define
<x by letting

fx(i+ 1) <x fx(j + 1) ↔ i <∗x j

and by placing {i ∈ ω | i + 1 /∈ range (fx)} at the beginning of <x, in the
natural order. Since 0 is maximal in <∗x, it follows that 0 is maximal in <x. It
is easy to check that <x has the strong continuity property needed to induce
our function p 7→<p.

It is evident that clauses (1) and (3) of the lemma hold. We see as follows
that clause (2) holds. If S ′ ⊆ ωω is any game tree, then, as is easily verified,
every s ∈ S ′ except ∅ has an immediate successor with respect to <BK �S ′.
For each x ∈ ωω, (ω;<x) is a wellordering followed by an ordering isomorphic
to such an (S ′;<BK �S ′).

It is easy to check that, under the hypothesis of the last part of the lemma,
our construction gives a recursive p 7→<p as required. �

Remark. Lemma 5.4.2 is in effect well-known. The usual proof is based
on a relativization of the construction of a subtree S of <ωω such that [S] 6= ∅
but [S] ∩∆1

1 = ∅. The more elementary proof we have given is due to John
Steel.



292 CHAPTER 5. α–Π1
1 GAMES

The following normal form result is due to the author.

Lemma 5.4.3. Let A ⊆ ωω. Then A ∈ Σ0
1(Π1

1) if and only if there is a
B ⊆ ω × ωω with B ∈ Π1

1 and there is a recursive function p 7→<p with
domain <ωω such that

(1) <∅= ∅ and, for all p ∈ T \ {∅}, <p is a linear ordering of `h(p)
with greatest element 0;

(2) for elements p and p′ of T , if p ⊆ p′ then <p⊆<p′;

(3) for all x ∈ ωω, <x is not a wellordering of ω, where

<x =
⋃
n∈ω

<x�n;

(4) for all x ∈ ωω, every non-zero member of ω has an immediate suc-
cessor with respect to <x;

(5) for all x ∈ ωω, x ∈ A if and only if

(∃e ∈ ω)(<x � {e′ | e′ <x e} is a wellordering ∧ (e, x) /∈ B).

Proof. First assume that A ∈ Σ0
1(Π1

1). Let A =
⋃
n∈ω(Cn \ Dn), where

Cn = {x | (n, x) ∈ C}, Dn = {x | (n, x) ∈ D}, and C and D belong to Π1
1.

It is easy to show that there is a recursive function 〈n, p〉 7→<n
p such that,

for all n ∈ ω, 〈<ωω, p 7→<n
p〉 is a Π1

1 code for Cn. By Lemma 5.4.2, let
c = 〈<ωω, p 7→<p〉 be a Π1

1 code satisfying clauses (1), (2), and (3) of the
conclusion of that lemma. The fact that c is a Π1

1 code means that p 7→<p

satisfies clauses (1) and (2) of the present lemma. Clause (1) of Lemma 5.4.2
gives clause (3) of the present lemma, and clause (2) of that lemma gives
clause (4) of the present lemma.

Define B ⊆ ω × ωω by letting (e, x) belong to B just in case, for every
n ∈ ω, if (ω;<n

x) can be embedded into ({e′ | e′ <x e};<x), then x ∈ Dn.
A routine calculation shows that B ∈ Π1

1. To verify clause (5), let x ∈ ωω.
Assume first that x ∈ A. Let n be such that x ∈ Cn \Dn. By clause (3) of
Lemma 5.4.2, the order type of (ω;<n

x) is less than wfo(ω;<x). Therefore let e
be such that <x �{e′ | e′ <x e} is a wellordering and (ω;<n

x) can be embedded
into ({e′ | e′ <x e};<x). Since x /∈ Dn, it follows that (e, x) /∈ B. Now assume
that x /∈ A and let e ∈ ω. Assume that <x �{e′ | e′ <x e} is a wellordering.
For any n ∈ ω, if (ω;<n

x) can be embedded into ({e′ | e′ <x e};<x) then
x ∈ Cn and therefore x ∈ Dn. Thus (e, x) ∈ B.

The other half of the lemma is easy to verify. �
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Lemma 5.4.4. If T is a game tree without terminal positions and A ⊆ [T ],
then A ∈ Σ0

1(Π1
1) if and only if there are Π1

1 sets Be, e ∈ ω, and there is a
function p 7→<p with domain T such that

(1) <∅= ∅ and, for all p ∈ T \ {∅}, <p is a linear ordering of `h(p)
with greatest element 0;

(2) for elements p and p′ of T , if p ⊆ p′ then <p⊆<p′;

(3) for all x ∈ [T ], <x is not a wellordering of ω, where

<x =
⋃
n∈ω

<x�n;

(4) for all x ∈ [T ], every non-zero member of ω has an immediate suc-
cessor with respect to <x;

(5) for all x ∈ [T ], x ∈ A if and only if

(∃e ∈ ω)(<x � {e′ | e′ <x e} is a wellordering ∧ x /∈ Be).

The proof of Lemma 5.4.4 is similar to that of Lemma 5.4.3, and we omit
it.

Theorem 5.4.5. (Simms [1979]) Let T be a game tree. If there is a measur-
able limit of measurable cardinals that is larger than |T |, then every Σ0

1(Π1
1)

game in T is determined.

Proof. We may assume without loss of generality that T has no terminal
positions and so that dT e = [T ]. (See page 182.)

By Lemma 5.4.4, let 〈Be | e ∈ ω〉 and p 7→<p witness that A ⊆ [T ]
belongs to Σ0

1(Π1
1). For each e ∈ ω, let p 7→<e

p and x 7→<e
x be the functions

given by Lemma 4.1.4 with Be as the A of that lemma.
Let κ > |T | be a measurable limit of measurable cardinals. Let 〈κα | α <

κ〉 be the strictly increasing sequence of all of all measurable cardinals smaller
than κ that are not limits of measurable cardinals. Let U be a uniform normal
ultrafilter on κ and, for each α < κ, let Vα be a uniform normal ultrafilter
on κα.

Let h : ω × ω → ω be a bijection such that

(i) (∀e ∈ ω)h(e, 0) ≥ e;
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(ii) (∀e ∈ ω)(∀m ∈ ω)(∀n ∈ ω)(m < n→ h(e,m) < h(e, n)).

We describe a game tree T ∗ by describing the plays in T ∗:

I 〈a0, ξ0〉 〈a2, ξ1〉 〈a4, ξ2〉 . . .
II 〈a1, η0〉 〈a3, η1〉 . . .

Each 〈ai | i < n〉 must be a position in T . Each ξi must be an ordinal number
smaller than κ. For all elements e and n of ω it must be that

ηh(e,n) < κξe .

Let π : T ∗ → T be given by

π(〈〈a0, ξ0〉, 〈a1, η0〉, . . . , 〈a2n−1, ηn−1〉 [, 〈a2n, ξn〉]〉)
= 〈a0, a1, . . . , a2n−1 [, a2n]〉.

The function π induces a continuous function, which we also call π, from [T ∗]
to [T ].

We define A∗ ⊆ [T ∗] as follows. Fix a play

x∗ = 〈a0, ξ0〉, 〈a1, η0〉, . . .

in T ∗. Let x = π(x∗) = 〈ai | i ∈ ω〉. Since <x is not a wellordering, we have
that

(∃i ∈ ω)(∃j ∈ ω)(i <x j 6↔ ξi < ξj).

Let k be the smallest max{i, j} for such i and j (in the sense of the natural
ordering of ω). Then x∗ ∈ A∗ if and only if there are elements e, m, and n
of ω such that

h(e,m) < k ∧ h(e, n) < k ∧ (m <e
x n 6↔ ηh(e,m) < ηh(e,n)).

We can describe A∗ more informally as follows. At some point in a play x∗,
I must fail in the endeavor to make the ordinal moves ξi give an embedding
of (ω;<π(x∗)) into (κ;<). I wins just in case this failure is preceded by II’s
failure, for some e, to make the ordinal moves ηh(e,n) give an embedding of
(ω;<e

π(x∗)) into κξe . (Note that, by the properties of h, the ordinal ξe is

chosen before any of the ηh(e,n).)
Let us say that p∗ ∈ T ∗ is good if the neither player has yet failed

in the sense described in the preceding paragraph. In other words, p∗ =
〈〈a0, ξ0〉, 〈a1, η0〉 . . . is good if
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(a) (∀i)(∀j)((2i < `h(p∗) ∧ 2j < `h(p∗)) → (i <π(p∗) j ↔ ξi < ξj));

(b) (∀i)(∀m)(∀n)((2h(i,m) + 1 < `h(p∗) ∧ 2h(i, n) + 1 < `h(p∗)) →
(m <π(p∗) n↔ ηh(i,m) < ηh(i,n))).

The set A∗ is clopen, and so the game G(A∗;T ∗) is determined.
Suppose first that G(A∗;T ∗) is a win for II. Let τ ∗ be a winning strategy

for II for G(A∗;T ∗).
We first define a strategy τ for II for G(A;T ). The idea is that the

first components of II’s moves given by τ ∗ are independent of the second
components of I’s moves, as long as these second components are in the
right order and are members of a certain set belonging to U .

Let p ∈ T with `h(p) = 2k + 1. For v ∈ [κ]k+1, if there is a good q∗ ∈ T ∗
such that π(q∗) = p, q∗ is consistent with τ ∗, and all the ξe belong to v, then
let q∗(p, v) be the unique such q∗. By Lemma 3.1.8, there is set Xp ∈ U such
that one of the following holds.

(1) For all v ∈ [Xp]
k+1, q∗(p, v) is undefined.

(2) There is an a such that, for all v ∈ [Xp]
k+1, q∗(p, v) is defined and the

first component of τ ∗(q∗(p, v)) is a.

Choose a strategy τ for II for G(A;T ) as follows.
If (2) holds for p, let τ(p) be the common first component of the τ ∗(q∗(p, v))

for v ∈ [Xp]
k+1. If (1) holds, let τ(p) be arbitrary.

It is easy to see by induction on `h(p) that (2) holds for every p that is
consistent with τ .

We will prove that τ is a winning strategy for G(A;T ). The idea is that,
for each e, the components ηh(e,n) of II’s moves given by τ ∗ are independent
of the components ξē of I’s moves for e <x ē, as long as these moves are in
the right order and are members of a certain set belonging to U .

For p ∈ T , let us abuse notation by writing T ∗p for
⋃
{T ∗q∗ | q∗ ∈ T ∗ ∧

π(q∗) = p}.
Let e ∈ ω and p̄ ∈ T with `h(p̄) > e. Let T ep̄ be like T ∗p̄ except that

second components ξe′ and ηh(e′,n) are played only if e′ <p̂ e, where p̂ is the
longer of p̄ and the sequence of first components of the position in T ep̄ . Let
πep̄ : T ∗p̄ → T ep̄ be the obvious function and also call πep̄ the associated function
from [T ∗p̄ ] to [T ep̄ ]. Write πe,p̄ for the obvious functions from T ep̄ to Tp̄ and from
[T ep̄ ] to [Tp̄]. Let us define good positions in T ep̄ by the obvious modification of
the definition of good positions in T ∗; that is, replace “(∀i)” and “(∀j)” by
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(∀i <p̄∪πe,p̄(p) e)” and “(∀j <p̄∪πe,p̄(p) e)” respectively in clauses (a) and (b) of
the earlier definition.

For the next three paragraphs, fix p̄ ∈ T with `h(p̄) > e and fix k ∈ ω
and p ∈ T ep̄ with `h(p) = 2k + 1. Let mp be the number of e′ ≤ k such that
e′ <p̄∪πe,p̄(p) e; i.e., let mp be the number of e′ ≤ k such that p(2e′) has a
second component. Let v ∈ [κ]mp . If there is a good q∗ ∈ T ∗p̄ such that q∗ is
consistent with τ ∗, πep̄(q

∗) = p, and all ξe′ belong to v, then let q∗(p, v) be
the unique such q∗.

Note that the definition of q∗(p, v) just given does not depend on e or p̄.
Note also that, for p ∈ T ∩T ep̄ , the definition just given of q∗(p, v) agrees with
the earlier one.

By Lemma 3.1.8, there is a set Xp ∈ U such that one of the following
holds.

(1) For all v ∈ [Xp]
mp , q∗(p, v) is undefined.

(2) There is an a and, if k = h(e′, n) with e′ <p̄∪πe,p̄(p) e, there is an α < κ,
such that, for all v ∈ [Xp]

mp , q∗(p, v) is defined, the first component of
τ ∗(q∗(p, v)) is a, and the second component of τ ∗(q∗(p, v)), if it exists,
is α.

To see that Lemma 3.1.8 applies, observe that h(e′, n) must be smaller than
the κξe′ given by q∗(p, v).

For e ∈ ω and p̄ ∈ T , choose a strategy τ ep̄ for II in T ep̄ as follows. Let p be
as in the preceding paragraphs. (a) If (2) holds for p, let τ ep̄ (p) be the common
value of πep̄(τ

∗(q∗(p, v))) for v ∈ [Xp]
mp , provided that this is a legal move at

p in T ep̄ . (The only way this proviso can fail is if `h(p) < `h(p̄), and the the
first component of τ ∗(q∗(p, v)) is different from p̄(`h(p)).) (b) Otherwise, let
τ ep̄ (p) be arbitrary.

Suppose that p̄ is consistent with τ . By induction on `h(p) we show that,
for every good p of odd length that is consistent with τ ep̄ ,

(i) τ ep̄ (p) is defined by (a);

(ii) p_〈τ ep̄ (p)〉 is a good position in T ep̄ .

Assume that p is good, that `h(p) = 2k + 1, and that (i) holds for p � 2k − 1
if k > 0. Let X = Xp�2k−1 if k > 0 and let X = κ if k = 0. Let v ∈ [X]mp

and let v′ be the image of {e′ < k | e′ <p∪πe,p̄(p) e} under the isomorphism
between ({e′ ≤ k | e′ <p∪πe,p̄(p) e};<p∪πe,p̄(p)) and (v;<).
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Assume for the moment that k > 0. Then (2) holds for p � 2k− 1, and so
q∗(p � 2k − 1, v′) exists. Since q∗(p � 2k − 1, v′) is good and τ ∗ is a winning
strategy, we get that q∗(p � 2k − 1, v′)_〈τ ∗(q∗(p � 2k − 1, v))〉 is good. But

p � 2k − 1_〈τ ep̄ (p � 2k − 1)〉 = πep̄(q
∗(p � 2k − 1, v′)_〈τ ∗(q∗(p � 2k − 1, v))〉),

and hence p �2k−1_〈τ ep̄ (p �2k−1)〉 is good. Since v′ is an arbitrary member
of [X]mp�2k−1 , we have shown that (ii) holds for p � 2k − 1. The goodness of
q∗(p �2k−1, v′)_〈τ ∗(q∗(p �2k−1, v))〉 and the consistency of p with τ ep̄ imply
that q∗(p, v) exists.

Since q∗(p, v) obviously exists if k = 0, we have established its existence
whether or not k = 0, and so we know that (2) holds for p. Since p̄ is
consistent with τ , we have that πep̄(q

∗(p, v)_τ ∗(q∗(p, v))) belongs to T ep̄ . This
fact and the fact that v is an arbitrary member of X show that (i) holds for
p.

Suppose that both p̄ and p̄′ are positions in T consistent with τ and that
both have length greater than e. If p ∈ T ∩ T ep̄ and p is good and consistent

with τ , then τ(p) is identical with the first component of τ ep̄ (p). If p ∈ T ep̄ ∩T e
′

p̄′

and p is good and consistent with both τ ep̄ and τ e
′

p̄′ , then the first components

of τ ep̄ (p) and τ e
′

p̄′ (p) are the same, and the second components are the same if
both exist.

Let X ⊆ κ be the set of all β < κ such that

(i) for all p ∈ T , β ∈ Xp;

(ii) for all e ∈ ω, for all p̄ ∈ T with `h(p̄) > e, and for all p ∈ T ep̄ , if every
second component of a move in p is smaller than β, then β ∈ Xp.

Using the normality of U , one readily verifies that X ∈ U .
Let x be a play in T consistent with τ . Let E be the wellordered initial

segment of ω with respect to <x. We will define

(i) 〈ξe | e ∈ E〉;
(ii) 〈ηh(e,n) | e ∈ E ∧ n ∈ ω〉.

We will arrange that the following conditions are satisfied.

(a) Each ξe ∈ X.

(b) The function e 7→ ξe embeds (E;<x) into (κ;<).



298 CHAPTER 5. α–Π1
1 GAMES

(c) For each e ∈ E, the function n 7→ ηh(e,n) embeds (ω;<e
x) into (κξe ;<).

(d) For each e ∈ E, if x is augmented by the second components ξe′ , e
′ <x e,

and ηh(e′,n), e
′ <x e and n ∈ ω, then the resulting xe is a play in T ex�e+1

that is consistent with τ ex�e+1.

Since condition (c) implies that X ∈ Be for every e ∈ E, we will have proved
that x /∈ A.

We define ξe and the ηh(e,n) by transfinite induction on e with respect to
the wellordering <x of E.

If E is empty then there is nothing to define, so assume that E is
nonempty. Note that (d) holds for the the <x-least e, since T ex�e+1 = Tx�e+1

and x is consistent with τ . Note also that, if e is not the immediate <x-
successor of any e′ and if (d) holds for every e′ <x e, then (d) holds for e.
This is because of the agreement mentioned earlier between the strategies
τ ex�e+1 and τ e

′

x�e′+1 and because for each k ∈ ω there is a e′ <x e such that
xe � k = xe′ � k.

Let e ∈ E. Assume that we have defined ξe′ and 〈ηh(e′,n) | n ∈ ω〉 for all
e′ <x e in such a manner that (b) is not violated, (a), (c), and (d) hold for
all e′ <x e, and (d) holds for e if e is a <x-successor. By the remarks in the
the preceding paragraph, (d) holds for e whether or not e is a <x successor.

Let ξe be the least member of X that is larger than ξe′ for every e′ <x e.
Note that (a) holds for e and that (b) is still not violated. Let ē be the
immediate successor of e with respect to <x. Suppose ηh(e,n′) is defined for
n′ < n so as not to violate (c) for e or (d) for ē. Let i = h(e, n). Let ηh(e,n)

be the second component of τ ēx�ē+1 applied to the good position p′ in T ex�ē+1

given by xe � 2i + 1, ξe, and the ηh(e,n′) for n′ < n. Clearly (d) is still not
violated for ē. Since p′_〈τe(p′)〉 is good, (c) is still not violated for e.

Suppose now that G(A∗;T ∗) is a win for I. Let σ∗ be a winning strategy
for I for G(A∗;T ∗).

To define a strategy for I forG(A;T ) and to prove this strategy is winning,
we use the fact that I’s moves in T given by σ∗ are independent of II’s moves
ηh(e,n) and I’s moves ξe are independent of II’s moves ηh(e′,n), for e ≤x e′,
provided that these moves by II are in the right order and are from certain
members of the Vα.

Lemma 5.4.6. Let k ∈ ω and let p ∈ T with `h(p) = 2k. Let e0 <p · · · <p

ek−1 be all natural numbers smaller than k.
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For all j such that 0 ≤ j < k, there are sets Xα,p,j ∈ Vα, α < κ, with the
following property. Let Up,j be the set of all good positions q∗ of even length,
consistent with σ∗, such that π(q∗) ⊆ p, and such that ηh(ej′ ,n) ∈ Xξej′ ,p,j

′ for

every j′ and n with j ≤ j′ < k and 2h(ej′ , n) < `h(q∗). For q∗ ∈ Up,j,

(a) the first component of σ∗(q∗) depends only on π
ej
p�ej+1(q∗);

(b) for `h(q∗) = 2ē with ̄ ≤ j, the second component of σ∗(q∗) depends
only on π

ej
p�ej+1(q∗).

Proof. We prove the lemma by induction on k − j.
Let j < k, and assume by induction that the Xα,p,j′ are defined for j′ ≥ j

and that the lemma holds for j + 1 if j + 1 < k. Our induction hypothesis
implies that the lemma holds for j for q∗ ∈ Up,j such `h(q∗) ≤ 2ej. This is
because such positions q∗ contain no move components of the form ηh(ej ,n).
One consequence of this is that, for q∗ ∈ Up,j with `h(q∗) > 2ej, the ξej of q∗

depends only on π
ej
p�ej+1(q∗) (in fact, only on π

ej
p�ej+1(q∗) � 2ej).

Let ̄ < k with ē > ej. Let Wp,j,̄ be the set of all good q∗ such that
`h(q∗) = 2ē, q

∗ is consistent with σ∗, π(q∗) ⊆ p, and ηh(ej′ ,n) ∈ Xξej′ ,p,j
′ for

every j′ and n with j < j′ < k and 2h(ej′ , n) < `h(q∗).
For q∗ ∈ Wp,j,̄,

(a) the first component of σ∗(q∗) depends only on π
ej
p�ej+1(q∗) plus 〈ηh(ej ,n) |

2h(e, j) < `h(q∗)〉;
(b) if ̄ < j, then the second component of σ∗(q∗) depends only on π

ej
p�ej+1(q∗)

plus 〈ηh(ej ,n) | 2h(e, j) < `h(q∗)〉.

Furthermore, if ̄ < j then, for q∗ ∈ Wp,j,̄, the second component of σ(q∗) is
smaller than the ξej of q∗ (which is smaller than κξej ). Let

Vp,j,,̄ = {r ∈ Tej | (∃q∗ ∈Wp,j,̄) π
ej
p�ej+1(q∗) = r}.

Let r ∈ Vp,j,̄ and let ξej(r) be the ξej determined by it. There is a set
Yr ∈ Vξej (r) such that, for q∗ ∈ Wp,j,̄ with π

ej
p�ej+1(q∗) = r and and with each

ηh(ej ,n) ∈ Yr,

(a) the first component of σ∗(q∗) is constant;

(b) if ̄ < j, then the second component of σ∗(q∗) is constant.
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For each ̄ and for each α < κ, there are no more than max{|T |, |α|}
elements r of Vp,j,̄ with ξej(r) = α. For α < κ, set

Xα,p,j =
⋂
{Yr | (∃̄ < k)(r ∈ Vp,j,̄ ∧ ξej(r) = α}.

The Xα,p,j, along with the given Xα,p,j′ , j
′ > j, witness that the lemma holds

for j. �

For α < κ, let

Xα =
⋂
p,j

Xα,p,j.

Evidently Xα ∈ Vα for each α.
Let U be the set of all good positions q∗ of even length, consistent with

σ∗, and such that ηh(e,n) ∈ Xξe for every e and n with 2h(e, n) < `h(q∗). Note
that U ⊆ Up,j for all p and j. Thus Lemma 5.4.6 gives that, for q∗ ∈ U ,

(1) the first component of σ∗(q∗) depends only on π(q∗);

(2) for `h(q∗) = 2e, the second component of σ∗(q∗) depends only on
πeπ(q∗)�e+1(q∗).

Choose a strategy σ for I for G(A;T ) as follows. If (a) there is a q∗ ∈ U
such that π(q∗) = p, then let σ(p) be the common first component of σ∗(q∗)
for all such q∗. If (b) no such q∗ exists, let σ(p) be arbitrary.

We show that (a) holds for every p consistent with σ. To do this we prove
the stronger fact that, for every p consistent with σ and for all 〈Yα | α < κ〉
with each Yα a subset of Xα of order type κα, there is a q∗ witnessing that (a)
holds for p such that ηh(e,n) ∈ Yξe for every e and n with 2h(e, n) < `h(q∗).
This is true trivially for p = ∅. Let `h(p) = 2k and assume that it is true
for p. Let p′ ⊇ p with `h(p′) = 2k + 2. Assume that p′ is consistent with σ.
For α < κ, let Yα be a subset of Xα whose order type is κ. For each α, let
Yα = {βα,γ | γ < κα}, where γ < γ′ → βα,γ < βα,γ′ for all α, γ, and γ′. For
α < κ, set

Y ′α = {βα,2γ+1 | 2γ < δα}.

Let q∗ witness the truth of our induction hypothesis for p for the Y ′α. Let
k = h(e, n). Let σ∗(q∗) = 〈a, α〉. By the definition of σ and the consis-
tency of p′ with it, a = p′(2k). Clearly there is a β ∈ Yα \ Y ′α such that
q∗_〈σ∗(q∗), 〈p′(2k + 1), β〉〉 is a good position in T ∗.
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For e ∈ ω and p̄ ∈ T with `h(p̄) > e, choose a strategy σep̄ for I for
G(A;T ) as follows. If (a) there is a q∗ ∈ U such that πep̄(q

∗) = p, then let
σep̄(p) be the common value of πeσ̄(σ∗(q∗)) for all such q∗, provided that this
is a legal move at p in T ep̄ . If (b) no such q∗ exists, let σep̄(p) be arbitrary.

Suppose that p̄ is consistent with σ. Then for every good p of even length
that is consistent with σep̄,

(i) (a) holds;

(ii) p_〈σep̄(p)〉 is a good position in T ep̄ .

The proof of (i) is similar to the proof of the analogous fact about σ. (ii) fol-
lows because, for good q∗, q∗_〈σ∗(q∗)〉 must be good since σ is a winning
strategy.

Suppose that both p̄ and p̄′ are consistent with σ and that both have
length greater than e. If p ∈ T ∩ T ep̄ and p is good and consistent with σ,

then σ(p) is identical with the first component of σep̄(p). If p ∈ T ep̄ ∩ T e
′

p̄′ and

p is good and consistent with both σep̄ and σe
′

p̄′ , then the first components of

σep̄(p) and σe
′

p̄′(p) are the same, and the second components can differ only in
that one or the other might be absent.

Let x be a play in T consistent with σ. Assume, in order to derive a
contradiction, that x /∈ A. Let E be the wellordered initial segment of ω
with respect to <x. Since x /∈ A, x ∈ Be for each e ∈ E. Thus <e

x is a
wellordering of ω for each e ∈ E. We will define

(i) 〈ξe | e ∈ E〉;
(ii) 〈ηh(e,n) | e ∈ E ∧ n ∈ ω〉.

We will arrange that the following conditions are satisfied.

(a) For each e, ξe < κ, and each ηh(e,n) ∈ Xξe .

(b) The function e 7→ ξe embeds (E;<x) into (κ;<).

(c) For each e ∈ E, the function n 7→ ηh(e,n) embeds (ω;<e
x) into (κξe ;<).

(d) For each e ∈ E, if x is augmented by the second components ξe′ , e
′ <x e,

and ηh(e′,n), e
′ <x e and n ∈ ω, then the resulting xe is a play in T ex�e+1

that is consistent with σex�e+1.

We define ξe and the ηh(e,n) by transfinite induction on e with respect to
the wellordering <x of E.
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If E is empty then there is nothing to define, so assume that E is
nonempty. Note that (d) holds for the the <x-least e, since T ex�e+1 = Tx�e+1

and x is consistent with σ. Note also that, if e is not the immediate <x-
successor of any e′ and if (d) holds for every e′ <x e, then (d) holds for
e.

Let e ∈ E. Assume that we have defined ξe′ and 〈ηh(e′,n) | n ∈ ω〉 for all
e′ <x e in such a manner that (b) is not violated, (a), (c), and (d) hold for
all e′ < e, and (d) holds for e if e is a <x-successor. By the remarks in the
the preceding paragraph, (d) holds for e whether of not e is a <x successor.

Let ē be the immediate successor of e with respect to <x. Let ξe be the
second component of σēx�ē+1(xe � 2e). Now xe � 2e is good and is consistent
with σex�e+1 and so with σēx�ē+1. Therefore xe � 2e_〈σēx�ē+1(x � 2e)〉 is a good
position in T ēx�ē+1. This implies that (b) is still not violated. Moreover, it is
already clear that (d) will hold for ē if (a) and (c) hold for e.. Let n 7→ ηh(e,n)

embed the wellordering (ω;<e
x) into Xξe . Note that (a) and (c) hold for e.

Recall that (ω;<x) is not a wellordering. Let e0 be the least member of
ω \E with respect to the natural ordering of ω. Given en ∈ ω \E, let en+1 be
the least member e of ω \E such that e <x en. Note that en+1 > en. Let ξe0
be the second component of σ∗(xe0 � 2e0). For n ∈ ω, let ξen+1 be the second
component of τ enx�en+1(xen � 2en+1).

We derive our contradiction by showing that ξen+1 < ξen for each n ∈ ω.
Let q∗ ∈ U be such that πenx�en+1(q∗) = xen �2en+1 +1. The second component
of q∗(2en+1) is ξen+1 , and the second component of q∗(2en) must be ξen . Since
q∗ is good, this implies that ξen+1 < ξen . �

The hypothesis of Theorem 5.4.5 can be weakened to get the following
result.

Theorem 5.4.7. Let λ be an infinite cardinal number. Assume that for
every a ⊆ λ there is a transitive proper class model M of ZFC such that

(i) the class of κ > λ such that M |= “κ is a measurable cardinal” is
unbounded in the ordinals;

(ii) there is a proper class C of indiscernibles for M,a.

Then all Σ0
1(Π1

1) games in trees of size λ are determined.

Proof. We sketch the proof.
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Let T be a game tree with field (t) ⊆ λ and with no terminal nodes.
Let A, 〈Be | e ∈ ω〉, p 7→<p, and 〈p 7→<e

p| e ∈ ω〉 be as in the proof of
Theorem 5.4.5. Let a ⊆ λ be such that T , p 7→<p, and 〈p 7→<e

p| e ∈ ω〉
are all definable from a in L[a]. Let M be given by the hypothesis of the
theorem.

We may assume that M |= “There is no κ > λ such that κ is a measur-
able limit of measurable cardinals.” To see this, assume that γ is the least
measurable limit of measurable cardinals of M that is larger than λ. Let
W be such that M |= “W is a uniform normal ultrafilter on γ.” Let N =⋂
α∈Ord Ultα(M ;W). (N is what one might call the VOrd of UltOrd(M ;W).)

In the class model N , there is a proper class of measurable cardinals, but
there is no κ > λ that is a measurable limit of measurables. Furthermore,
{iMW0,α(γ) | α ∈ Ord} is a proper class of indiscernibles for N, a.

Generalizing Theorem 3.5.4 (see Mitchell [1974]), we may assume that

M = L[a, -〈Vα | α ∈ Ord〉-],

that M |= “every measurable cardinal is larger than λ,” and that, for each
ordinal α, M |= “Vα the unique normal ultrafilter on the αth measurable
cardinal κα.”

By the hypothesis of the theorem, together with constructions and argu-
ments like those of the proof of Theorem 3.4.8, we may assume that there is
a closed proper class C of indiscernibles for M,a such that C ∩ λ+ has order
type λ+.

Let κ = λ+. Define T ∗ and A∗ as in the proof of the proof of Theo-
rem 5.4.5. Observe that T ∈M and that T is definable in M from κ and a.
Observe also and that there is set D that is definable in M from κ and a such
that D generates the open set A∗. (See page 206.) By Lemma 4.4.1, there
is a winning strategy ρ for G(A∗;T ∗) such that ρ is definable in M from κ
and a and such that M |= “ρ is a winning strategy for G(E∗;T ∗), where E∗

is the open set generated by D.”
Suppose first that ρ is a strategy σ∗ for I. Applying in M the proof of

Theorem 5.4.5, we get a strategy σ in T such that σ ∈ M and such that M
|= “σ is a winning strategy for G(E;T ), where E is the set witnessed Σ0

1(Π1
1)

by p 7→< p and 〈p 7→<e
p| e ∈ ω〉.” (The measurability of κ was not used

in this part of the proof of Theorem 5.4.5.) By absoluteness, σ is a winning
strategy for G(A;T ).

Now suppose that ρ is a strategy τ ∗ for II. Proceed as in the proof of
Theorem 5.4.5, using for Xp the set of members of C larger than all second
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components of moves of p. The construction and proof go through essentially
unchanged. They define a strategy τ for II for G(A;T ) and they show that
τ is a winning strategy. �

Here is the lightface version of Theorem 5.4.7.

Theorem 5.4.8. (Simms [1979]) If there is a transitive proper class model
M of ZFC + “there are arbitrarily large measurable cardinals” and there is a
proper class of indiscernibles for M , then every Σ0

1(Π1
1) game is determined.

It is unknown whether the converse of Theorem 5.4.8 holds. But Simms
[1979] strengthened both Theorems 5.4.7 and 5.4.8 by deriving stronger con-
clusions from their hypotheses, and Simms proved the converses of the re-
sulting theorems (except that the converse of Theorem 5.4.7 in case that λ is
uncountable was proved later by the author.) The converse of Theorem 5.4.7
itself is known to hold. This follows by combining results in Steel [1982] and
Mitchell [1992]. The Steel and Mitchell theorems almost, but not quite, give
the converse of Theorem 5.4.8.

We will next give Simms’ improved versions of Theorems 5.4.7 and 5.4.8.
Exercise 5.4.5 concerns the converses of these results. Exercise 5.4.4 presents
the converse of Theorem 5.4.7.

To state Simms’ theorems, we need to introduce a hierarchy built on
Σ0

1(Π1
1) and an analogous lightface hierarchy. To avoid having to prove nor-

mal form results analogous to Lemmas 5.4.3 and 5.4.4, we choose somewhat
artificial defintions of these hierarchies, with the normal forms built into the
definitions.

Let T be a game tree without terminal positions. For countable ordinals
α and sets A ⊆ [T ], say that A ∈ Σ0

1(Π1
1)–α if there are sets Bβ,e, β < α

and e ∈ ω, and there functions p 7→<β,p, β < α, such that each p 7→<β,p has
domain T and such that

(1) for all β, <β,∅= ∅ and, for all p ∈ T \ {∅}, <β,p is a linear ordering of
`h(p) with greatest element 0;

(2) for all β and for elements p and p′ of T , if p ⊆ p′ then <β,p⊆<β,p′ ;

(3) for all β and for all x ∈ T , every non-zero member of ω has an imme-
diate successor with respect to <β,x, where

<β,x =
⋃
n∈ω

<β,x�n;
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(4) for all x ∈ [T ], x ∈ A if and only if, for the least β such that

(a) (∃e ∈ ω)(<β,x � {e′ | e′ <β,x e} is a wellordering ∧ x /∈ Bβ,e) or

(b) <β,x is not a wellordering of ω or

(c) β = α,

then β is odd if (c) holds or (a) fails and β is even otherwise.

Remark. Suppose that we have sets and functions satisfying (1), (2), and
(3), and let A be defined by clause (4). For each β < α, let Aβ be the set
of all x ∈ [T ] such that condition (a) above holds for x and β. For each β,
Aβ ∈ Σ0

1(Π1
1). For x ∈ [T ] and γ ≤ α, let x ∈ Cγ just in case conditions (a)

and (b) both fail for x and every β < γ. Each Cγ ∈ Π1
1. Furthermore, for all

x ∈ [T ], x belongs to A if and only one of the following conditions holds.

(i) α is odd and x ∈ Cα.

(ii) there is a β < α such that x ∈ Aβ.

(iii) x /∈ Cα and (∀β < α)((β even ∧ x ∈ Cβ) → x ∈ Cβ+1) and (∀β <
α)((β odd ∧ x ∈ Cβ)→ x /∈ Aβ).

It is not hard to see that the set of all x satisfying condition (i) or (ii) belongs
to Σ0

1(Π1
1) and that the set of all x not satisfying (iii) belongs Σ0

1(Π1
1). Thus

¬A ∈ 2–(Σ0
1(Π1

1)). Switching “even” and “odd,” we see also that A ∈ 2–
(Σ0

1(Π1
1)). Thus the entire Σ0

1(Π1
1)–α hierarchy is properly contained within

the first two levels of the difference hierarchy on Σ0
1(Π1

1), and so within the
first two levels of the difference hierarchy on the dual Π0

1(Π1
1).

For game trees T with terminal nodes, let T ′ ⊇ T be the gotten from T
by adding one play extending each terminal node of T . Say that A ⊆ dT e
belongs to Σ0

1(Π1
1)–α just in case A belongs to Σ0

1(Π1
1)–α as a subset of [T ].

For α < ωCK
1 , the lightface class Σ1

1(Π1
1)–α is defined in the obvious way.

We leave the formulation of the definition to the reader.
Here is Simms’ improvement of Theorem 5.4.7.

Theorem 5.4.9. Let λ be an infinite cardinal number. Assume that for
every a ⊆ λ there is a transitive proper class model M of ZFC such that

(i) the class of κ > λ such that M |= “κ is a measurable cardinal” is
unbounded in the ordinals;
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(ii) a ∈M and there is a proper class C of indiscernibles for M,a.

Then for every α < ω2 all Σ0
1(Π1

1)–α games in trees of size λ are determined.

Proof. The theorem is related to Theorem 5.4.7 as Theorem 5.3.9 is related
to Theorem 4.4.2. We could prove the theorem as Theorem 5.3.9 was proved,
using semicoverings. Instead we proceed in a more direct manner, using a
single auxiliary game. We will content ourselves with defining this auxiliary
game, leaving to the reader the task of modifying the proof of Theorem 5.4.7
to show that the determinacy of the auxiliary game implies that of the given
Σ0

1(Π1
1)–ωn game.

Let T be a game tree with field (t) ⊆ λ and with no terminal nodes. Let
n ∈ ω. Let 〈Bβ,e | β < ωn ∧ e ∈ ω〉 and 〈p 7→<β,p| β < ωn〉 witness that
A ∈ Σ0

1(Π1
1)–ωn. For β < ωn and for e ∈ ω, let p 7→<e

β,p and x 7→<e
β,x be

the functions given by Lemma 4.1.4, with Bβ,e as the A of that lemma. Let
a ⊆ λ be such that T , 〈p 7→<β,p| β < ωn〉, and 〈p 7→<e

β,p| e ∈ ω〉 all are
definable from a in L[a].

Let M = L[a, -〈Vα | α ∈ Ord〉-] and 〈κα | α ∈ Ord〉 be as in the proof of
Theorem 5.4.7. Let λ1 = λ+ and, for 1 ≤ m < n, let λm+1 = λ+

m. We may
assume that there is a closed proper class C of indiscernibles for M,a such
that C ∩ λm has order type λm for 1 ≤ m ≤ n.

Let g : ωn× ω → ω be a bijection such that

(i) (∀m< n)(∀k ∈ ω)(∀k′ ∈ ω)(k < k′ → g(ωm+ k, 0) < g(ωm+ k′, 0));

(ii) (∀β < ωn)(∀e ∈ ω)(∀e′ ∈ ω)(e < e′ → g(β, e) < g(β, e′);

(iii) (∀β < ωn)(∀e ∈ ω)(β even ↔ g(β, e) even ).

Let h : ωn× ω × ω → ω be a bijection such that

(i) (∀β < ωn)(∀e ∈ ω)h(α, e, 0) ≥ g(β, e);

(ii) (∀β<ωn)(∀e∈ω)(∀m∈ω)(∀m′∈ω)(m < m′ → h(β, e,m) < h(β, e,m′));

(iii) (∀β < ωn)(∀e ∈ ω)(∀m ∈ ω)(β even ↔ h(β, e,m) even ).

We describe a game tree T ∗ by describing the plays in T ∗:

I 〈a0, ξ0〉 〈a2, η1, ξ2〉 〈a4, η3, ξ4〉 . . .
II 〈a1, η0, ξ1〉 〈a3, η2, ξ3〉 . . .
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Each 〈ai | i < n〉 must be a position in T . For all m < n, for all k ∈ ω, and
for all e ∈ ω, ξg(ωm+k,e) must be an ordinal number smaller than λm+1. For
all β < ωn and for all e and m, it must be that

ηh(β,e,m) < κξg(β,e) .

Let π : T ∗ → T and the associated π : [T ∗] to [T ] be defined in the
obvious way. (See the proof of Theorem 5.4.5.)

We define A∗ ⊆ [T ∗] as follows. Fix a play

x∗ = 〈a0, ξ0〉, 〈a1, η0, ξ1〉, . . .

in T ∗ and let x = π(x∗) = 〈ai | i ∈ ω〉. If there is no β < ωn such that either

(1) (∃e)(∃e′)(e <β,x e
′ ∧ ξg(β,e) 6< ξg(β,e′)) or

(2) (∃e)(∃m)(∃m′)(m <e
β,x m

′ ∧ ηh(β,e,m) 6< ηg(β,e,m′)),

then x /∈ A∗. Suppose that there is a β satisfying (1) or (2). Let

i = min{max{g(β, e), g(β, e′)} | β, e, e′ as in (1) };
j = min{max{h(β, e,m), h(β, e,m′)} | β, e,m,m′ as in (2) }.

In each case we declare the min be ω if it is otherwise undefined. If i ≤ j,
then x ∈ A∗ just in case i is odd. If j < i, then x ∈ A∗ just in case j is even.

Remark. In playing game G(A∗;T ∗), the players are simultaneously play-
ing ωn copies of the game of the proof of Theorem 5.4.7, with I in the role
of the first player for even numbered copies and II in that role for odd num-
bered copies. The first player to lose any one of these games is the player
who loses the play of G(A∗;T ∗).

Since A∗ is easily seen to be open, G(A∗;T ∗) is determined. We leave
it to the reader to prove that whoever has a winning strategy for G(A∗;T ∗)
also has a winning strategy for G(A;T ). The proof is an elaboration of
the proof of Theorem 5.4.7 (which was a slight modification of the proof of
Theorem 5.4.5). The extra ingredient is that moves ξg(β,e) and ηh(β,e,m) given
by a winning strategy are independent of the opponent’s moves ξg(β′,e′) and
ηh(β′,e′,m′) for β′ > β, provided that these moves are in the right order and
are from indiscernibles in the one case and measure one sets in the other. �

Here is Simms’ lightface version of Theorem 5.4.9.
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Theorem 5.4.10. If there is a transitive proper class model M of ZFC +
“there are arbitrarily large measurable cardinals” and there is a proper class
of indiscernibles for M , then for every α < ω2 all Σ0

1(Π1
1)–α games are

determined.

As we have already said, the converses of Theorems 5.4.9 and 5.4.10 both
hold. See Exercise 5.4.5. The theorems and their converses generalize to
higher levels of the (Σ0

1(Π1
1))–α hierarchy, with each ω2 steps up this hierar-

chy corresponding to one more measurable limit of measurable cardinals. See
Exercise 5.4.5 for a precise statement of the boldface version of this general
theorem.

Exercises 5.4.2 and 5.4.3 concern a more interesting generalization by
Simms of the equivalence results, with (α + 1)–(Π0

1(Π1
1)) replacing Π0

1(Π1
1)

and the αth level of the “measurable limit of” hierarchy replacing the 0-th
level. Exercise 5.4.4 discusses a sharpening of this theorem.

No equivalence theorems for determinacy and large cardinals have been
proved for classes strictly between Simms’ and the class ∆1

2. For countable
ordinals α, define Σ0

α(Π1
1), Π0

α(Π1
1), and ∆0

α(Π1
1) in the obvious way. John

Steel and the author found a proof of the determinacy of ∆0
2(Π1

1) games
in any given T from the existence of a cardinal κ > |T | of level κ+ in the
“measurable limit of” hierarchy, but they did not prove an implication in the
other direction. There are larger classes for each of which has been proved
half of what should be an equivalence theorem. One such class is A(Π1

1),
which we now define.

For a class Γ of subsets of a set X, a subset A of X belongs to A(Γ) just
in case there are sets Bs, s ∈ <ωω, such that each Bs ∈ Γ and

(∀x ∈X)(x ∈ A ↔ (∃y ∈ ωω)(∀n ∈ ω)x ∈ Bs).

Steel [1982] proves that, if there is a transitive model of ZFC + “there is a
cardinal κ of Mitchell order κ++,” then there is such a model in which not all
A(Π1

1) games in countable trees are determined. “Mitchell order” is the order
introduced in Mitchell [1974]. The hint to Exercise 5.4.4 indicates briefly the
technique Steel uses to prove this and related results. From a combination
Steel’s theorem and a generalization in Mitchell [1992] of a result of Ronald
Jensen, it follows that the determinacy of all A(Π1

1) games in countable trees
implies the existence of a proper class of indiscernibles for a class model of
ZFC + “there is a cardinal κ of Mitchell order κ++.” One suspects that the
converse of this implication should also hold.



5.4. Σ0
1(Π1

1) GAMES 309

This conjecture about the determinacy of A(Π1
1) games is related to the

question of whether every Π1
1 subset of dTe can be unraveled by a covering of

T. Suppose that, from some hypothesis H, one could prove such an unraveling
theorem for arbitrary trees or that one could prove, for a some fixed tree T,
that any countable family of Π1

1 sets can be simultaneously unraveled by
a covering of T. Then one could prove from H that all games in the σ-
algebra generated by the Π1

1 subsets of dTe are determined. Combining
the unraveling proof with the ideas introduced in §2.2, one might in fact be
able to prove the determinacy of G(A; T) for all A such that both A and
¬A are A(Π1

1). Should such unraveling theorems be expected? Mixing the
techniques of Steel [1982] with those of Friedman [1971], Steel proved that, for
positive integers n, if there is a transitive model of ZF − Power Set + “there
is a κ of Mitchell order κ++ such that Pn(κ) exists,” then there is such a
model in which not all all Σ0

n+3(Π1
1) games in countable trees are determined.

This result has a generalization to the transfinite. Thus the situation looks
similar to that for Borel games, and this makes one anticipate that unraveling
theorems for Π1

1 subsets of dTe will be proved in a weak set theory from the
assumption of the existence of a cardinal κ > |T | of Mitchell order κ++.

Exercise 5.4.1. Prove the converses of Theorems 5.4.9 and 5.4.10.

Hint. We consider the case of Theorem 5.4.10. The other case is similar,
except that the method of Exercise 4.4.2 has to be used when λ is uncount-
able. We sketch Simms’ original method of proof. The hint to Exercise 5.4.4
indicates a very different method for proving a stronger result.

Let ϕ(v1, . . . , vn̄) be a formula of the language of set theory. Consider the
following game G in <ωω.

Let I’s part of a play z give a relation rz in ω, elements mz
β, β < ωn̄, of

ω, and elements czi,β i ∈ ω and β < ω2, of ω. Similarly, let II’s part of the
play give a relation sz in ω, numbers nzβ, β < ωn̄, of ω, and numbers dzi,β
i ∈ ω and β < ω2.

For β < ωn̄, if rz wellorders the set of numbers that bear rz to mz
β, then

let ηzβ be the order type of this wellordering. If rz wellorders ω, let ηzωn̄ be
the order type of this wellordering. For i ∈ ω and β < ω2, if rz wellorders
the set of numbers that bear rz to cziβ, then let µzi,β be the order type of this
wellordering. Similarly define ξzβ, β ≤ ωn̄, and νzi,β, i ∈ ω and β < ω2, from
sz and the nzβ and the dzi,β respectively.

For each i such that rz wellorders the set of rz-predecessors of i, let f(i)
be order type of this wellordering. Similarly define g(i) from sz and i.
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The winning conditions for G are as follows:

(1) I loses unless all of the following hold.

(a) rz is a linear ordering of ω.

(b) (∀β < ωn̄)(∀γ < ωn̄)(β < γ → mz
β r

zmz
γ).

(c) (∀i ∈ ω)(∀j ∈ ω)(∀β < ω2)(i rz j → czi,β r
z czj,0).

(d) (∀i ∈ ω)(∀β < ω2)(∀γ < ω2)(β < γ → czi,β r
z czi,γ).

(2) If I does not lose becouse of (1), then II loses unless all of the
following hold.

(a) sz is a linear ordering of ω.

(b) (∀β < ωn̄)(∀γ < ωn̄)(β < γ → nzβ r
z nzγ).

(c) (∀i ∈ ω)(∀j ∈ ω)(∀β < ω2)(i rz j → dzi,β r
z dzj,0).

(d) (∀i ∈ ω)(∀β < ω2)(∀γ < ω2)(β < γ → dzi,β r
z dzi,γ).

(3) Assume that no one loses because of (1) or (2). Assume also that
there is an ordinal α and there are numbers i and j such that both the set of
rz-predecessors of i and the set of sz-predecessors of j have order type α and
such that, for some β < ω2, at least one of µzi,β and νzi,β is undefined. Consider
the least such α, along with the corresponding i and j. Consider the least β
for this value of α. I loses if µzi,β is undefined and II loses otherwise.

(4) Assume that no one loses because of (1), (2), or (3). Assume also
that at least one of (ω, rz) or (ω, sz) is not a wellordering. Let ρ ≤ ωn̄ be
least such that one or the other of ηzρ and ξzρ is undefined. I loses if ηzρ is
undefined, and II loses otherwise.

(5) Assume that no one loses because of (1)–(4). Let f z : (γz;<) ∼= (ω, rz)
and gz : (δz;<) ∼= (ω; sz) be isomorphisms. For α < max{γz, δz} and for
m ∈ ω, let

ρzα,m = supk∈ωmax{f z(α), gz(α)},

where we take undefined values to be 0. For such α, let κzα = supmρ
z
α,m and let

Vzα be the filter on κzα generated by the tails of the sequence 〈ρzα,m | m ∈ ω〉.
If there is an α < max{γz, δz} such that Vzα ∩ Lmax{γz ,δz}[-〈Vzα | α <

max{γz, δz}〉-] is not a normal ultrafilters Lmax{γz ,δz}[-〈Vzα | α < max{γz, δz}〉-],
then let α be least witnessing this and let h : κzα → κzα be the Lmax{γz ,δz}[-〈Vzα |
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α < max{γz, δz}〉-]-least h′ : κzα → κzα such that {α | h′(α) < α} ∈ Vzα but h′

is not constant on any set in Vzα. I wins just in case h(ρzα,1) > h(ρzα,0).

For j < n, let ζzj = supk∈ωmax{ηzωj+k, ξzωj+k}. If all Vzα are normal ultra-
filters, then I wins just in case

Lmax{γz ,δz}[-〈Vzα | α < max{γz, δz}〉-] |= ϕ[ζz0 , . . . , ζ
z
n−1].

Show that G is a Σ0
1(Π1

1)–ωn̄ + 1 game. (This is a bit of work, because
we formulated our definition of the hierarchy so as to facilitate the proof of
Theorem 5.4.9. Other formulations would make that proof harder and the
present computation easier.)

Let σ be a winning strategy for one of the players for G. Let 〈ρα |
α < ω1〉 be any strictly increasing sequence of countable ordinals containing
none of its own limit points and such that each ρα is admissible relative
to 〈σ, 〈ρβ | β < α〉〉. Let 〈ζj | j ≤ n〉 be a strictly increasing sequence of
ordinals such that each ζn is closed under α 7→ ρα and is admissbile relative to
〈σ, 〈ρα | α < ζn〉〉. Use boundedness to show that there is a play z, consistent
with σ such that ζzj = ζj for all j < n, max{γz, δz} = ζn, and ρzα = ρα
for all α < ζn. Now consider the model L[-〈Vα | α ∈ Ord〉-], with each Vα
being the filter generated by the tails of 〈ρωα+k | k ∈ ω〉, where ρβ is the βth
σ-admissible. Use techniques from the hints to exercises in §3.3 to show that
all Vα are normal ultrafilters in this model and that the σ-admissible limits
of σ-admissibles are indiscernible in the model with respect to ϕ. Since ϕ
was arbitrary, this completes the proof.

Exercise 5.4.2. The results of this and the next exercise are due to Simms
[1979].

For any ordinal number α > 0, say that a cardinal κ is measurableα if κ is
measurable and, for each β < α, the set of λ < κ such that λ is measurableβ
is unbounded in κ.

Let λ be an infinite cardinal number. Let α be a countable ordinal.
Assume that for every a ⊆ λ there is a transitive class model M of ZFC such
that

(i) for all β < 1+α, the class of κ > λ such that M |= “κ is measurableβ”
is unbounded in the ordinals;

(ii) a ∈M and there is a proper class of indiscernibles for M,a.
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(a) Prove that all (α + 1)–(Π0
1(Π1

1)) games in trees of size λ are deter-
mined.

(b) Formulate and prove a theorem that is related to part (a) of the
exercise as Theorem 5.4.9 is related to Theorem 5.4.7.

(c) Similarly formulate and prove the analogue of Theorem 5.4.10.

Hint. For (a), begin by proving the following normal form theorem. If
α > 0, T is a game tree without terminal positions, and A ⊆ [T ], then
A ∈ α–Π0

1(Π1
1) if and only if there is a game tree S ⊆ <ωω such that

(i) ‖S‖ = 1 + α;

(ii) for all t ∈ S and all e ∈ ω, t_〈e〉 ∈ S and ‖t_〈e〉‖S is odd if and
only if ‖t‖S is even;

and, for every t ∈ S such that t is not terminal in S, there is a function
p 7→<t

p with domain T such that

(1) <t
∅= ∅ and, for all p ∈ T \ {∅}, <t

p is a linear ordering of `h(p) with
greatest element 0;

(2) for elements p and p′ of T , if p ⊆ p′ then <t
p⊆<t

p′ ;

(3) for all x ∈ [T ], every non-zero member of ω has an immediate suc-
cessor with respect to <t

x, where

<t
x =

⋃
n∈ω

<x�n;

(4) for all x ∈ [T ], whenever both t_〈e〉 and t_〈e′〉 belong to S and
‖t_〈e〉‖S < ‖t_〈e′〉‖S, then e <t

x e
′;

and such that, for all x ∈ [T ], x ∈ A if and only if βx is odd, where βx is
the least β such that either β = α or else there is a t ∈ S with ‖t‖S = β + 1
such that <t

x is not a wellordering but, for all n with n < `h(t), the (obvious)
Brouwer-Kleene ordering restricted to {s∈S | s(n) < t(n)} is a wellordering.

Now let A ∈ (α + 1)–Π0
1(Π1

1). Let S and the p 7→<t
p be given by the

normal form theorem. Consider an auxiliary game where I tries to em-
bed <t

x into the ordinals for ‖t‖S even and II for ‖t‖S odd. Require that

the ordinal assigned to e′ in trying to embed <
t_〈e〉
x be less than the ηth

measurable‖t_〈e′〉‖S−1, where η is the ordinal the opponent has assigned to e
in trying to embed <t

x.
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Exercise 5.4.3. Prove the converse of the result of part (c) of the result of
Exercise 5.4.2.

Hint. The proof is analogous to that for Exercise 5.4.5, except that instead
of just the czi,β and the dzi,β, one needs czγ,i,β and dzγ,iβ for each γ < 1+α. When
both players meet all wellfoundedness conditions, then define ordinals ρzγ,ζ,m
and the κzγ,ζ in the obvious way. In the good case, κzγ,ζ will be in the model
the 1 + ζth measurableγ that is not measurableγ+1. (What we are omitting
from this hint is the winning conditions when wellfoundedness fails. This
omission leaves the reader a genuine problem, though not a terribly difficult
one.)

Exercise 5.4.4. (a) Prove the converse of Theorem 5.4.7.
(b) Prove the converse of the result of part (a) of Exercise 5.4.2.

Hint. (a) We drop the set a and assume that λ = ω in order to indicate
the sense in which the method of proof we sketch gives a partial converse to
Theorem 5.4.7. When λ is uncountable, use the methods of Exercise 4.4.2.

The plan is as follows.
(1) Assume that L̃ = L[-〈Uγ | γ < ρ〉-], where ρ ≤ Ord. Assume that

〈Uγ | γ < ρ〉 is coherent in the sense of Mitchell [1974]. Assume finally that
in L̃ there is no measurable limit of measurable cardinals. Show that the
canonical wellordering <L̃ of ωω in L̃ is G-Σ0

1(Π1
1). That is, show that with

there is a Σ0
1(Π1

1) subset A of (ωω)3 such that, for all elements x and y of
<ωω,

x <L̃ y ↔ I has a winning strategy for G({z | 〈x, y, z〉 ∈ A}; <ωω).

Do this using a set A such that, for x and y belonging to L̃, the game
G({z | 〈x, y, z〉 ∈ A}; <ωω) has a winning strategy that belongs to L̃.

(2) Use the following result of Kechris [1978] to deduce that no L̃ as in (1)
satisfies “All Σ0

1(Π1
1) games are determined”: Let Γ be any class of subsets

of ωω closed under recursive preimages. If all Γ games are determined, then
there is no G-Γ wellordering of ωω.

(3) Use the theorem of Mitchell [1992] on the Σ1
3 correctness of the core

model do deduce the converse of Theorem 5.4.7.

Remark. Steel [1982] carries out steps (1) and (2). Step (3) had to await
Mitchell’s generalization of Ronald Jensen’s Σ1

3 correctness theorem for the
classical core model (Jensen [1981]).



314 CHAPTER 5. α–Π1
1 GAMES

To accomplish (1), fix elements x and y of ωω∩M Consider the following
game Gx,y in <ωω.

To specify the winning conditions for Gx,y, let z be any play. Let I’s part
of z code a relation rz in ω and let II’s part code a relation sz in ω. Player I
loses unless (ω; rz) is isomorphic to a transitive model M z = L[-〈Vα | α ≤ µ〉-]
of ZFC− + “〈Vα | α < µ〉 is coherent” + “there is no measurable limit of
measurable cardinals” such that x <Mz y. If such an M z exists, then II loses
unless (ω; sz) is isomorphic to a transitive model N z = L[-〈Wα | α ≤ ν〉-] of
the analogous theory and such that y ≤Nz x.

Suppose both M z and N z exist. Then define 〈Mα, iαβ | α ≤ β < ηI〉 and
〈Nα, jαβ | α ≤ β < ηII〉 as follows. Assume that 〈Mα, iαβ | α ≤ β < ξ〉 and
〈Nα, jαβ | α ≤ β < ξ〉 have been defined and are such that

(i) M0 = M z and N0 = N z;

(ii) all Mα and Nα are transitive;

(iii) each iα,β : Mα ≺Mβ and each jα,β : Nα ≺ Nβ;

(iv) for α ≤ β ≤ γ < ξ, iα,γ = iβ,γ ◦ iα,β and jα,γ = jβ,γ ◦ jα,β.

If ξ is a limit ordinal and the direct limit model of 〈Mα, iαβ | α ≤ β < ξ〉
is wellfounded, then let Mξ be the transitive set isomorphic to it and define
the iα,ξ so as to preserve (iii) and (iv). Otherwise let ξ = ηI . Similarly define
Nξ and the jα,ξ or let ξ = ηII .

Suppose ξ = α + 1. Let 〈Vαγ | γ < i0,α(µ)〉 = i0,α(〈Vγ | γ < µ〉) and
similarly define 〈Wα

γ | γ < j0,α(ν)〉. For γ < i0,α(µ), let καγ be the cardinal on
which Vαγ is a normal ultrafilter. Similarly define λαγ fromWα

γ for γ < j0,α(ν).
Let γα be the least γ such that Vαγ and Wα

γ exist and

Vαγ ∩Mα ∩Nα 6=Wα
γ ∩Mα ∩Nα.

(Show that the existence of such a γ is implied by the fact that x <Mα y
and y ≤Nα x.) If καγα < λαγα , then let Mξ = Ult(Mξ;Vαγα) and Nξ = Nα. If
λαγα < καγα , then let Mξ = Mα and let Nξ = Ult(Nα;Wα

γα). If καγα = λαγα , then
let Mξ = Ult(Mξ;Vαγα) and let Nξ = Ult(Nα;Wα

γα).
I wins if and only if there is a ξ < ωCK

1 (z) such that Mα exists but Nα

does not. In other words, I wins just in case ηII < min{ηI , ωCK1 (z)}.
Verify that {〈x, y, z〉 | z is won by I in Gx,y} belongs to Σ0

1(Π1
1).

Prove that I has a winning strategy for Gx,y if x <L̃ y and that II has
a winning strategy for Gx,y if y ≤L̃ x. Indeed, show that in each case it is
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a winning strategy to play a model isomorphic to an initial segment of L̃
to which both x and y belong. In the case that x <L̃ y, use the fact that
L̃ has no measurable limits of measurables to show that no play against I’s
strategy has ηII ≥ ωCK1 (z).

Step (2) of the plan comes immediately from step (1) and Kechris’ theo-
rem.

For step (3), assume that there is no indiscernibles exist for any model of
ZFC + “There is a proper class of measurable cardinals.” Then Theorem 1.2
of Mitchell [1992] implies that if

(∀x ∈ ωω)x# exists,

then there is a class model like our L̃ above that is Σ1
3 correct. By step (2),

either some x ∈ ωω has no # or else there is a Σ0
1(Π1

1) game that is not
determined in this class model and hence is not determined in V . Since the
determinacy of just all Π1

1 games implies (∀x∈ωω)x# exists, our assumption
gives the existence of an undetermined Σ0

1(Π1
1) game.

(b) Proceed with steps (1)–(3) in the hint for (a), with the following
changes. Instead of assuming that in L̃ there is no cardinal that is measurable1,
assume that in L̃ there is no cardinal that is measurable1+α. Assume that α
is countable in M . Replace Σ0

1(Π1
1) (in the general case, Σ0

1(Π1
1)) by (α+ 1)–

Π0
1(Π1

1). Change the winning conditions for Gx,y by making I’s winning set
be the (α + 1)–Π0

1(Π1
1) set given by 〈Aβ | β ≤ α〉, where the Aβ are defined

as follows. A play z belongs to A0 just in case

ηI < ωCK
1 (z)→ ηII < ηI .

For odd β, z /∈ Aβ just in case min{ηI, ηII} < ωCK
1 (z) or else there are β′, ξ,

and κ such that

(i) β′ ≤ β;

(ii) ξ < ωCK
1 (z);

(iii) κ is an cardinal of Nξ;

(iv) in Nξ, κ is measurableβ′ but not measurableβ′+1;

(v) for all ξ′ with ξ < ξ′ < ωCK
1 (z), λξ

′
γξ′
< jξ,ξ′(κ);

(vi) In Nξ, κ is the least measurableβ′ that is ≥ λξγξ .
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The definition for the case of even β > 0 is analogous, with the obvious
replacements.

Remark. As with part (a) of the exercise, steps (1) and (2) were known
to Steel at the time of Steel [1982].

Exercise 5.4.5. Prove the converses of Theorems 5.4.9 and 5.4.10.

Hint. We consider the case of Theorem 5.4.10. The other case is similar,
except that the method of Exercise 4.4.2 has to be used when λ is uncount-
able. We sketch Simms’ original method of proof. The hint to Exercise 5.4.4
indicates a very different method for proving a stronger result.

Let ϕ(v1, . . . , vn̄) be a formula of the language of set theory. Consider the
following game G in <ωω.

Let I’s part of a play z give z(0), together with a relation rz in ω and
with elements czi,β, i ∈ ω and β < ω2, of ω. Let II’s part of the play give
relations Ez and sz in ω, together with numbers dzi,β, i ∈ ω and β < ω2.

For i ∈ ω and β < ω2, if rz wellorders the set of numbers that bear rz

to cziβ, then let µzi,β be the order type of this wellordering. For i ∈ ω and
β < ω2, if sz wellorders the set of numbers that bear sz to dziβ, then let νzi,β
be the order type of this wellordering.

For each i such that rz wellorders the set of rz-predecessors of i, let f z(i)
be order type of this wellordering. Similarly define gz(i) from sz and i.

The winning conditions for G are as follows:

(1) I loses unless all of the following hold.

(a) rz is a linear ordering of ω.

(b) (∀i ∈ ω)(∀j ∈ ω)(∀β < ω2)(i rz j → czi,β r
z czj,0).

(c) (∀i ∈ ω)(∀β < ω2)(∀γ < ω2)(β < γ → czi,β r
z czi,γ).

(2) If I does not lose because of (1), then II loses unless all of the
following hold.

(a) sz is a linear ordering of ω.

(b) (∀i ∈ ω)(∀j ∈ ω)(∀β < ω2)(i sz j → dzi,β s
z dzj,0).

(c) (∀i ∈ ω)(∀β < ω2)(∀γ < ω2)(β < γ → dzi,β s
z dzi,γ).
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(3) Assume that no one loses because of (1) or (2). Assume also that there
is an ordinal α and there are numbers i and j such that f z(i) = gz(j) = α
and such that, for some β < ω2, at least one of µzi,β and νzi,β is undefined.
Consider the least such α, along with the corresponding i and j. Consider the
least β for this value of α. I loses if µzi,β is undefined, and II loses otherwise.

(4) Assume that no one loses because of (1), (2), or (3). If (ω; rz) is not
a wellordering, then I loses.

(5) Assume that no one loses because of (1)–(4). If (ω; sz) is not a
wellordering whose order type is ≥ the order type of (ω; rz) , then II loses.

(6) Assume that no one loses because of (1)–(5). Then there are γz and
δz such that f z : (ω; rz) ∼= (γz;<) and gz : (ω; sz) ∼= (δz; sz). For α < γz and
for m ∈ ω, let

ρzα,m = supk∈ωmax{µz(fz)−1(α),ωm+k, ν
z
(gz)−1(α),ωm+k}.

For α < γz, let κzα = supm∈ωρ
z
α,m and let Vzα be the filter on κzα generated by

the tails of the sequence 〈ρzα,m | m ∈ ω〉.
If there is an α < γz such that Vzα ∩ Lγz [-〈Vzα | α < γz〉-] is not a normal

ultrafilter in Lγz [-〈Vzα | α < γz〉-], then let αz be least witnessing this and
let hz : κzαz → κzαz be the <

Lγz [-〈Vzα|α<γz〉-]
-least h : κzαz → κzαz such that

{γ | h(γ) < γ} ∈ Vzαz but h is not constant on any set in Vzαz . I wins just in
case both

(a) (∀n ∈ ω)hz(ρzα,n) < ρzα,n;

(b) h(ρzα,1) > h(ρzα,0) ↔ z(0) > 0.

(7) Assume that no one loses because of (1)–(6). Then II wins if and
only if (ω;E) is a model of Extensionality and there is a

k : Lγz [-〈Vzα | α < γz〉-]→ ω

that embeds Lγz [-〈Vzα | α < γz〉-] into (ω;Ez) as an initial segment.
Show that G is a Σ0

1(Π1
1) game.

Assume that there is a winning strategy σ for I for G. Let 〈ξα | α < ω1〉
be any strictly increasing sequence of countable ordinals containing none of
its own limit points and such that each ξα is admissible relative to 〈σ, 〈ξβ |
β < α〉〉. Let ζ < ω1 be any countable limit point of {ξα | α < ω1} such
that ζ is admissible relative to 〈σ, 〈ξα | α < ζ〉〉. Use boundedness to show
that there is a play z consistent with σ such that no one loses because of
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(1)–(5), γz < δz = ζ, ρzα,m = ξωα+m for all α < γz and all m ∈ ω, and
(ω;Ez) ∼= Lγz [-〈Vzα | α < γz〉-]. Use techniques from the hint to Exercise 5.3.4
to derive a contradiction.

By the determinacy hypothesis, let τ be a winning strategy for II for G.
Let a ∈ ωω code τ .

Let 〈ξα | α < ω1〉 enumerate in order of magnitude the countable a-
admissibles that are not limits of a-admissibles. Let ζ be any a-admissible
limit of a-admissibles. Show that there is a play z consistent with τ such
that no one loses because of (1)–(5), γz = ζ, and ρzα,m = ξωα+m for all α < γz

and all m ∈ ω. For α ∈ Ord, let κα = supm∈ωξωα+m and let Vα be the filter
on κα generated by the tails of 〈ξωα+n | m ∈ ω〉.

Use techniques from the hint to Exercise 5.3.4 to argue that Lω1 [-〈Vα |
α ∈ Ord〉-] |= “Vα is a normal ultrafilter on κα” for all α < ω1 and so that
L[-〈Vα | α ∈ Ord〉-] |= “Vα is a normal ultrafilter on κα” for all α ∈ Ord.

The rest of the proof is an adaptation of the proof outlined in the hint
for Exercise 4.4.1.

First show that that the existence of indiscernibles for L[-〈Vα | α ∈ Ord〉-]
is implied by the assertion that, if λ is any a-admissible limit of a-admissibles
and γ < λ, then every subset of γ that belongs to L[-〈Vα | α ∈ Ord〉-] belongs
to Lλ[a]. To do this, follow closely the first part of the hint for Exercise 4.4.1
to get an uncountable set of indiscernibles for L[-〈Vα | α ∈ Ord〉-]. To show
that this gives a proper class of indiscernibles for the model, use techniques
from §1.4 and from Mitchell [1974].

For β < ω1, say that a play z of G is β-good if (a) z is consistent with
τ , (b) clause (1) does not cause z to be a loss for I, (c) the relation rz is a
wellordering of ω of order type β, and (d) the sequence 〈µzα,ωm+k | k ∈ ω〉
has limit ξωα+m for every α < β and every m ∈ ω.

Show that if γ < β < ω1, if b is a subset of γ belonging to Lβ, and if z is
a β-good play of G, then b ∈ Lγ+ω[z].

For each countable ordinal α let the partial ordering (Q(α);≤α) be defined
as in the hint to Exercise 4.4.1.

For each countable ordinal α, let (Q∗(α);≤∗α) be the following partial
ordering: The members of Q∗(α) are those triples 〈t, h, k〉 such that

(i) 〈t, h〉 ∈ Q(α);

(ii) k is a function with domain t;

(iii) for each s ∈ t such that h(s) =∞, k(s) ∈ Q(ξωα);
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(iv) for each s ∈ t such that h(s) < ωξ, k(s) is a pair 〈t̄, h̄〉 that satisfies
the conditions for belonging to Q(ξωα) with condition (iii) replaced by
the requirement that h̄(∅) = ξh(s).

Let 〈t, h, k〉 ≤∗α 〈t′, h′, k′〉 hold if and only if 〈t, h〉 ≤α 〈t, h′〉 and, for all s ∈ t′,
if k(s) is 〈t̄, h̄〉 and k′(s) is 〈t̄′, h̄′〉, then t̄′ ⊆ t̄ ∧ h̄ � t̄′ = h̄′.

The definition in the hint to Exercise 4.4.1 of the operation 〈p, ξ〉 7→ p(ξ)
makes sense whenever p = 〈t, h〉 satisfies conditions (i), (ii), and (iv) for
membership in Q(α) for some ordinal α ≥ ξ. Let us regard the definition as
applying to all such p and ξ.

If p = 〈t, h, k〉 ∈ Q∗(α) and α′ ≤ α, define p[α′] ∈ Q∗(α′) by setting
p[α′] = 〈t, h′, k′〉, where 〈t, h′〉 = 〈t, h〉(α′) and where k′(s) is (k(s))(ξωα′) for
each s ∈ t.

Prove the analogue of the assertion (∗) in the hint to Exercise 4.4.1.
Define a class S∗ of ranked sentences by imitating the definition of the

class S∗ in the hint to Exercise 4.4.1, except for clause (a), which should now
be

(a) If s ∈ <ωω then s ∈ T is a ranked sentence of rank 1 and, if s′ ∈ <ωω,
then s′ ∈ T s is a ranked sentence of rank 1.

Define a forcing relation ‖−∗α between elements of Q∗(α) and elements of
S∗ by imitating the definition of ‖−α in the hint to Exercise 4.4.1, with the
necessary modification of clause (a).

Prove the analogue of the assertion (†) in the hint to Exercise 4.4.1.
Let λ < ω1 be a-admissible and a limit of a-admissibles. Assume for

a contradiction that there is are γ < λ and β < ω1 and there is a set
b ∈ Lβ[-〈Vα | α ∈ Ord〉-] such that b ⊆ γ and b /∈ Lλ[a]. Let G be Q∗(β + 1)
generic over Lβ+ω[a] (= Lωβ+ω[a]). Let 〈T,H,K〉 be the obvious triple given
by G. If K is the function s 7→ 〈T s, Hs〉, let K0 be the function s 7→ T s.
Show that there is a β-good play of G that is recursive in 〈a, T,K0〉. From
this it follows that b ∈ Lγ+ω[a, T,K0]. Imitate the last part of the hint to
Exercise 4.4.1 and derive the contradiction that b ∈ Lγ+ω[a].

Let α < ω1 be a-admissible and a limit of a-admissibles. Assume for a
contradiction that α is not a cardinal in L[〈Vξ | ξ ∈ Ord〉]. Then there are
ordinals γ < α and β < ω1 and there is a set b ∈ Lβ[〈Vξ | ξ ∈ Ord〉] such that
b ⊆ γ and b codes a wellordering of γ of order type α. Let G be Q(β + 1)-
generic over Lωβ+ω[a]. Let 〈T,H〉 be given by G. There is an s ∈ T such
that ‖s‖T = β. Thus there is an s′ ∈ T such that <BK �s′ has order type β.
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Let z be the play consistent with τ in which rz =<BK �s′,

czi,υ = the unique j such thath(j) = δzω2h(i)+β,

and z(1) =, say, 0.
As in Exercise 4.4.1, b ∈ Lγ+ω[z]. Hence b ∈



Chapter 6

Woodin Cardinals

The main goal of this chapter is to introduce Woodin cardinals and prove the
consequences of their existence that will be used in the determinacy proofs
of Chapter 8. Along the way we give a general survey of large cardinal
properties stronger than measurability. The chapter can be read by anyone
who has read the first three sections of Chapter 3.

Woodin cardinals and certain other large cardinals cannot be character-
ized in terms of individual ultrafilters but only in terms of systems of ultra-
filters. These systems are called extenders, and we will introduce and study
them in §1. Extenders will play a central role in Chapters 7 and 8. In §2
we introduce a variety of strong large cardinal axioms and we relate them to
one another and to ultrafilters and extenders. We also prove Kunen’s results
on the limits of large cardinal axioms. Woodin cardinals are introduced in
§2, but they are not singled out for special attention. Section 3 is devoted to
some of the basic theory of Woodin cardinals. It ends with a technical result
that will be an important tool in Chapter 8.

It is possible to proceed directly from §6.1 to Chapter 7. In a sense this is
a more logical order than the order of the book. The concepts and theorems
of Chapter 7 do not depend on the material in §6.2–3, and the technical
result of §6.3 mentioned above will be used only to construct iteration trees,
which are the subject matter of Chapter 7. We chose the actual order only
because it put what seemed less technical material first.

321
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6.1 Extenders

Suppose that j : V ≺ M with M transitive and crit (j) = κ. In the proof of
the (c) ⇒ (a) part of Theorem 3.2.12, it is shown that if

U = {X ⊆ κ | κ ∈ j(X)},

then U is a κ-complete non-principal ultrafilter on κ (and the proof of
Lemma 3.2.13 shows further that U is normal). The following lemma gives a
general version of this construction of an ultrafilter from such an embedding
j.

Lemma 6.1.1. Let j : V ≺ M with M transitive and crit (j) = κ. Let
y ∈M . Let A be any set such that y ∈ j(A).

U = {X ⊆ A | y ∈ j(X)}.

Then

(i) U is a κ-complete ultrafilter on A;

(ii) U is principal if and only if y ∈ range (j).

Proof. (i). The proof is very much like that of the (c) ⇒ (a) part of
Theorem 3.2.12. Since y ∈ j(A), the definition of U gives that A ∈ U . By
the elementarity of j, we have that j(∅) = ∅ and so that y /∈ j(∅). Thus
U satisfies clause (a) in the definition of a filter. The elementarity of j also
gives that j(X ∩ Y ) = j(X) ∩ j(Y ), that X ⊆ Y → j(X) ⊆ j(Y ), and that
j(A \X) = j(A) \ j(X); therefore U satisfies clauses (b), (c), and (d) in the
definition of an ultrafilter. To verify the κ-completeness of U , let δ < κ and
let X = 〈Xγ | γ < δ〉 be a sequence of elements of U . The elementarity of j
and the fact that δ < crit (j) yield that

j(
⋂
γ<δ

Xγ) =
⋂

γ<j(δ)

(j(X))γ =
⋂
γ<δ

j(Xγ).

But y ∈
⋂
γ<δ j(Xγ), so

⋂
γ<δXγ ∈ U .

(ii). The ultrafilter U is principal if and only if there is an a ∈ A such
that {a} ∈ U . But {a} ∈ U if and only if y ∈ j({a}) = {j(a)}, i.e. if and
only if y = j(a). �
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Many large cardinal properties are like measurability in that they can be
formulated in two basic ways: in terms of ultrafilters and in terms of ele-
mentary embeddings. In some cases an elementary embedding corresponds
to a single ultrafilter, as is the case for measurabilty, but in other impor-
tant cases an elementary embedding corresponds to whole system of ultra-
filters. Such systems of ultrafilters were first studied in [Mitchell, 1979],
and a refinement of Mitchell’s concept was formulated by Dodd and Jensen.
(See [Dodd, 1982].) This refinement is the notion of an extender, to which
we now turn. All the results of this section were known to Dodd and Jensen
and, in a different form, to Mitchell.

First we introduce a standard item of notation, related to the notation
[z]γ. For sets z and cardinals γ, define

[z]<γ = {x⊆ z | |x| < γ}.

Let j : V ≺ M with M transitive and crit (j) = κ. Let λ be an ordinal
number with κ < λ ≤ j(κ). The (κ, λ)-extender derived from j is the system

〈Ea | a ∈ [λ]<ω〉,

where the Ea are defined by

Ea = {X ⊆ [κ]|a| | a ∈ j(X)}.

To state the next lemma, we state a useful convention and a few defini-
tions. First the convention: If n ∈ ω and z ∈ [Ord]n then we write zi for
the ith member of z in order of magnitude, that is, z = {z1, . . . , zn} with
z1 < · · · < zn. To give the definitions, let us fix n ∈ ω, b ∈ [Ord]n, and a ⊆ b.
Let a = {bi1 , . . . , bik}, with i1 < · · · < ik. For z ∈ [Ord]n set

za,b = {zi1 , . . . , zik}.

For α ∈ Ord and X ⊆ [α]k, define Xa,b
α ⊆ [α]n by

Xa,b
α = {z | za,b ∈ X}.

Similarly, for α ∈ Ord and f : [α]k → V , define fa,b : [α]n → V by

fa,b(z) = f(za,b).
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Before proceeding to the lemma, let us introduce one more piece of nota-
tion. For any function f and any set x ⊆ domain (f) let

f ′′x = range (f � x).

We have earlier in the book written “f(x)” for f ′′x, but from now on we will
reserve “f(x)” for the value of f on the argument x.

Lemma 6.1.2. Let j : V ≺ M with M transitive and crit (j) = κ. Let
κ < λ ≤ j(κ) and let E = 〈Ea | a ∈ [λ]<ω〉 be the (κ, λ)-extender derived
from j. Then E has the following properties:

(1) For each a ∈ [λ]<ω, Ea is a κ-complete ultrafilter on [κ]|a|, and Ea
is principal if and only if a ⊆ κ.

(2) (Compatibility) If a ⊆ b ∈ [λ]<ω and X ∈ Ea, then Xa,b
κ ∈ Eb.

(3) (Normality) Let a ∈ [λ]<ω. Let f : [κ]|a| → κ and i ≤ |a| be such
that

{z | f(z) < zi} ∈ Ea.

Then there is a β < ai such that

{z ∈ [κ]|a∪{β}| | f(za,a∪{β}) = zk} ∈ Ea∪{β},

where β = (a ∪ {β})k.
(4) (Countable Completeness) Let 〈ai | i ∈ ω〉 be such that each ai ∈
[λ]<ω. Let Xi ∈ Eai for each i ∈ ω. Then there is an order preserving
h :
⋃
i∈ω ai → κ such that h′′ai ∈ Xi for all i ∈ ω.

Proof. The first assertion of (1) follows directly from part (i) of Lemma
6.1.1. Since if a ⊆ j(κ) but a 6⊆ κ then a /∈ range (j), the second assertion of
(1) follows from part (ii) of Lemma 6.1.1.

For (2), let n ∈ ω, let a ⊆ b ∈ [λ]n, and let X ∈ Ea. By definition, we
have that a ∈ j(X). Now a = ba,b, so ba,b ∈ j(X). But this just means that

b ∈ (j(X))a,bj(κ) = j(Xa,b
κ ) and so that Xa,b

κ ∈ Eb.
Let a, i, and f be as in the hypothesis of (3). By the definition of Ea,

we get that a ∈ {z ∈ [j(κ)]|a| | (j(f))(z) < zi}. Hence (j(f))(a) < ai. Let
β = (j(f))(a). Let k be such that (a ∪ {β})k = β. Then

(j(f))(a) = β = (a ∪ {β})k.
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By the definition of Ea∪{β}, we have that

{z ∈ [κ]|a∪{β}| | f(za,a∪{β}) = zk} ∈ Ea∪{β}.

Let a = 〈ai | i ∈ ω〉 and X = 〈Xi | i ∈ ω〉 be as in the hypotheses of (4).
Let b =

⋃
i∈ω ai. If b is finite, then (j � b)−1 : j(b)→ b witnesses that

M |= (∃h)(h : j(b)→ j(κ) ∧ h is order preserving
∧ (∀i ∈ ω)h′′(j(a))i ∈ (j(X))i).

The desired conclusion follows by the elementarity of j. If b is infinite, then
we cannot assume that j � b ∈ M , and so we do not know that its inverse
belongs to M . Instead we let

U = {s | (∃k ∈ ω)(s :
⋃
i≤k ai → κ ∧ s is order preserving
∧ (∀i≤ k) s′′ai ∈ Xi)}.

If s and t belong to U define

s ≺ t ↔ s ) t.

The inverse of j � b witnesses that j(≺) is not wellfounded in V . The abso-
luteness of wellfoundedness implies that j(≺) is not wellfounded in M . The
elementarity of j then implies that ≺ is not wellfounded. If 〈si | i ∈ ω〉 is an
infinite descending sequence in ≺, then

⋃
i∈ω si is our desired h. �

If κ is an uncountable cardinal number and λ > κ is an ordinal number,
then a (κ, λ)-extender is a system 〈Ea | a ∈ [λ]<ω〉 that satisfies clauses (1)–
(4) of Lemma 6.1.2. An extender is anything that is a (κ, λ)-extender for
some pair 〈κ, λ〉.

Remarks.

(1) There can be a (κ, λ)-extender only if κ is a measurable cardinal.
A (κ, κ + 1)-extender is essentially a uniform normal ultrafilter on κ. See
Exercise 6.1.1.

(2) There is no real reason for the demand that λ ≤ j(κ) in order for
the (κ, λ)-extender derived from j to be defined. Removing this requirement
would give us ultrafilters Ea that are not all on [κ]<ω. See Exercise 6.1.2.
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Let E = 〈Ea | a ∈ [λ]<ω〉 be a (κ, λ)-extender. We define∏
E

(V ;∈),

which we call the ultrapower of (V ;∈) with respect to E, even though it is
not literally an ultrapower.

Let
DE = {〈a, f〉 | a ∈ [λ]<ω ∧ f : [κ]|a| → V }.

If 〈a, f〉 and 〈b, g〉 are elements of DE, define

〈a, f〉 ∼E 〈b, g〉 ↔ {z ∈ [κ]|a∪b| | f(za,a∪b) = g(zb,a∪b)} ∈ Ea∪b.

It is easily verified that ∼E is an equivalence relation on the class DE. For
〈a, f〉 ∈ DE, let [[a, f ]]E be the set of all elements of minimal rank belonging
to the equivalence class of 〈a, f〉. (We will omit the subscript “E” when there
is no danger of confusion.) The universe of our ultrapower

∏
E(V ;∈) is the

class of all the [[a, f ]] for 〈a, f〉 ∈ DE. The relation, which we write ∈E, is
given by

[[a, f ]]E ∈E [[b, g]]E ↔ {z ∈ [κ]|a∪b| | f(za,a∪b) ∈ g(zb,a∪b)} ∈ Ea∪b.

Remark. An alternative way of defining
∏

E(V ;∈) is as a direct limit of
the ordinary ultrapowers

∏
Ea

(V ;∈). See Exercise 6.1.3.

Theorem 6.1.3. Let E = 〈Ea | a ∈ [λ]<ω〉 be a (κ, λ)-extender. Let
ϕ(v1, . . . , vn) be any formula of the language of set theory. Let 〈a1, f1〉, . . . , 〈an, fn〉
be elements of DE. Let b =

⋃
1≤i≤n ai. Then∏

E(V ;∈) |= ϕ[[[a1, f1]], . . . , [[an, fn]]] ↔
{z ∈ [κ]|b| | (V ;∈) |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb.

Proof. The proof is similar to those of Theorem 3.2.1 and Theorem 3.2.5,
and we omit it.

As with ordinary ultrapowers, we get a canonical elementary embedding
which we call i′E of (V ;∈) into

∏
E(V ;E), where i′E is defined by, e.g.,

i′E(x) = [[∅, cx]]E.

Here ∅ could be replaced by any other a ∈ [λ]<ω without affecting the defi-
nition.
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Lemma 6.1.4. If E is an extender then
∏

E(V ;∈) is wellfounded.

Proof. Let E = 〈Ea | a ∈ [λ]<ω〉 be an extender and suppose for a contra-
diction that

· · · ∈E [[a2, f2]] ∈E [[a1, f1]] ∈E [[a0, f0]].

Replacing each ai by
⋃
i′≤i ai′ and each fi by f

ai,∪i′≤iai
i , we may assume that

a0 ⊆ a1 ⊆ . . . . Let X0 = [κ]|a0| and for each i let

Xi+1 = {z ∈ [κ]|ai+1| | fi+1(z) ∈ fi(zai,ai+1
)}.

For each i ∈ ω, we have that Xi ∈ Eai . By countable completeness (property
(4) of extenders), let h :

⋃
i∈ω ai → κ be order preserving and such that

h′′ai ∈ Xi for all i. We get the contradiction that

(∀i ∈ ω) fi+1(h′′ai+1) ∈ fi(h′′ai). �

The wellfoundedness of
∏

E(V ;∈) is actually equivalent with the count-
able completeness of E:

Lemma 6.1.5. If E = 〈Ea | a ∈ [λ]<ω〉 has properties (1)–(3) of (κ, λ)-
extenders, then E is countably complete (i.e., E is a an extender) if and only
if
∏

E(V ;∈) is wellfounded.

Proof. The “only if” part of the corollary is Lemma 6.1.4.
For the “if” part, assume that 〈ai | i ∈ ω〉 and 〈Xi | i ∈ ω〉 are a

counterexample to the countable completeness of E. Replacing, if necessary,
each ak by

⋃
i≤k ai and Xk by (Xk)

ak,∪i≤kai
κ , we may assume that ai ⊆ ak for

all i ≤ k ∈ ω. Next replacing, if necessary, each Xk by
⋂
i≤k(Xk)

ai,ak
κ , we

may assume that
(∀z ∈Xk)(∀i ≤ k) zai,ak ∈ Xi.

As in the proof of Lemma 6.1.2, let

U = {s | (∃k ∈ ω)(s : ak → κ ∧ s is order preserving
∧ s′′ak ∈ Xk)}

and define, for elements s and t of U ,

s ≺ t ↔ s ) t.
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To say that 〈ai | i ∈ ω〉 and 〈Xi | i ∈ ω〉 are a counterexample to the
countable completeness of E is just to say that ≺ is wellfounded. Define
‖ ‖≺ : U → Ord by induction on ≺ as follows.

‖s‖≺ = sup {‖t‖≺ + 1 | t ≺ s}.

For each k ∈ ω and each z ∈ Xk, there is a unique sz ∈ U such that z = sz
′′ak.

For k ∈ ω, define

fk : Xk → Ord

by

fk(z) = ‖sz‖≺.

For each k and each z ∈ Xk+1,

fk+1(z) = ‖sz‖≺ > ‖sz � ak‖≺ = ‖szak,ak+1
‖≺ = fk(zak,ak+1

).

Hence the [[ak, fk]] witness that
∏

E(V ;∈) is not wellfounded. �

Lemma 6.1.6. If E is an extender then
∏

E(V ;∈) is set-like.

We omit the proof, which is similar to that of Lemma 3.2.9.

If E is an extender then Lemmas 6.1.4, 6.1.6, and 3.2.8 give us a unique

πE :
∏
E

(V ;∈) ∼= (Ult(V ;E);∈),

with Ult(V ;E) transitive. Let iE : V ≺ Ult(V ;E) be given by iE = πE ◦ i′E.
(Note that we continue the convention whereby we may write, for example,
“V ” instead of “(V ;∈).”)

Lemma 6.1.7. Let E be an extender. Then iE is the identity on Vκ, and
κ = crit (iE).

Proof. The proof is like that of Lemma 3.2.10.
We first show that iE is the identity on κ. To do this we prove by induction

that iE(α) = α for all α < κ. Suppose then that α < κ and that iE(β) = β
for all β < α. For each β < α, iE(β) ∈ iE(α), by the elementarity of iE.
Suppose that π([[a, f ]]) ∈ iE(α), where π = πE :

∏
E(V ;∈) ∼= (Ult(V ;E);∈).
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Then {z∈ [κ]|a| | f(z) ∈ α} ∈ Ea. But then the κ-completeness of Ea implies
that there is a β < α such that {z ∈ [κ]|a| | f(z) = β} ∈ Ea. This means that

π([[a, f ]]) = π([[∅, cβ]]) = iE(β) = β.

This completes the inductive proof that iE is the identity on κ. From this
fact it follows exactly as in the proof of Lemma 3.2.10 that iE is the identity
on Vκ.

To see that iE(κ) > κ, consider [[{κ}, f ]], where f =
⋃
�[κ]1. Note that⋃

({α}) = α for each {α} ∈ [κ]1. Since E{κ} is non-principal and κ-complete
by part (1) of Lemma 6.1.2, we have that

(∀β < κ) {{α} | β < α} ∈ E{κ}.

Thus π([[{κ}, f ]]) > β for all β < κ; hence π([[{κ}, f ]]) ≥ κ. (It follows from
Lemma 6.1.8 below that π([[{κ}, f ]]) = κ.) But f : [κ]1 → κ, so π([[{κ}, f ]]) <
π([[∅, cκ]]) = iE(κ). �

If U is a uniform normal ultrafilter on κ, then (Exercise 3.2.2) πU([[id]]U) =
κ. The next lemma is the version of this fact for extenders, and it is proved
using the normality of extenders (property (3)).

Lemma 6.1.8. Let E = 〈Ea | a ∈ [λ]<ω〉 be a (κ, λ)-extender.

(i) For each a ∈ [λ]<ω and each i, 1 ≤ i ≤ |a|, πE([[a, z 7→ zi]]) = ai.

(ii) For each a ∈ [λ]<ω, πE([[a, id]]) = a.

Proof. Let π = πE. We prove (i) by induction on the ordinal ai, simul-
taneously for all a ∈ [λ]<ω. Assume then that, for all b ∈ [λ]<ω and all k,
1 ≤ k ≤ |b|, if bk < ai, then π([[b, z 7→ zk]]) = bk.

Let β < ai. Let β = (a ∪ {β})k. Using our induction hypothesis, we get
that β = π([[a ∪ {β}, z 7→ zk]]). But zk < (za,a∪{β})i for all z ∈ [κ]|a∪{β}|, and
so Theorem 6.1.3 implies that π([[a ∪ {β}, z 7→ zk]]) < π([[a, z 7→ zi]]), and so
that β < π([[a, z 7→ zi]]).

Assume now that π([[c, f ]]) is an ordinal smaller than π([[a, z 7→ zi]]). We
may assume that range (f) ⊆ Ord. Let b = a∪ c. We have by Theorem 6.1.3
that

{z ∈ [κ]|b| | f(zc,b) < (za,b)i} ∈ Eb.
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By normality this gives us a β < ai such that

{z ∈ [κ]|b∪{β}| | f(zc,b∪{β}) = zk} ∈ Eb∪{β},

where β = (b ∪ {β})k. Thus π([[c, f ]]) = π([[b ∪ {β}, z 7→ zk]]). Our induction
hypothesis then gives us that π([[c, f ]]) = (b ∪ {β})k = β.

We have shown that the ordinals smaller than π([[a, z 7→ zi]]) are precisely
the ordinals smaller than ai; hence π([[a, z 7→ zi]]) = ai.

It is easy to see that (i) implies (ii). �

Corollary 6.1.9. If E is a (κ, λ)-extender, then λ ≤ iE(κ), and E is the
(κ, λ)-extender derived from iE.

Proof. Let α < λ. By Lemma 6.1.8, α = πE([[{α}, z 7→ z1]]). Since
{z ∈ [κ]1 | z1 < κ} ∈ E{α}, Theorem 6.1.3 gives that πE([[{α}, z 7→ z1]]) <
πE([[∅, κ]]) = iE(κ).

Let a ∈ [λ]<ω and let X ∈ [κ]|a|. By Lemma 6.1.8, a ∈ iE(X) if and
only if πE([[a, id]]) ∈ πE([[∅, cX ]]). By Theorem 6.1.3, this holds if and only if
{z ∈ [κ]|a| | z ∈ X} ∈ Ea, i.e., if and only if X ∈ Ea. �

Now let us return to the topic with which we began this section. Let
j : V ≺ M with M transitive and crit (j) = κ. Let λ ≤ j(κ). Let 〈Ea |
a ∈ [λ]<ω〉 be the (κ, λ)-extender derived from j. The next two lemmas will
show that iE : V ≺ Ult(V ;E) is an approximation of j : V ≺ M . Define
k : Ult(V ;E)→M by

k(πE([[a, f ]]E)) = (j(f))(a).

The function k is well-defined, since

[[a, f ]] = [[b, g]] →
{z ∈ [κ]|a∪b| | f(za,a∪b) = g(zb,a∪b)} ∈ Ea∪b →
(j(f))(a) = (j(g))(b).

Lemma 6.1.10. Let j, M , λ, E, and k be as in the preceding paragraph.
Then

(a) k : Ult(V ;E) ≺M ;

(b) k ◦ iE = j;
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(c) k � λ is the identity.

Proof. The proof of (a) is similar to the proof that k is well-defined. Let
ϕ(v1, . . . , vn) be any formula of the language of set theory. Let 〈a1, f1〉, . . . , 〈an, fn〉
be elements of DE. Let b =

⋃
1≤i≤n ai. Then∏

E(V ;∈) |= ϕ[[[a1, f1]], . . . , [[an, fn]]] ↔ (by Theorem 6.1.3)
{z ∈ [κ]|b| | (V ;∈) |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb ↔
(M ;∈) |= ϕ[(j(f1))(a1), . . . , (j(fn))(an)] ↔
(M ;∈) |= ϕ[k(πE([[a1, f1]])), . . . , k(πE([[an, fn]]))].

To see that k ◦ iE = j, observe that

k(iE(x)) = k(πE([[∅, cx]])) = cj(x)(∅) = j(x).

We finish the proof of the lemma by showing that k � [λ]<ω is the identity.
This is clearly equivalent with (c). Let a ∈ [λ]<ω. Lemma 6.1.8 implies that
k(a) = k(πE([[a, id]])) = (j(id))(a) = a. �

Lemma 6.1.11. Let j, M , λ, E, and k be as in the paragraph preceding
Lemma 6.1.10. Let η < λ be such that

|V M
η |M ≤ λ.

Then V
Ult(V ;E)
η = V M

η and k � V Ult(V ;E)
η is the identity.

Proof. Let γ = |V Ult(V ;E)
η |Ult(V ;E). Since

γ ≤ k(γ) = |V M
η |M ≤ λ,

we must have k(γ) = γ.

Let 〈Xβ | β < γ〉 be an enumeration of all elements of V
Ult(V ;E)
η . Then

〈k(Xβ) | β < γ〉 is an enumeration of all elements of V M
η . By the elementarity

of k, this means that

k � V Ult(V ;E)
η : (V Ult(V ;E)

η ;∈) ∼= (V M
η ;∈).

But an isomorphism between transitive sets must be the identity. �

For the case j = iE, the elementary embedding k of the preceding lemmas
is the identity:
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Lemma 6.1.12. For any extender E and any [[a, f ]],

(iE(f))(a) = πE([[a, f ]]).

Proof. For E, a, and f , as in the statement of the lemma,

(iE(f))(a) = (πE([[∅, cf ]]))(πE([[a, id]]))

= πE([[a, f ]]),

where the last equality is by Theorem 6.1.3, with “v1 is a function and v3 =
v1(v2)” as the formula ϕ, with ∅ as a1 and a as a2 and a3, with cf as f1, with
id as f2, and with f as f3. �

Exercise 6.1.1. (a) Let 〈Ea | a ⊆ [κ+ 1]<ω〉 be a (κ, κ+ 1)-extender. Show
that

{X ⊆ κ | (∃Y ∈ E{κ})(∀α < κ)(α ∈ X ↔ {α} ∈ Y )}

is a uniform normal ultrafilter on κ.
(b) Prove that a cardinal κ is measurable if and only if there exists a

(κ, κ+ 1)-extender.

Exercise 6.1.2. Let us generalize the notion of extender as follows. Let
j : V ≺M with M transitive and crit (j) = κ. Let λ be any ordinal number
such that κ < λ. For a ∈ [λ]<ω, let γa be the least ordinal γ ≥ κ such that
a ∈ [j(γ)]<ω. The (κ, λ)-extender derived from j is the system

〈Ea | a ∈ [λ]<ω〉,

where the Ea are defined by

Ea = {X ⊆ [γa]
|a| | a ∈ j(X)}.

Remark. The requirement that γa ≥ κ has no purpose other than to make
ordinary extenders be extenders in the generalized sense.

Prove that Lemma 6.1.2 becomes true for derived extenders in this gen-
eralized sense when (1)–(4) are replaced by the following clauses (1′)–(4′).

(1′) For each a ∈ [λ]<ω, Ea is a κ-complete ultrafilter on [γa]
|a|, and Ea

is principal if and only if a ∈ range (j).

(2′) (Compatibility) If a ⊆ b ∈ [λ]<ω and X ∈ Ea, then Xa,b
γb
∈ Eb.
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(3′) (Normality) Let a ∈ [λ]<ω. Let f : [γa]
|a| → γa and i ≤ |a| be such

that

{z | f(z) < zi} ∈ Ea.

Then there is a β < ai such that

{z ∈ [γa]
|a∪{β}| | f(za,a∪{β}) = zk} ∈ Ea∪{β},

where β = (a ∪ {β})k.

(4′) (Countable Completeness) Let 〈ai | i ∈ ω〉 be such that each ai ∈
[λ]<ω. Let Xi ∈ Eai for each i ∈ ω. Then there is an order preserving
h :
⋃
i∈ω ai →

⋃
i∈ω γai such that h′′ai ∈ Xi for all i ∈ ω.

A (κ, λ)-extender in the generalized sense is defined using (1′)–(4′) and (if
one wants) the condition that no bounded subset of γa belongs to Ea unless
γa = κ.

Exercise 6.1.3. Let E = 〈Ea | a ∈ [λ]<ω〉 be a (κ, λ)-extender.

(a) For a ⊆ b ∈ [λ]<ω, show that

f 7→ fa,b

induces an elementary embedding

iEa,Eb : Ult(V ;Ea) ≺ Ult(V ;Eb).

(b) Prove that

(〈Ult(V ;Ea) | a ∈ [λ]<ω〉, 〈iEa,Eb | a ⊆ b ∈ [λ]<ω〉)

is a directed system of elementary embeddings.

(c) Let

(M̃, 〈̃ıEa | a ∈ [λ]<ω〉)

be the direct limit of the directed system of (b). Prove that there is a (unique)
π : M̃ ∼= (Ult(V ;E);∈) and that iE = π ◦ ı̃Ea ◦ iEa .
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6.2 Large Large Cardinals

By Lemma 3.2.11 and Theorem 3.2.12, the measurability of a cardinal κ is
equivalent with each of the following:

(a) There are a transitive class M and an embedding j : V ≺M such that
crit (j) = κ and such that Vκ+1 ⊆M .

(b) There are a transitive class M and an embedding j : V ≺M such that
crit (j) = κ and such that κM ⊆M .

These two equivalents of measurability lead to two different ways to gener-
alize the notion of a measurable cardinal. The one corresponding to (a) was
considered in [Gaifman, 1974], but became prominent only through work of
[Mitchell, 1979] and of Anthony Dodd and Ronald Jensen. (See [Dodd, 1982]
and [Dodd, ].) The one corresponding to (b) is was pursued earlier, by
William Reinhardt and Robert Solovay. (See [Solovay et al., 1978].)

If κ is a cardinal number and η is an ordinal number greater than κ, then
κ is η-strong if there are a transitive class M and an embedding j : V ≺ M
such that crit (j) = κ, η < j(κ), and Vη ⊆ M . A cardinal κ is strong if κ is
η-strong for every ordinal η > κ.

If κ and λ ≥ κ are cardinal numbers, then κ is λ-supercompact if there
are a transitive class M and an embedding j : V ≺M such that crit (j) = κ,
λ < j(κ), and λM ⊆M . A cardinal κ is supercompact if κ is λ-supercompact
for every cardinal λ ≥ κ.

The condition η < j(κ) can be dropped from the definition of η-strong
without changing the concept, and the condition λ < j(κ) can similarly be
dropped from the definition of λ-supercompact. This will be proved later
(Theorem 6.2.15).

A cardinal κ is measurable if and only if κ is (κ + 1)-strong if and only
if κ is κ-supercompact. It is clear that if κ is 2κ-supercompact then κ is
(κ + 2)-strong. But the converse fails: If κ is 2κ-supercompact then, as we
will see below, κ is the κth cardinal γ such that γ is (γ + 2)-strong—indeed
there are κ cardinals γ < κ such that γ is κ-strong.

There is an equivalent definition of λ-supercompactness that generalizes
our basic definition of measurability in terms of ultrafilters. To state this
definition, we need to make some preliminary definitions.

For cardinals κ and λ,

Pκ(λ) = {x⊆ λ | |x| < κ}.
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In other notation, Pκ(λ) = [λ]<κ. An ultrafilter U on Pκ(λ) (i) is fine if

{x ∈ Pκ(λ) | α ∈ x} ∈ U

for each α < λ and (ii) is normal if, for every f : Pκ(λ)→ λ, if

{x ∈ Pκ(λ) | f(x) ∈ x} ∈ U

then there is an α < λ such that

{x ∈ Pκ(λ) | f(x) = α} ∈ U .

Note that an ultrafilter V on an infinite cardinal κ generates an ultrafilter
U on Pκ(κ): X ∈ U ↔ X ∩ κ ∈ V (↔ X ∩ Ord ∈ V). The ultrafilter U is
κ-complete if and only if V is κ-complete; U is fine if and only if V is uniform;
U is normal if and only if V is normal.

Theorem 6.2.1. (Reinhardt, Solovay; see [Solovay et al., 1978]) If κ and
λ ≥ κ are cardinals, then the following are equivalent:

(1) κ is λ-supercompact.

(2) There is a κ-complete fine normal ultrafilter on Pκ(λ).

Proof. First suppose that j : V ≺ M witnesses that κ is λ-supercompact.
Let

U = {X ⊆ Pκ(λ) | j′′λ ∈ j(X)}.
(Recall that j′′λ = range (j � λ).) This definition is legitimate, for |j′′λ| = λ
and so j′′λ ∈ M . Since λ < j(κ), we have that j′′λ ∈ j(Pκ(λ)). Thus
Lemma 6.1.1 implies that U is a κ-complete ultrafilter on Pκ(λ).

To see that U is fine, let α < λ. Since j(α) ∈ j′′λ, we have that

j′′λ ∈ j({x ∈ Pκ(λ) | α ∈ x}).

Hence {x ∈ Pκ(λ) | α ∈ x} ∈ U .
To verify the normality of U , let f : Pκ(λ)→ λ be such that

{x ∈ Pκ(λ) | f(x) ∈ x} ∈ U .

By the definition of U , we have that

(j(f))(j′′λ) ∈ j′′λ.
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But this means that there is an α < λ such that

(j(f))(j′′λ) = j(α).

By the definition of U ,

{x ∈ Pκ(λ) | f(x) = α} ∈ U .

Now suppose that U is a κ-complete fine normal ultrafilter on Pκ(λ).
Since iU : V ≺ Ult(V ;U), it is enough to show

(i) λ(Ult(V ;U)) ⊆ Ult(V ;U);

(ii) λ < iU(κ);

(iii) crit (iU) = κ.

In order to prove (i) we will first show that

iU
′′λ ∈ Ult(V ;U).

Let π = πU :
∏
U(V ;∈) ∼= (Ult(V ;U);∈). We show that iU

′′λ = π([[id]]). If
α < λ then, by fineness of U ,

{x ∈ Pκ(λ) | α ∈ x} ∈ U ;

hence
[[cα]] ∈U [[id]]

and so
iU(α) ∈ π([[id]]).

Thus iU
′′λ ⊆ π([[id]]). To establish the reverse inclusion, let

[[f ]] ∈U [[id]].

Then
{x ∈ Pκ(λ) | f(x) ∈ x} ∈ U .

By the normality of U , there is an α < λ such that

{x ∈ Pκ(λ) | f(x) = α} ∈ U .

But then [[f ]] = [[cα]] and so

π([[f ]]) = iU(α).
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This shows that iU
′′λ ⊇ π([[id]]) and so that iU

′′λ = π([[id]]).
Now suppose that h : λ→ Ult(V ;U). For each α < λ, let h(α) = π([[gα]]).

Define g̃ : Pκ(λ)→ λV by

(g̃(x))(α) = gα(x).

The function π([[g̃]]) has domain iU(λ). For each α < λ,

(π([[g̃]]))(iU(α)) = π([[gα]]) = h(α).

Thus
h = π([[g̃]]) ◦ (iU � λ) ∈ Ult(V ;U).

For (ii), note that

λ = the order type of iU
′′λ

= the order type of π([[id]])

< π([[cκ]])

= iU(κ).

Now by Lemma 3.2.10, crit (iU) is the completeness of U , which is ≥ κ. If
crit (iU) > κ, then we have the contradiction that λ ≥ κ = iU(κ) > λ. Thus
(iii) is proved. �

There is no analogue of Theorem 6.2.1 that characterizes η-strength in
terms of the existence of an ultrafilter. To get an analogue of Theorem 6.2.1
we need to use extenders instead of ultrafilters.

Lemma 6.2.2. Let κ be an η-strong cardinal. Then there is an extender E
such that iE witnesses that κ is η-strong.

Proof. Let j : V ≺ M witness that κ is η-strong. Thus V M
η = Vη. Let

λ = |Vη|M . Let E be the (κ, λ)-extender derived from j. By Lemma 6.1.11,

V
Ult(V ;E)
η = Vη. Hence iE witnesses that κ is η-strong.

�

For any extender E, let strength (E) be the largest ordinal η such that
Vη ⊆ Ult(V ;E). The next theorem is a direct consequence of Lemma 6.2.2.

Theorem 6.2.3. (Mitchell; Dodd and Jensen) For cardinals κ and η > κ,
the following are equivalent:
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(a) κ is η-strong.

(b) There is an extender E with crit (iE) = κ, strength (E) ≥ η, and
η < iE(κ).

Remark. In [Martin and Steel, 1989], the word extender is used for a
wider class than that of (κ, λ)-extenders. The extenders of that paper do
not necessarily have the form 〈Ea | a ∈ [λ]<ω〉. They can have the more
general form 〈Ea | a ∈ [Y ]<ω〉, where Y is required only to be a transitive
set. If j : V ≺ M and Y ⊆ V M

j(κ) is transitive, then we can get such an

extender by setting Ea = {X ⊆ [Y ]|a| | a ∈ j(X)}. Y is called the support
of E. A cardinal κ is η-strong if and only if there is an extender E in the
sense of [Martin and Steel, 1989] such that crit (iE) = κ and the support of
E contains Vη.

Let us begin to show that supercompactness is a much stronger property
than strength. To do this we introduce three classes of large cardinals that
lie between strong cardinals and supercompact cardinals. Among these will
be Woodin cardinals, the cardinals we will use in determinacy proofs.

A cardinal κ is called superstrong if there is an elementary embedding
j : V ≺M such that crit (j) = κ and Vj(κ) ⊆M . Superstrong cardinals, like
strong cardinals, can be characterized in terms of extenders:

Theorem 6.2.4. ([Dodd, 1982]) For cardinals κ the following are equiva-
lent:

(a) κ is superstrong.

(b) There is a λ > κ and a (κ, λ)-extender E such that strength (E) ≥
λ = iE(κ).

Proof. If E witnesses that (b) holds, then clearly iE witnesses that κ is
superstrong.

Suppose that j : V ≺ M witnesses that κ is superstrong. Let E be the
(κ, j(κ))-extender derived from j. Let k : Ult(V ;E) ≺ M be defined as on
page 330. By Lemma 6.1.10, k � j(κ) is the identity.

We now apply Lemma 6.1.11 with λ = j(κ). Since j(κ) is a strong limit
cardinal in M , the hypotheses of Lemma 6.1.11 hold for every η < j(κ). The

lemma thus yields for every η < j(κ) that V M
η = V

Ult(V ;E)
η . It follows that

Vj(κ) = V M
j(κ) = V

Ult(V ;E)
j(κ) .
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To finish the proof, we need only show that iE(κ) = j(κ). Part (b) of
Lemma 6.1.10 gives that k(iE(κ)) = j(κ). Since iE(κ) ≤ k(iE(κ)) and since
k(α) = α for all α < j(κ), this implies that iE(κ) = j(κ). �

The next lemma will be used in proving that supercompactness is es-
sentially a stronger property than superstrength. But it—and variants of
it—will also be useful on other occasions.

To state the lemma, we need to introduce the analogue for extenders of
the Ult(M ;U) of Chapter 3. Suppose that M is a transitive class model of
ZFC and that E is a (κ, λ)-extender in M , i.e. that E ∈M and M |= “E is a
(κ, λ)-extender.” Then we can form what is in M the ultrapower of M with
respect to E. The universe of this ultrapower consists of equivalence classes
(modified á la Scott) of pairs 〈a, f〉, where a ∈ [λ]<ω and f ∈M is such that
f : [κ]|a| → M . Let us denote the class of all such pairs by DME , and let us
denote the equivalence class of 〈a, f〉 by

[[a, f ]]ME .

The relation of the ultrapower, which we call ∈ME , is given by

[[a, f ]]ME ∈
M
E [[b, g]]ME ↔ {z ∈ [κ]|a∪b| | f(za,a∪b) ∈ g(zb,a∪b)} ∈ Ea∪b.

The ultrapower we will denote by

M∏
E

(M ;∈).

By ZFC in M , this ultrapower is well-founded and set-like, and so we have
a unique πME :

∏M
E (M ;∈) ≺ (Ult(M ;E);∈). We also have the canonical

elementary embedding iME : M ≺ Ult(M ;E).

Lemma 6.2.5. Let M be a transitive class model of ZFC. Let E be a (κ, λ)-
extender such that E ∈ M . (This implies in particular that V M

κ+1 = Vκ+1.)
Let ζ ≥ κ be such that V M

ζ+1 = Vζ+1. Then

(i) M |= “E is an extender”;

(ii) (∀α≤ ζ+) iME (α) = iE(α); in particular, iME (κ) = iE(κ);

(iii) V
Ult(M ;E)
iE(ζ)+1 = V

Ult(V ;E)
iE(ζ)+1 ; hence V

Ult(M ;E)
iE(κ)+1 = V

Ult(V ;E)
iE(κ)+1 .
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Proof. That clauses (1)–(4) in the definition of an extender hold for E in
M follows from the facts that [λ]<ω ⊆ M and Vκ+1 ⊆ M . Clause (4) can be
proved either directly, using the absoluteness of wellfoundedness of trees, or
indirectly, using Lemma 6.1.5.

(ii) and (iii) follow from the fact that, for n ∈ ω, V and M have exactly
the same functions f : [κ]n → ζ+ and g : [κ]n → Vζ+1. (Such functions f
can be coded by a wellordering R of ζ of order type sup (range (f)) and a
g̃ : [κ]n → ζ. The pair 〈R, g̃〉 can be coded by a g : [κ]n → Vζ+1. Such a g
can in turn be coded by an element of Vζ+1 = V M

ζ+1.) �

The following lemma is possibly due to Dodd.

Theorem 6.2.6. Let κ be 2κ-supercompact. Then there is a uniform normal
ultrafilter U on κ such that

{α < κ | α is superstrong} ∈ U .

Proof. Let j : V ≺ M witness that κ is 2κ-supercompact. Let E be the
(κ, j(κ))-extender derived from j.

For each a ∈ [j(κ)]<ω,

Ea = {X ⊆ [κ]|a| | a ∈ j(X)}.

Now j �
⋃
n∈ω P([κ]n) is a subset of M of size 2κ and is therefore a member

of M . It follows that E ∈M .
As in the proof of Theorem 6.2.4, we get that iE(κ) = j(κ) and that

V M
j(κ) = V

Ult(V ;E)
j(κ) . Lemma 6.2.5 gives that E is an extender in M , that iE(κ) =

iME (κ), and that V
Ult(M ;E)
iE(κ) = V

Ult(V ;E)
iE(κ) . Putting these facts together, we get

that
V

Ult(M ;E)

iME (κ)
= V M

iME (κ).

But this means that
M |= κ is superstrong.

Let U = {X ⊆ κ | κ ∈ j(X)}. By Lemma 3.2.13 we know that U is a
uniform normal ultrafilter on κ. For X = {α<κ | α is superstrong}, we have
shown that κ ∈ j(X); hence X ∈ U . �

Remark. One thing the theorem does not show is that if κ is 2κ-supercompact
then κ is superstrong. Assuming that the existence of supercompact cardi-
nals is consistent with ZFC, one can show that it is also consistent with ZFC
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that there is a supercompact cardinal that is not superstrong. (See exercise
6.2.1,) One the other hand, it is trivial that every supercompact cardinal is
strong.

For some time, nothing interesting was known between strong and super-
strong cardinals. Then Saharon Shelah, in weakening the hypothesis of re-
sults of [Foreman et al., 1988] and of related theorems (see [Shelah and Woodin, 1990]),
discovered a significant intermediate class of large cardinals.

For any cardinal κ and any f : κ → κ, let us say that κ is Shelah for
f if there is a j : V ≺ M such that M is transitive, crit (j) = κ, and
V(j(f))(κ) ⊆M . A cardinal κ is Shelah if, for every f : κ→ κ, κ is Shelah for
f .

A routine argument shows that supercompactness is a stronger property
than that of being a Shelah cardinal:

Theorem 6.2.7. Let κ be superstrong. Then κ is Shelah and there is a
uniform normal ultrafilter U on κ such that

{α < κ | α is Shelah} ∈ U .

Proof. Let j witness that κ is superstrong.
To prove that κ is Shelah, let f : κ→ κ. Since (j(f))(κ) < j(κ), we have

that
V(j(f))(κ) ⊆ Vj(κ) ⊆M.

For the second assertion of the theorem, we proceed as in the proof of
Theorem 6.2.6. We show that M |= “κ is Shelah.” Just as in the proof of
Theorem 6.2.6, this suffices. Let f : κ→ κ and set

λ = max {κ+ 1, (j(f))(κ) + 1, |V(j(f))(κ)|}.

(Note that |V(j(f))(κ)| = |V M
(j(f))(κ)|M .) Let E be the (κ, λ)-extender derived

from j. Let k : Ult(V ;E) ≺ M be the canonical embedding, i.e. let k be
defined as on page 330. By Lemma 6.1.10, k � λ is the identity. This implies
that k((j(f))(κ)) = (j(f))(κ). But

k((iE(f))(κ)) = (k(iE(f)))(k(κ)) = (j(f))(k(κ)) = (j(f))(κ),

and so (iE(f))(κ) = (j(f))(κ). By Lemma 6.1.11, V
Ult(V ;E)

(j(f))(κ) = V M
(j(f))(κ). By

Lemma 6.2.5, we have that E is an extender in M , that iME (f) = iE(f) (and
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so these functions agree on the argument κ), and that V
Ult(M ;E)

(j(f))(κ) = V
Ult(V ;E)

(j(f))(κ) .
Combining these facts we get that

(iME (f))(κ) = (j(f))(κ);

V
Ult(M ;E)

(iME (f))(κ)
= V M

(iME (f))(κ).

Thus iME witnesses in M that κ is Shelah for f . �

Hugh Woodin discovered a weakening of the concept of Shelah cardinals
that has turned out to be extremely important. For any cardinal κ and any
f : κ→ κ, κ is Woodin for f if there are δ < κ and j : V ≺M such that M
is transitive, δ is closed under f , crit (j) = δ, and V(j(f))(δ) ⊆ M . A cardinal
κ is Woodin if, for every function f : κ→ κ, κ is Woodin for f .

The next two theorems, both known to Woodin, show how Woodin car-
dinals sit within the large cardinal hierarchy.

Theorem 6.2.8. Let κ be Shelah. Then κ is Woodin and there is a uniform
normal ultrafilter U on κ such that

{α < κ | α is Woodin} ∈ U .

Proof. Let f : κ→ κ. Define g : κ→ κ by

g(α) = max {α + 2, f(α) + 1, |Vf(α)|}+ 1.

Let j : V ≺M witness that κ is Shelah for g. Let

λ = max {κ+ 1, (j(f))(κ) + 1, |V(j(f))(κ)|}.

Let E be the (κ, λ)-extender derived from j. Since E : [λ]<ω → Vκ+2, it is easy
to see that E can be coded by an element of Vmax{λ,κ+2}+1 ⊆ V(j(g))(κ). Thus
E belongs to M . Using Lemmas 6.1.10, 6.1.11, and 6.2.5 as in the preceding
two proofs, we get that E is an extender in M , that (iME (f))(κ) = (j(f))(κ),

and that V
Ult(M ;E)

(iME (f))(κ)
= V M

(iME (f))(κ)
. Since (j(f))�κ = f , we have that κ is closed

under j(f) and that (iME (j(f)))(κ) = (iME (f))(κ). The latter of these facts
gives, since V M

(iME (f))(κ)
⊆ Ult(M ;E), that V M

(iME (j(f)))(κ)
⊆ Ult(M ;E). Thus κ

and iME witness in M that j(κ) is Woodin for j(f). By the elementarity of j,
we get that in V there is an extender F such that crit (iF ) and iF witness that
κ is Woodin for f . Since f was arbitrary, we have shown that κ is Woodin.
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Now E ∈ V M
j(κ), so the elementarity of j gives the stronger fact that there

is an extender F ∈ Vκ such that crit (iF ) and iF witness that κ is Woodin
for f . But such an F belongs to M . Moreover Lemma 6.2.5 implies that
iMF (f) = iF (f) and V

Ult(M ;F )
κ = V

Ult(V ;F )
κ . Hence crit (iMF ) and iMF witness in

M that κ is Woodin for f . The second assertion of the Theorem follows as
in the two preceding proofs. �

Woodinness is different from the other large cardinal properties we have
studied in this chapter in that it is not characterized in terms of elementary
embeddings whose critical point is the cardinal itself. Indeed a Woodin
cardinal need not be measurable. (See Exercise 6.3.2.) Nevertheless we have
the following result, which shows that Woodinness is a stronger property
than strength.

Theorem 6.2.9. Let κ be Woodin. Then

(1) κ is inaccessible;

(2) The set of cardinals δ < κ such that

(∀η)(δ < η < κ → δ is η-strong)

is unbounded in κ.

Proof. (1) To show that κ is regular, suppose that γ < κ and that f : γ → κ.
Set

g(0) = γ;
g(1 + α) = f(α) for α < γ;
g(α) = 0 for γ ≤ α.

Since κ is Woodin, there must in particular be a non-zero ordinal β < κ that
is closed under g. But any such β must be larger than every element of the
range of f .

To show that κ is a strong limit cardinal, let γ < κ be a cardinal number.
Let f : κ→ κ be such that f(0) = γ. Let δ < κ and j : V ≺M witness that
κ is Woodin for f . Then δ > γ and δ is measurable. Hence δ > 2γ.

(2) Assume for a contradiction that there is a β < κ such that

(∀δ)(β ≤ δ < κ → (∃η)(δ < η < κ ∧ δ is not η-strong)).
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Without loss of generality we may take β to be a limit ordinal. For ordinals α
such that β ≤ α < κ, let η(α) be the least η > α such that α is not η-strong.
Let

g(α) =

{
β if α < β;
max{η(α) + 1, |Vη(α)|}+ 1 if β ≤ α < κ.

Note that g(α) ≥ α+ 2 for all α. Since κ is inaccessible by (1), we have that
g : κ → κ. Let δ and j : V ≺ M witness that κ is Woodin for g. Clearly
δ > β. Let

λ = max{(j(η))(δ) + 1, |V(j(η))(δ)|}.
Let E be the (δ, λ)-extender derived from j. Arguing just as in the proof of
Theorem 6.2.8, we get that E ∈ M and so, by Lemma 6.2.5, that E is an
extender in M . By Lemmas 6.2.5 and 6.1.11,

V
Ult(M ;E)

(j(η))(δ) = V
Ult(V ;E)

(j(η))(δ) = V M
(j(η))(δ).

Thus iME witnesses in M that δ is (j(η))(δ)-strong. This contradicts the
elementarity of j. �

Remark. Theorem 6.2.9 implies that if κ is Woodin then Vκ |= ZFC +
“There is a proper class of strong cardinals.” Theorem 6.3.1 will shed more
light on the relation between strong cardinals and Woodin cardinals.

We will develop the theory of Woodin cardinals in the next section. In
the rest of this section, we will briefly discuss some very strong large cardinal
properties and in doing so prove that, for example, the condition λ < j(κ)
in the definition of λ-supercompactness is unnecessary.

The following definitions and theorem appear in [Solovay et al., 1978].
For n ∈ ω, a cardinal κ is said to be n-huge if there is a j : V ≺M such that
M is transitive, crit (j) = κ, and

κnM ⊆M,

where κn = j0,n(κ). Being 0-huge is the same as being measurable. Cardinals
that are 1-huge are simply called huge. Huge cardinals were introduced in
the early 1970’s by Kenneth Kunen.

As with λ-supercompactness, n-hugeness can be characterized in terms
of ultrafilters. If A is any set, an ultrafilter U on P(A) is fine if

(∀a ∈ A){x⊆ A | a ∈ x} ∈ U
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and is normal if, for all f : P(A)→ A, if

{x⊆ A | f(x) ∈ x} ∈ U

then f is constant on a set in U .
If x is a set of ordinals, let ot(x) be the order type of x.

Theorem 6.2.10. ([Solovay et al., 1978]) If n ∈ ω and κ is an infinite car-
dinal, then the following are equivalent:

(1) κ is n-huge.

(2) There are cardinals κ = λ0 < · · · < λn = λ and there is a κ-complete
fine normal ultrafilter U on P(λ) such that

(∀i < n) {x⊆ λ | ot(x ∩ λi+1) = λi} ∈ U .

Proof. Let j : V ≺M witness that κ is n-huge. Let κi = j0,i(κ) for i ≤ n+1.
Let

U = {X ⊆ P(κn) | j′′κn ∈ j(X)}.

Evidently U is an ultrafilter on P(κn). The proofs that U is κ-complete,
fine, and normal are exactly like the corresponding parts of the proof of
Theorem 6.2.1. Fix i < n. We have that

j′′κn ∩ j(κi+1) = j′′κn ∩ κi+2 = j′′κi+1;
ot(j′′κi+1) = κi+1 = j(κi).

Thus
j′′κn ∈ j({x⊆ κn | ot(x ∩ κi+1) = κi}).

But this means that

{x⊆ κn | ot(x ∩ κi+1) = κi} ∈ U .

Thus we can set λi = κi for each i < n and satisfy all the clauses of condition
(2).

Now suppose that κ = λ0 < . . . < λn = λ and U satisfy (2). We will
show that iU : V ≺ Ult(V ;U) witnesses that κ is n-huge. By Lemma 3.2.10,
crit (iU) ≥ κ. For γ ≤ λ let idγ : P(λ)→ V be given by

idγ(x) = x ∩ γ.



346 CHAPTER 6. WOODIN CARDINALS

By an argument like the one in the corresponding part of the proof of The-
orem 6.2.1, we can show that

(∀i < n) iU
′′γ = πU([[idγ]]).

One consequence of this is that iU
′′λ ∈ Ult(V ;U); by another argument like

one in the proof of Theorem 6.2.1, this implies that λ(Ult(V ;U)) ⊆ Ult(V ;U).
Another consequence is that iU(λi) = λi+1 for all i < n. This follows by
Theorem 3.2.5, the elementarity of πU , the hypothesis that {x ⊆ λ | ot(x ∩
λi+1) = λi} ∈ U , and the fact that ot(iU

′′λi+1) = λi+1. Since, in particular,
iU(κ) = λ1 > κ, the proof that crit (iU) = κ is now complete. Moreover we
have that λi = (iU)0,i(κ), so the proof of the theorem is complete. �

The property n-hugeness is related to supercompactness rather than to
strength. The large cardinal property that bears an analogous relation to
strength can be defined by replacing the condition κnM ⊆M in the definition
of n-hugeness by the weaker condition Vκn ⊆ M . This property, which has
no standard name, is weaker than n-hugeness. On the other hand, it implies
(n− 1)-hugeness when n > 0. (See Exercise 6.2.4.)

The following observation in [Kunen, 1978] shows that hugeness is a more
powerful large cardinal property than supercompactness.

Theorem 6.2.11. Let κ be huge. Then there is a uniform normal ultrafilter
U on κ such that {α < κ | (∀β < κ)α is β-supercompact} ∈ U .

Proof. Let j : V ≺ M witness that κ is huge. Let λ < j(κ). Then j
witnesses that κ is λ-supercompact. By Theorem 6.2.1, let V be a κ-complete
fine normal ultrafilter on Pκ(λ). It is clear that V ∈M and that M |= “V is
a κ-complete fine normal ultrafilter on Pκ(λ).” Hence κ is λ-supercompact in
M . The conclusion of the theorem follows as in the proof of Theorem 6.2.6.
�

Remark. The proof of the theorem would go through unchanged if we
weakened the κ1M ⊆ M part of the hugeness hypothesis to Vκ1 ⊆ M . A
number of other large cardinal properties have been studied that lie between
hugeness and supercompactness. See [Solovay et al., 1978].

The notion of n-huge cardinals cries out for generalization to the trans-
finite. One could define κ to be α-huge, for α an arbitrary ordinal, if there
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is a j : V ≺ M such that M is transitive, crit (j) = κ, and καM ⊆ M ,
where κα = j0,α(κ). Unfortunately [Kunen, 1971] shows that even ω-huge
cardinals in this sense do not exist. Kunen’s proof uses the following result
of [Erdös and Hajnal, 1966]:

Theorem 6.2.12. Let λ be an infinite cardinal. There is a function f :
[λ]ω → λ such that

(∀X ⊆ λ)(|X| = λ → f ′′[X]ω = λ).

([X]ω = [X]ℵ0 = the set of all countably infinite subsets of X.)

Proof. The proof we give is from [Galvin and Prikry, 1976]. Let E be the
set of all elements x of [λ]ω such that ot(x) = ω. For x and y belonging to
E , say that x ∼ y if the symmetric difference of x and y is finite. For x ∈ E ,
let [x] be the equivalence class of x. Let g be a choice function for the set of
all equivalence classes, i.e. let g([x]) ∈ [x] for each x ∈ E . Let h : E → λ be
given by

h(x) =

{
the greatest element of g([x]) \ x if g([x]) 6⊆ x;
0 otherwise.

We will show that there is an A ⊆ λ such that |A| = λ and such that

(∀X ⊆ A)(|X| = λ → h′′([X]ω ∩ E) ⊇ A).

Given such an A, one can easily construct an f with the required properties.
Suppose that no suchA exists. We construct a strictly increasing sequence

〈αi | i ∈ ω〉 of elements of λ and a sequence 〈Bi | i ∈ ω〉 of subsets of λ of
cardinality λ. Let B0 = λ. Given Bi, let αi ∈ Bi and Bi+1 ⊆ Bi \ αi + 1 be
such that |Bi+1| = λ and

αi /∈ h′′([Bi+1]ω ∩ E).

The existence of such a pair follows easily from the nonexistence of A. Now
let x = {αi | i ∈ ω}. Let αn be the least element of x that is larger than every
element of the symmetric difference of g([x]) and x. Let y = {αi | i > n}.
Now h(y) = αn, since αn is the greatest element of g([x]) \ y. But this is a
contradiction, for y ⊆ Bn+1. �

Now we are ready to prove Kunen’s theorem.
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Theorem 6.2.13. ([Kunen, 1971]) Let j : V ≺ M with M transitive. Let
κ = crit (j). Let λ = j0,ω(κ). (λ can also be characterized as the least fixed
point of j that is greater than κ.) Then j′′λ /∈M .

Proof. Let f : [λ]ω → λ be given by Theorem 6.2.12. By the elementarity
of j, if X ⊆ λ belongs to M and if |X| = λ, then j(f)′′[X]ω = λ. We will
prove that j′′λ /∈M by showing that j(f)′′[j′′λ]ω 6= λ.

Since ω < κ = crit (j), it is easy to see that

(∀x ∈ [λ]ω) j(x) = {j(α) | α ∈ x}.

In particular this means that every y ∈ [j′′λ]ω belongs to the range of j � [λ]ω.
If y ∈ [j′′λ]ω and y = j(x), then (j(f))(y) = (j(f))(j(x)) = j(f(x)). This
shows that

j(f)′′[j′′λ]ω ⊆ j′′λ 6= λ.

(That j′′λ 6= λ follows from the fact that κ ∈ λ \ j′′λ.) �

For other proofs of Theorem 6.2.13, see §23 of [Kanamori, 1994].
Kunen’s theorem and its proof give some more negative results. For

j : V ≺ M or j : Vη ≺ M with M transitive, let us for the moment denote
by λ the first fixed point of j greater than crit (j), if it exists.

Theorem 6.2.14. (1) If j : V ≺M , j is not the identity, and M is transi-
tive, then (a) Vλ+1 /∈M and (b) ω(Vλ) 6⊆M . (2) There is no j : Vλ+2 ≺ Vλ+2.

Proof. (1)(a) follows immediately from Theorem 6.2.13. (1)(b) follows from
the fact that, since cf(λ) = ω, every subset of λ is the union of countably
many elements of Vλ. (Of course, (1)(b) implies (1)(a).) To verify (2), note
that the f of the proof of Theorem 6.2.13 belongs to Vλ+2. �

No inconsistency has been derived from any of the following (where we
continue to use “λ” as above, so that the embeddings are implicitly asserted
to be non-trivial):

(a) There is a j : Vλ ≺ Vλ.

(b) There is a j : V ≺M with M transitive and Vλ ⊆M .

(c) There is a j : Vλ+1 ≺ Vλ+1.

(d) There is a j : L(Vλ+1) ≺ L(Vλ+1).
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These assertions are listed in order of (strictly) increasing strength. [Martin, 1980]
proved the determinacy of all Π1

2 games from a hypothesis intermediate be-
tween (a) and (b). Hugh Woodin (unpublished) subsequently proved ADL(R)

and much more from (d). The determinacy proofs we will give in Chapters 8
and 9 will have, of course, much weaker hypotheses.

No inconsistency with ZFC minus Choice is known for the existence of
an elementary embedding of the whole universe into itself.

Kunen’s results, as he noted, make it possible to simplify the definitions
of η-strong and λ-supercompact in the way mentioned earlier:

Theorem 6.2.15. Let κ be a cardinal number.
(1) For cardinal numbers λ ≥ κ, κ is λ-supercompact if and only if there

is a j : V ≺M such that M is transitive, crit (j) = κ, and λM ⊆M .
(2) For ordinal numbers η > κ, κ is η-strong if and only if there is a

j : V ≺M such that M is transitive, crit (j) = κ, and Vη ⊆M .

Proof. (1) Let λ ≥ κ. Clearly we need only prove the “if” part. Let
j : V ≺M be as in the statement of (1). For ordinals α, let κα = j0,α(κ) and
let Mα = j0,α(V ). (See §3.3.) By Theorem 6.2.13, λ < κω. Let n be the least
number such that λ < κn. Since ji,i+1 = j0,i(j) for each i, the elementarity of
j0,i implies that (Mi ∩ j0,i(λ)Mi+1) ⊆Mi+1 and so that (Mi ∩ λMi+1) ⊆Mi+1.
By induction we then get that λMn ⊆ Mn. Thus j0,n : V ≺ Mn witnesses
that κ is λ-supercompact.

(2) Let η > κ. As for (1) we need only proof the “if” part. Let j : V ≺M
be as in the statement of (2). Define κα and Mα, α ∈ Ord, as in the proof
of (1). By Theorem 6.2.14, we know that η ≤ κω. An argument as in the
proof of (1) shows that Vη ⊆ Mi for each i ∈ ω. Since η ≤ κω, this implies
that Vη ⊆Mω. Since κω = crit (jω,ω+1), we finally get that Vη ⊆Mω+1. Thus
j0,ω+1 : V ≺Mω+1 witnesses that κ is η-strong. (If η < κω then j0,n will also
work for any n such that η < κn.) �

Exercise 6.2.1. (a) Show that if κ is superstrong then there are measurable
cardinals larger than κ.

(b) Let κ be any cardinal number. Show that either κ is not superstrong
or else there is an inaccessible δ > κ such that Vδ |= “κ is not superstrong.”

(c) Show that if κ is supercompact and δ > κ is inaccessible then Vδ |=
“κ is supercompact.”

(d) Prove that if ZFC + “There is a supercompact cardinal” is consistent
then so is ZFC + “There is a supercompact cardinal that is not superstrong.”
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Hint. For (a) first show that κ is measurable in M , where j : V ≺ M
witnesses that κ is superstrong. Use this to show that κ, and hence, j(κ), is
a limit of measurable cardinals. For (c) use Theorem 6.2.1.

Exercise 6.2.2. Let κ be a regular cardinal. Assume that the set of Woodin
cardinals smaller than κ is stationary in κ. (See Exercise 3.2.7 for the defi-
nition of stationary.) Prove that κ is Woodin.

Exercise 6.2.3. Prove that every Woodin cardinal is Mahlo. (See Exer-
cise 3.2.7.)

Exercise 6.2.4. Let n ∈ ω and let κ be a cardinal number. Assume that
there is a j : V ≺ M such that M is transitive, crit (j) = κ, and Vj0,n+1(κ) ⊆
M . Prove that κ is n-huge.

Hint. The proof of the (1) ⇒ (2) part of Theorem 6.2.10 goes through
under our present hypotheses.

6.3 Equivalents of Woodinness

The main aim of this section is to prove a property of Woodin cardinals
(actually an equivalent of Woodinness) that will be the basis for our con-
structions in the determinacy proofs of Chapter 8 and to prove the technical
consequence of this property that is actually used in the constructions.

We begin by giving an equivalent of Woodinness that is very useful in
applications and that throws into clear relief the relation between Woodin
cardinals and strong cardinals.

If A is any class, κ is a cardinal, and η > κ is an ordinal, then κ is η-strong
in A if there is a j : V ≺M such that

(i) j witnesses that κ is η-strong;

(ii) j(A) ∩ Vη = A ∩ Vη.

The following fact was surely first noticed by Woodin.

Theorem 6.3.1. Let κ be any infinite cardinal number. The following are
equivalent:

(1) κ is Woodin.
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(2) (∀A⊆ Vκ)(∃δ < κ)(∀η)(δ < η < κ → δ is η-strong in A).

Proof. First suppose that κ satisfies (2). Let f : κ → κ. By (2) let δ < κ
be such that δ is η-strong in f (i.e. in graph (f)) for all η, δ < η < κ. For
β ≤ δ, let

ηβ = max {β, f(β)}+ 3

and let jβ : V ≺Mβ witness that δ is ηβ-strong in f . For any β ≤ δ, we have
that 〈β, f(β)〉 ∈ f ∩ Vηβ and so that 〈β, f(β)〉 ∈ jβ(f)∩ Vηβ . But this means
that

(∀β ≤ δ)(jβ(f))(β) = f(β) < ηβ.

Taking β = δ, we deduce that (jδ(f))(δ) < ηδ. Hence

V(jδ(f))(δ) ⊆ Vηδ ⊆Mηδ .

To show that δ and jδ witness that κ is Woodin for f , we need only prove
that δ is closed under f . For this, assume that β < δ. Then

f(β) = (jβ(f))(β) = (jβ(f))(jβ(β)) = jβ(f(β)).

But this implies that f(β) < δ, for if f(β) ≥ δ then jβ(f(β)) ≥ jβ(δ) > ηβ >
f(β).

Now we turn to the proof that (1) implies (2). This will be similar to the
proof of part (2) of Theorem 6.2.9, with one ingredient missing (the ordinal
β) and another ingredient added. Suppose that κ is Woodin. Let A ⊆ Vκ.
Assume that (2) fails for A. For α < κ let η(α) be the least η > α such that
α is not η-strong in A. For α < κ let

g(α) = max{η(α) + 1, |Vη(α)|}+ 1.

As with the analogous function in the proof of Theorem 6.2.9, we have that
g(α) ≥ α+ 2 for all α and that g : κ→ κ. Let δ < κ and j : V ≺M witness
that κ is Woodin for g. Let

λ = max{(j(η))(δ) + 1, |V(j(η))(δ)|}.

Let E be the (δ, λ)-extender derived from j. As in the proof of Theorem 6.2.9,
we get that E is an extender in M and that

V
Ult(M ;E)

(j(η))(δ) = V
Ult(V ;E)

(j(η))(δ) = V M
(j(η))(δ).
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To derive the contradiction that iE witnesses in M that δ is (j(η))(δ)-
strong in j(A), we need only show that

iME (j(A)) ∩ V M
(j(η))(δ) = j(A) ∩ V M

(j(η))(δ).

Let k : Ult(V ;E) ≺ M be defined as on page 330. Since (j(η))(δ) < λ,
Lemma 6.1.10 implies that (iE(η))(δ) = (j(η))(δ). (This is proved using
k just as we showed, in the proof of Theorem 6.2.7, that (iE(f))(κ) =
(j(f))(κ).) It follows that (j(η))(δ) < iE(δ) = (by Lemma 6.2.5) iME (δ).
Since A ∩ Vδ = j(A) ∩ Vδ, we have that iME (A) ∩ ViME (δ) = iME (j(A)) ∩ ViME (δ).
What we must prove is thus that

iME (A) ∩ V M
(j(η))(δ) = j(A) ∩ V M

(j(η))(δ).

By Lemma 6.1.10, k ◦ iE = j. By Lemma 6.1.11, k � V Ult(V ;E)
(j(η))(δ) is the identity.

If x ∈ V M
(j(η))(δ) then x ∈ V Ult(V ;E)

(j(η))(δ) and

x ∈ iE(A) ↔ k(x) ∈ k(iE(A)) ↔ x ∈ j(A).

We are thus finally reduced to showing that

iME (A) ∩ V M
(j(η))(δ) = iE(A) ∩ V M

(j(η))(δ).

But this follows from Lemma 6.2.5. �

The (1)⇒ (2) half of Theorem 6.3.1 isn’t the full “A-strong” analogue of
part (2) of Theorem 6.2.9. The latter says that a certain set is unbounded in
κ, while the former says only that the analogous set is non-empty. The full
analogue is nevertheless true. The next theorem records this fact.

Theorem 6.3.2. Let κ be any infinite cardinal number. The following are
equivalent:

(1) κ is Woodin.

(2) For all A ⊆ Vκ the set of cardinals δ < κ such that

(∀η)(δ < η < κ → δ is η-strong in A)

is unbounded in κ.



6.3. EQUIVALENTS OF WOODINNESS 353

Proof. That (2) implies (1) follows from Theorem 6.3.1. That (1) implies
(2) can be demonstrated by a routine combination of the proofs of the cor-
responding half of Theorem 6.3.1 and part (2) of Theorem 6.2.9. We leave
this to the reader. �

Remark. Theorem 6.3.2 remains true if “unbounded” is replaced by “sta-
tionary” in its statement. See Exercise 6.3.1. The hint for that exercise also
indicates a way to prove (2) of Theorem 6.3.2 directly from (2) of Theo-
rem 6.3.1.

From now through Theorem 6.3.8, we will be showing that Woodinness of
κ is witnessed by embeddings coming from extenders in Vκ, extenders whose
ultrapowers may be taken to have certain closure properties. These results
are pretty routine, but they should be attributed to Woodin if to anyone.

We begin with the following fact, which gives another useful strengthening
of (2) of Theorem 6.3.1.

Theorem 6.3.3. Let κ be a strong limit cardinal. Let A ⊆ κ. Let δ < η < κ
be such that δ is η-strong in A. Then there is an extender E ∈ Vκ such that
iE witnesses that δ is η-strong in A.

Proof. Let j : V ≺ M witness that δ is η-strong in A. Let E be the
(δ, |Vη+1|)-extender derived from j. Lemma 6.1.11 implies that V

Ult(V ;E)
η =

V M
η and gives the first and third equalities of the following chain.

iE(A) ∩ Vη = k(iE(A) ∩ Vη)
= k(iE(A)) ∩ k(Vη)

= k(iE(A)) ∩ Vη
= j(A) ∩ Vη
= A ∩ Vη.

Here k is as usual. �

Remark. The proof of the (1) ⇒ (2) part of Theorem 6.3.1 could have
been simplified very slightly if we had, in analogy with the proof of The-
orem 6.3.3, defined λ as |V(j(η))(δ)+1|. We chose instead to keep a closer
correspondence with the proof of Theorem 6.2.9.

Theorem 6.3.4. Let κ be Woodin and let f : κ → κ. There is an extender
E ∈ Vκ such that crit (iE) and iE witness that κ is Woodin for f .
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Proof. As in the first half (the (2)⇒ (1) half) of the proof of Theorem 6.3.1,
let A = f . Also let δ, η, and j : V ≺M be as in the first half of the proof of
Theorem 6.3.1. By Theorem 6.3.3, let E be an extender in Vκ such that iE
witnesses that δ is η-strong in A. The first half of the proof of Theorem 6.3.1
shows that crit (iE) and iE witness that κ is Woodin for f . �

Corollary 6.3.5. Let κ be Woodin and let M be a transitive class model of
ZFC such that Vκ ⊆M . Then M |= “κ is Woodin.”

Proof. The corollary follows easily from Theorem 6.3.4 or from Theo-
rems 6.3.1 and 6.3.3. �

In Chapter 9 we will need to know that we can demand, of δ and j : V ≺
M witnessing Woodinness of a cardinal κ, that <δM ⊆ M . In fact, we can
demand even that δM ⊆ M . In order to prove this, we need the following
lemma.

Lemma 6.3.6. Let E be a (δ, λ)-extender such that δλ ⊆ Ult(V ;E). Then
δUlt(V ;E) ⊆ Ult(V ;E).

Proof. Let 〈xβ | β < δ〉 be elements of M . For β < δ let πE([[aβ, fβ]]) =
xβ. The hypothesis that δλ ⊆ Ult(V ;E) implies that δ([λ]<ω) ⊆ Ult(V ;E).
Hence 〈aβ | β < δ〉 ∈ Ult(V ;E). Define g : <δ([δ]<ω) → V whose values are
functions as follows. For h ∈ <δ([δ]<ω), set

(i) domain (g(h)) = domain (h);

(ii) (g(h))(β) = fβ(h(β)) for all β ∈ domain (h).

The function 〈aβ | β < δ〉 belongs to domain (iE(g)). Thus

domain ((iE(g))(〈aβ | β < δ〉)) = δ

and, for all β < δ, Lemma 6.1.12 gives that

((iE(g))(〈aβ | β < δ〉))(β) = (iE(fβ))(aβ)

= πE([[aβ, fβ]])

= xβ.

Thus (iE(g))(〈aβ | β < δ〉) = 〈xβ | β < δ〉. �
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Theorem 6.3.7. Let κ be inaccessible. Let A ⊆ κ. Let δ < κ be such that,
for all η such that δ < η < κ, δ is η-strong in A. Then, for all η such that
δ < η < κ, there is an extender E ∈ Vκ such that iE witnesses that δ is
η-strong in A and such that δUlt(V ;E) ⊆ Ult(V ;E).

Proof. Let δ < η < κ. Let λ be a strong limit cardinal of cofinality > δ
such that η ≤ λ < κ. By Theorem 6.3.3, let Ê ∈ Vκ be an extender such that
iÊ witnesses that δ is λ-strong in A. Let E be the (δ, λ)-extender derived
from iÊ. Lemma 6.1.11 implies that Vλ ⊆ Ult(V ;E) and implies that iE
witnesses that δ is λ-strong, and therefore η-strong, in A. (See the proof
of Lemma 6.3.3.) Since cf(λ) > δ, we have that δλ ⊆ Vλ ⊆ Ult(V ;E). By
Lemma 6.3.6, we get that δUlt(V ;E) ⊆ Ult(V ;E). �

Theorem 6.3.8. Let κ be a Woodin cardinal and let f : κ→ κ. There is an
extender E ∈ Vκ such that δ = crit (iE) and E witness that κ is Woodin for
f and such that δUlt(V ;E) ⊆ Ult(V ;E).

Proof. The proof is just like that of Theorem 6.3.4, except that we apply
Theorem 6.3.7 instead of Theorem 6.3.3. �

We now turn to an equivalent of Woodinness that is rather technical but
that will play a central role in the constructions of Chapter 8. The definitions
and results that follow are, with minor changes, from [Martin and Steel, 1988]
and [Martin and Steel, 1989].

For ordinals α, β, and γ ≥ α, let Lαγ,β be the result of adding to the
language of set theory a constant ca for each element a of Vα and, if β > 0,
a constant d. Let Vαγ,β be the expansion of the model (Vγ+β;∈) gotten by
interpreting each ca by a and, if β > 0, d by γ. For z ∈ <ω(Vγ+β), let tpαγ,β(z)
be the type realized by z in Vαγ,β, i.e. let

tpαγ,β(z) = {ϕ(v1, . . . , v`h(z)) ∈ Lαγ,β | Vαγ,β |= ϕ[z]}.

We want to think of the objects tpαγ,β(z) as sets, so let us choose a way
of so representing them. Let the symbols of the language of set theory be
the odd natural numbers in some reasonable order. Let the constant d be 0.
For sets a let ca be a itself unless a ∈ ω; for a ∈ ω let ca be 2a+ 2. It would
be natural to take formulas simply to be finite sequences of symbols. We
do not do so, for we would like to make the formulas of Lαγ,β be members of
Vα for each infinite α, but <ω(Vα) ⊆ Vα only for limit α. Instead we choose
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an injection f : <ωV → V with the property that f ′′(<ω(Vα)) ⊆ Vα for all
infinite α, and we let the formula corresponding to a sequence s of symbols
be f(s). To be explicit, let f � <ω(Vω) be the identity and, for α ≥ ω and
s = 〈sn | n < `h(s)〉 ∈ <ω(Vα+1) \ <ω(Vα), let

f(s) = {f(〈n, y〉) | n < `h(s) ∧ y ∈ sn}.

It is easy to check that this f is one-one and that the rank of f(s) is the
maximum of the rank (sn), n < `h(s), for all s of infinite rank. Thus we have,
for all ordinals γ and β and all z ∈ <ω(Vγ+β),

(∀α)(ω ≤ α ≤ γ → tpαγ,β(z) ⊆ Vα);
(∀α)(∀α∗)(ω ≤ α ≤ α∗ ≤ γ → tpα

∗

γ,β(z) ∩ Vα = tpαγ,β(z)).

For ordinals β, limit ordinals γ, cardinals δ < γ, and elements z of
<ω(Vγ+β), we say that δ is β-reflecting in z relative to γ if

(∀η)(δ < η < γ → δ is η-strong in tpγγ,β(z)).

Theorem 6.3.9. Let κ be a cardinal. The following are equivalent.

(1) κ is Woodin.

(2) For all ordinals β and for all z ∈ <ω(Vκ+β), the set of all δ < κ such
that δ is β-reflecting in z relative to κ is unbounded in κ.

(3) For all z ∈ <ω(Vκ+1), there is a δ < κ such that δ is 1-reflecting in
z relative to κ.

Proof. (1) implies (2) by Theorem 6.3.2. (2) trivially implies (3). Thus we
need only show that (3) implies (1). Assume then that κ satisfies (3). Let
f : κ→ κ. Let δ be 1-reflecting in 〈f〉 relative to κ. Let α < κ be such that

α > max{δ, sup{f(ξ) | ξ ≤ δ}}.

Let j : V ≺M witness that δ is α-strong in tpκκ,1(〈f〉). Thus

(tpαj(κ),1)M(〈j(f)〉) = (tp
j(κ)
j(κ),1)M(〈j(f)〉) ∩ V M

α

= j(tpκκ,1(〈f〉)) ∩ Vα
= tpκκ,1(〈f〉) ∩ Vα
= tpακ,1(〈f〉).
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Let ξ ≤ δ and let γ = f(ξ). Then both ξ and f(ξ) are smaller than α
and so belong to Vα. The fact that γ = f(ξ) is thus expressed by a member
of tpακ,1(〈f〉). Hence the same member of tpαj(κ),1(〈j(f)〉) expresses the fact

that (j(f))(ξ) = γ. It follows that

(j(f))(ξ) = f(ξ) < α.

For ξ < δ this gives us that (j(f))(ξ) < α < j(δ) and so that f(ξ) < δ. Thus
δ is closed under f . For ξ = δ we get that V(j(f))(δ) ⊆ Vα ⊆ M . Therefore j
witnesses that κ is Woodin for f . �

Theorem 6.3.10. Let κ be a strong limit cardinal, let δ < κ be a cardinal,
let β be an ordinal, and let z ∈ <ω(Vκ+β). Then δ is β-reflecting in z relative
to κ if and only if for all α such that δ < α < κ there is an extender E ∈ Vκ
such that

(a) crit (iE) = δ;

(b) strength (E) ≥ α (i.e. Vα ⊆ Ult(V ;E));

(c) α < iE(δ);

(d) tpακ,β(z) = (tpαiE(κ),iE(β))
Ult(V ;E)(iE(z)).

Proof. The theorem follows easily from Theorem 6.3.3. �

If κ is inaccessible and E is an extender belonging to Vκ, then iE(κ) = κ.
Thus we have

Corollary 6.3.11. Theorem 6.3.10 remains true if “κ is a strong limit car-
dinal” is replaced by “κ is inaccessible” and clause (d) is replaced by

(e) iE(κ) = κ ∧ tpακ,β(z) = (tpακ,iE(β))
Ult(V ;E)(iE(z)).

Lemma 6.3.12. Let n ∈ ω. There is a formula TYPEn(v1, . . . , vn+4) of the
language of set theory such that, for all α, β, γ, α′, and β′ with

ω ≤ α′ < α ≤ γ ∧ β′ < β,

for all z ∈ n(Vγ+β′), and for all a ∈ Vα,

a = tpα
′

γ,β′(z)
↔ Vγ+β |= TYPEn[z_〈β′, a, α′, γ〉]
↔ TYPEn(v1, . . . , vn+1, ca, cα′ , d) ∈ tpαγ,β(z_〈β′〉).

Thus tpα
′

γ,β′(z) is identified by a single element of tpαγ,β(z_〈β′〉).
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The proof is routine, and we omit it.

Lemma 6.3.13. Let n ∈ ω. There is a formula REFLn(v1, . . . , vn+3) of the
language of set theory such that, for all κ, δ, β, β′, and z such that κ is a
strong limit cardinal, δ < κ, β′ < β, and z ∈ n(Vκ+β′),

δ is β′-reflecting in z relative to κ
↔ Vκ+β |= REFLn[z_〈β′, δ, κ〉]
↔ REFLn(v1, . . . , vn+1, cδ, d) ∈ tpδ+1

κ,β (z_〈β′〉).

Proof. The construction of REFLn is a straightforward application of The-
orem 6.3.10, except perhaps for the matter of clause (d) from that theorem.
We have to say, for a (δ, λ)-extender E ∈ Vκ,

tpακ,β′(z) = (tpαiE(κ),iE(β′))
Ult(V ;E)(iE(z))

by a formula of Lδ+1
κ,β , using the parameters β′, z, κ, α, E, δ, and λ. What

our formula must say can be rephrased as

For all a ∈ <ω(Vα) and for every formula ϕ(v1, . . . , v`h(z)+`h(a)+1)
of the language of set theory,

Vκ+β′ |= ϕ[z_a_〈κ〉] ↔ V
Ult(V ;E)
iE(κ)+iE(β′) |= ϕ[iE(z)_a_〈iE(κ)〉].

(For uniformity of notation, we are dealing only with the case β′ > 0.) Here
the only problem is with the second part of the biconditional, which can be
rephrased as

There are b ∈ [λ]<ω and f : [δ]`h(b) → Vδ such that a = πE([[b, f ]]E)
and

{x ∈ [δ]`h(b) | Vκ+β′ |= ϕ[z_f(x)_〈κ〉]} ∈ Eb.

This is easily expressible by a formula of Lδ+1
κ,β . �

The property of being β-reflecting in z is preserved by “decreasing” z
but not by decreasing β. Suppose that δ is β-reflecting in z relative to γ.
If z′ is a subsequence of the finite sequence z, then it clearly follows that δ
is β-reflecting in z′ relative to γ. On the other hand, it is not necessarily
true that if β′ < β and z ∈ <ω(Vγ+β′) then δ is β′-reflecting in z relative to
γ. (For γ Woodin, one can get a counterexample with β = κ and z = ∅,
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using the fact that no δ can be δ-reflecting in ∅ relative to γ.) If, however, δ
is also β-reflecting in z_〈β′〉 relative to γ, then it does follow easily that it
is β′-reflecting in z. In particular, this is the case if β′ is definable in Vγ+β

from elements of Vγ ∪ {γ}, for then tpαγ,β(z_〈β′〉) is, for all sufficiently large
α < γ, determined by tpαγ,β(z). The following theorem gives an additional
consequence of the assumption that δ is β-reflecting in z_〈β′〉 relative to γ,
when γ is a strong limit cardinal.

Theorem 6.3.14. Let κ be a strong limit cardinal, let β and β′ < β be
ordinals, let z ∈ <ω(Vκ+β′), and let δ < κ be β-reflecting in z_〈β′〉 relative
to κ. Then the set of δ′ < κ such that δ′ is β′-reflecting in z relative to κ is
unbounded in κ.

Proof. As we remarked above, the hypothesis of the theorem implies that
δ is β′-reflecting in z relative to κ. Let δ < α < κ. Let j : V ≺ M witness
that δ is α + 1-strong in tpκκ,β(z_〈β′〉). Then j(δ) > α and

M |= “j(δ) is j(β′)-reflecting in j(z) relative to j(κ).”

Thus by Lemma 6.3.13,

V M
j(κ)+j(β) |= REFL`h(z)[j(z)_〈j(β′), j(δ), j(κ)〉].

From this and the fact that j(κ) > j(δ) > α it follows directly that V M
j(κ)+j(β)

satisfies

(∃v`h(z)+2) (d > v`h(z)+2 > v`h(z)+4 ∧ REFL`h(z))[j(z)_〈j(β′), j(κ), α〉],

where α is assigned to v`h(z)+4. Hence

(∃v`h(z)+2)(d > v`h(z)+2 > cα ∧ REFL`h(z)(v1, . . . , v`h(z)+2, d))

belongs to (tpα+1
j(κ),j(β))

M(j(z)_〈j(β′)〉). But then this formula also belongs to

tpα+1
κ,β (z_〈β′〉), and so there is a δ′ such that κ > δ′ > α and δ′ is β′-reflecting

in z relative to κ. �

We will not make any direct use of Theorem 6.3.14. In our constructions
κ will be Woodin, and therefore (2) of Theorem 6.3.9 will give us anything
we could get from Theorem 6.3.14.



360 CHAPTER 6. WOODIN CARDINALS

The remainder of this section will be devoted to establishing a technical
lemma that will be directly used in Chapter 8.

If X and Y are classes and α is an ordinal, let us say that X and Y agree
through α if X ∩ Vα = Y ∩ Vα.

Suppose that M and N are transitive class models of ZFC and that M
and N agree through κ + 1. Suppose that E ∈ M is a (κ, λ)-extender in M
for some λ. Then we can define an ultrapower

N∏
E

(N ;∈)

of N with respect to E. The universe of this ultrapower is

{[[a, f ]]NE | 〈a, f〉 ∈ D
N
E },

where
DNE = {〈a, f〉 | a ∈ [λ]<ω ∧ f ∈ N ∧ f : [κ]|a| → N}.

The relation of
∏N

E (N ;∈), which we call ∈NE , is given by

[[a, f ]]NE ∈
N
E [[b, g]]NE ↔ {z ∈ [κ]|a∪b| | f(za,a∪b) ∈ g(zb,a∪b)} ∈ Ea∪b.

It is easy to check that  Loś’ Theorem generalizes to such ultrapowers:

Theorem 6.3.15. Let M , N , E, κ, and λ be as in the preceding two para-
graphs. Let ϕ(v1, . . . , vn) be any formula of the language of set theory. Let
〈a1, f1〉, . . . , 〈an, fn〉 be elements of DNE . Let b =

⋃
1≤i≤n ai. Then∏N

E (N ;∈) |= ϕ[[[a1, f1]]NE , . . . , [[an, fn]]NE ] ↔
{z ∈ [κ]|b| | (N ;∈) |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb.

Thus we get a canonical (i′)NE : (N ;∈) ≺
∏N

E (N ;∈).
It is also easy to prove that Lemma 3.2.9 generalizes to these ultrapowers:

Lemma 6.3.16. Let M , N , and E be as above. Then
∏N

E (N ;∈) is set-like.

Unfortunately wellfoundedness does not in general hold. In the next sec-
tion we will prove wellfoundedness for important special cases. If

∏N
E (N ;∈)

is wellfounded, let us denote by Ult(N ;E) the unique transitive class N ′ such
that

∏N
E (N ;∈) ∼= (N ′;∈) and let us denote by πNE the unique isomorphism.

In this case we get as usual the canonical

iNE : N ≺ Ult(N ;E),

given by iNE = πNE ◦ (i′)NE .
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Lemma 6.3.17. Let M be a transitive class model of ZFC. Let E be a (κ, λ)-
extender in M . Let ζ ≥ κ be an ordinal of M . Let N be a transitive class
model of ZFC such that M and N agree through ζ+1. Assume that

∏N
E (N ;∈)

is wellfounded. Then

(a) If a ∈ [λ]<ω and f : [κ]|a| → (ζ+)M ∪ V M
ζ+1, then

πME ([[a, f ]]ME ) = πNE ([[a, f ]]NE );

(b) (∀α)(α ≤ (ζ+)M → iME (α) = iNE (α)); in particular, iME (κ) = iNE (κ);

(c) Ult(M ;E) and Ult(N ;E) agree through iME (ζ)+1; in particular, they
agree through iME (κ) + 1.

Proof. For n ∈ ω, the models M and N have exactly the same functions
f : [κ]n → (ζ+)M ∪ V M

ζ+1 (= (ζ+)N ∪ V N
ζ+1). (See the proof of Lemma 6.2.5.)

This implies (a), from which (b) and (c) follow. �

Remark. Parts (b) and (c) of Lemma 6.3.17 are analogous to parts (ii)
and (iii) of Lemma 6.2.5. The analogue of (a) is true in the case of the earlier
lemma; we simply didn’t bother to state it as part of the lemma.

The technical lemma that follows is called the “One-Step Lemma” in
[Martin and Steel, 1989], and we will use the same name for it here. It will
be used in Chapter 8. Readers may want to skip it and return to it when its
use is imminent. For those who do not skip it, the remarks after its proof
may be of some help in understanding it.

Lemma 6.3.18 (One-Step-Lemma) Let M and N be transitive class mod-
els of ZFC. Let κ ∈ M ∩ N be inaccessible in V and Woodin in M . Let δ
and η be ordinals such that δ ≤ η < κ. Let β and ξ < β be ordinals of M .
Let β′ be an ordinal of N . Let x and y belong to <ω(V M

κ+β) and let x′ belong
to <ω(V N

κ+β′) with `h(x′) = `h(x). Let χ(v) be a formula of the language of
set theory. Suppose that

(1) M and N agree through δ + 1;

(2) (tpδκ,β)M(x) = (tpδκ,β′)
N(x′);

(3) δ is β-reflecting in x relative to κ in M ;

(4) V M
κ+β |= χ[ξ].
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Then there are a λ < κ and an E such that E is a (δ, λ)-extender in M
and such that either (a)

∏N
E (N ;∈) is illfounded or (b) there are δ∗, ξ∗, and

y∗ such that η < δ∗ < iNE (δ) < κ, ξ∗ < iNE (β′), iNE (x′) and y∗ both belong to
<ω(V

Ult(N ;E)
κ+ξ∗ ), and

(1∗) Ult(N ;E) and M agree through δ∗ + 1;

(2∗) (tpδ
∗

κ,ξ∗)
Ult(N ;E)(iNE (x′)_y∗) = (tpδ

∗

κ,ξ)
M(x_y);

(3∗) δ∗ is ξ∗-reflecting in iNE (x′)_y∗ relative to κ in Ult(N ;E);

(4∗) V
Ult(N ;E)

κ+iNE (β′)
|= χ[ξ∗].

Furthermore, let α be any ordinal of Ult(N ;E) and let z be any element

of <ω(V
Ult(N ;E)
κ+α ) such that

(tpδ
∗+1
κ,α )Ult(N ;E)(z) = (tpδ

∗+1
κ,iNE (β′)

)Ult(N ;E)(iNE (x′)).

Then there are ξ̂ and ŷ such that ξ̂ < α, ŷ ∈ <ω(V
Ult(N ;E)

κ+ξ̂
), and

(2̂) (tpδ
∗

κ,ξ̂
)Ult(N ;E)(z_ŷ) = (tpδ

∗

κ,ξ)
M(x_y);

(3̂) δ∗ is ξ̂∗-reflecting in z_ŷ relative to κ in Ult(N ;E);

(4̂) V
Ult(N ;E)
κ+α |= χ[ξ̂].

Proof. By Theorem 6.3.9, let δ∗ be such that η < δ∗ < κ and δ∗ is ξ-
reflecting in x_y in M . By (3) and Corollary 6.3.11, let λ < κ and E be such
that E is a (δ, λ)-extender in M , strengthM(E) ≥ δ∗ + 1, iME (κ) = κ, and

(tpδ
∗+1
κ,iME (β)

)Ult(M ;E)(iME (x)) = (tpδ
∗+1
κ,β )M(x).

Assume that
∏N

E (N ;∈) is wellfounded, since otherwise there is nothing
to prove. Note that the inaccessibility of κ in V guarantees that iNE (κ) = κ.

Ult(M ;E) and M agree through δ∗ + 1. By hypothesis (1) and part (c)
of Lemma 6.3.17, Ult(N ;E) and Ult(M ;E) also agree through δ∗ + 1. Thus
we have (1∗).

Before choosing ξ∗ and y∗, let us prove that

(tpδ
∗+1
κ,iNE (β′)

)Ult(N ;E)(iNE (x′)) = (tpδ
∗+1
κ,β )M(x).
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For this it is enough to show that

(tpδ
∗+1
κ,iNE (β′)

)Ult(N ;E)(iNE (x′)) = (tpδ
∗+1
κ,iME (β)

)Ult(M ;E)(iME (x)).

Let ϕ(v1, . . . , v`h(x)+n+1) be a formula of the language of set theory and let

b = 〈b1, . . . , bn〉 ∈ n(V
Ult(M ;E)
δ∗+1 ). For 1 ≤ j ≤ n let 〈aj, fj〉 be such that

bj = πME ([[aj, fj]]
M
E ). Letting a =

⋃
1≤j≤n aj and replacing each fj by f

aj ,a
j ,

we may assume that each aj = a and so that each bj = πME ([[a, fj]]
M
E ). Since

δ∗ < strengthM(E) ≤ λ < iME (δ), we may assume that each fj : [δ]|a| →
Vδ. By part (a) of Lemma 6.3.17, bj = πNE ([[a, fj]]

N
E ) for 1 ≤ j ≤ n. By

Theorem 6.3.15 and hypothesis (2),

ϕ(v1, . . . , v`h(x), cb1 , . . . , cbn , d) ∈ (tpδ
∗+1
κ,iNE (β′)

)Ult(N ;E)(iNE (x′))

↔ {z ∈ [κ]|a| | ϕ(v1, . . . , v`h(x), cf1(z), . . . , cfn(z), d) ∈ (tpδκ,β′)
N(x′)} ∈ Ea

↔ {z ∈ [κ]|a| | ϕ(v1, . . . , v`h(x), cf1(z), . . . , cfn(z), d) ∈ (tpδκ,β)M(x)} ∈ Ea
↔ ϕ(v1, . . . , v`h(x), cb1 , . . . , cbn , d) ∈ (tpδ

∗+1
κ,iME (β)

)Ult(M ;E)(iME (x)).

Next we turn to the choice of ξ∗ and y∗. Let

A = (tpδ
∗

κ,ξ)
M(x_y).

Let ψ(v1, . . . , v`h(x)+`h(y)+1) be the formula of (Lδ∗+1
κ,β )M given as follows:

v`h(x)+`h(y)+1 ∈ Ord
∧ TYPE`h(x)+`h(y)(v1, . . . , v`h(x)+`h(y)+1, cA, cδ∗ , d)
∧ REFL`h(x)+`h(y)(v1, . . . , v`h(x)+`h(y)+1, cδ∗ , d)
∧ χ(v`h(x)+`h(y)+1).

The finite sequence y and the ordinal ξ witness that

(∃v`h(x)+1) · · · (∃v`h(x)+`h(y)+1)ψ(v1, . . . , v`h(x)+`h(y)+1)

belongs to (tpδ
∗+1
κ,β )M(x). Thus this formula also belongs to

(tpδ
∗+1
κ,iNE (β′)

)Ult(N ;E)(iNE (x′)).

If we let y∗ and ξ∗ witness this, then (2∗), (3∗), and (4∗) hold.
For the second part of the conclusion of the lemma, let α and z be as in

the hypotheses. Then the formula above also belongs to (tpδ
∗+1
κ,α )Ult(N ;E)(z).

Let ŷ and ξ̂ witness this. �
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Remarks:

(a) The lemma does not assert that
∏N

E (N ;∈) is wellfounded; indeed the
lemma is vacuously satisfied by an E such that this ultrapower is illfounded.
In our applications, we will be able to prove wellfoundedness. Since a long-
enough initial part of

∏N
E (N ;∈) is always wellfounded, we could have formu-

lated the lemma so that it would have had real content independently of full
wellfoundedness. In [Martin and Steel, 1989] the problem of wellfoundedness
is handled in a different way, by an assumption that M and N are countably
closed.

(b) The hypothesis that κ is inaccessible in V was included for its nota-
tionally simplifying consequence that iNE (κ) = κ.

(c) It will be crucial in our applications of the lemma to know that κ is
Woodin in Ult(N ;E), for we will want to apply the lemma iteratively. In
fact, it follows from the hypotheses of the Lemma that κ is Woodin in N .
(See Exercise 6.3.5.) This implies that it is Woodin in Ult(N ;E). In our
applications κ will be a Woodin cardinal in V , and there will be an elemen-
tary embedding of V into N that fixes κ. Hence we will know immediately
(without Exercise 6.3.5) that κ is Woodin in N and so in Ult(N ;E).

(d) The ordinal δ∗ is larger than the given δ. In fact, the arbitrariness
of η < κ means that it can be made as large as one wants, subject to being
smaller than κ. On the other hand, the ordinal ξ is smaller than the given β.
This will give us problems, though not insurmountable ones, in generating
an infinite sequence of applications of the lemma. Of course ξ∗ need not be
smaller that β, but there is no obvious way to make use of this.

(e) The pair of clauses (4) and (4∗) will be needed for technical reasons in
the applications. The lemma could be strengthened by allowing the formula
χ in (4) to be any element of (tpδκ,β)M(x_y) and demanding in (4∗) that

χ ∈ (tpδ
κ,iNE (β′)

)Ult(N ;E)(iNE (x′)_y∗).

(f) The second part of the lemma was not used in [Martin and Steel, 1989].
Using it will allow us to avoid a good deal of work that was done in that
paper. (Nevertheless, we will do the work, in §8.3.)

Exercise 6.3.1. Let κ be Woodin. Prove that for all A ⊆ Vκ the set of
cardinals δ < κ such that

(∀η)(δ < η < κ → δ is η-strong in A)
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is stationary in κ. (See Exercise 3.2.7 for the definition of “stationary.”)

Hint. One way to proceed is to modify the proof of the (1) ⇒ (2) half of
Theorem 6.3.1. Another way is to argue directly from (2) of Theorem 6.3.1,
using the following fact: If j : V ≺ M , crit (j) = δ, and C ∩ δ is bounded in
δ, then j(C) ∩ j(δ) ⊆ δ.

Exercise 6.3.2. Use Corollary 6.3.5 to show that if there is a Woodin car-
dinal then the least Woodin cardinal is not measurable.

Exercise 6.3.3. Prove that a cardinal κ is Woodin if and only if for all
A ⊆ Vκ there is a δ < κ such that, for every η with δ < η < κ,

(∃j : V ≺M)(M is transitive ∧ crit (j) = δ ∧ j(A) ∩ Vη = A ∩ Vη).

Note that the displayed statement would say that δ is η-strong in A if we
added the condition that Vη ⊆M .

Exercise 6.3.4. Suppose that κ is a strong limit cardinal and that δ < κ is
0-reflecting in ∅ relative to κ. Show that Vδ ≺ Vκ.

Hint. If Vκ |= (∃v)ψ(v), then there is an α < κ and an x ∈ Vα such that
Vκ |= ψ[x]. Get j : V ≺M from the hypothesis about δ. Note that x ∈ V M

j(δ).

Exercise 6.3.5. Assume the hypotheses of Lemma 6.3.18. Prove that κ is
Woodin in N . (The only hypotheses actually needed are that κ is Woodin
in M , that β > 0, and the consequence of (2) that

(tp0
κ,β)M(∅) = (tp0

κ,β′)
N(∅).)

Exercise 6.3.6. Call a (δ, λ)-extender E strong if δ + 1 < strength (E) =
λ < iE(δ). Let κ be Woodin. Say that a set E of extenders strongly witnesses
that κ is Woodin if

(i) E ⊆ Vκ;

(ii) each E ∈ E is strong;

(iii) for every A ⊆ Vκ and for every η < κ, there are a δ < κ and an
E ∈ E such that iE witnesses that δ is η-strong in A.

Prove that there is an E strongly witnessing that κ is Woodin. (Of course,
the set of all strong extenders that belong to Vκ works if any E does.)
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Exercise 6.3.7. The following construction and the results of this and the
next exercise are due to Woodin.

Let ¬,
∨

, and an, n ∈ ω, be distinct sets, say natural numbers. The class
of ∞-Borel codes is the smallest class satisfying the following conditions.

(a) For each n ∈ ω, an is an ∞-Borel code.

(b) If c is a ∞-Borel code, then 〈¬, c〉 is an ∞-Borel code.

(c) If β is an ordinal and cα, α < β, are ∞-Borel codes, then 〈
∨
, 〈cα |

α < β〉〉 is an ∞-Borel code.

We write ¬ c for 〈¬, c〉, and we write
∨
〈cα | α < β〉 for 〈

∨
, 〈cα | α < β〉〉

We associate with each ∞-Borel code c a subset Bc of ω2 inductively as
follows:

Ban = {x ∈ ω2 | x(n) = 1};
B¬c = ω2 \Bc;

B∨
〈cα|α<β〉 =

⋃
α<β

Bcα .

Let C be the class of all ∞-Borel codes. If I ⊆ C×C and x ∈ ω2, then
I is x-consistent if

(∀c ∈C)(∀c′ ∈C)(〈c, c′〉 ∈ I → (x ∈ Bc ↔ x ∈ Bc′)).

If B is a complete Boolean algebra and if τ : {an | n ∈ ω} → B, then there
is an obvious way to extend τ to τ ∗ : C → B (as in the example above
with B = P(ω2)). Say that τ : {an | n ∈ ω} → B respects I if whenever
〈c, c′〉 ∈ I then τ ∗(c) = τ ∗(c′). (Thus an 7→ {x | x(n) = 1} respects I if and
only if I is x-consistent for every x ∈ ω2.)

Let I ⊆ C × C. For ∞-Borel codes c and c′, define c ∼I c′ to hold
if, for every complete Boolean algebra B and every τ : {an | n ∈ ω} → B,
if τ respects I then τ ∗(c) = τ ∗(c′). (One can also define ∼I by transfinite
induction, using the laws of complete Boolean algebras.) It is evident that
∼I is an equivalence relation. For c ∈ C, let [[c]]I be the equivalence class of c
with respect to I, fixed up à la Scott to make it a set. Let C(I) be the class
of all [[c]]I . If C(I) has more than one element (as it will if I is x-consistent
for some x ∈ ω2), then C(I) is a complete Boolean (class) algebra under
the obvious complement and join operations. If I is x-consistent for every
x ∈ ω2, then [[c]]I 7→ Bc is a complete homomorphism of C(I) onto P(ω2).
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For any set E of extenders, we define a set IE of pairs of elements of C. A
pair belongs to IE only if this is required by the following. Let E ∈ E . Let E
be a (δ, λ)-extender. Let cα, α < δ, be ∞-Borel codes belonging to Vδ. Let

iE(〈cα | α < δ〉) = 〈ĉα | α < iE(δ)〉.

(Note that ĉα = cα for α < δ.) All the ĉα are ∞-Borel codes. If ĉδ ∈ Vλ,
then 〈∨

〈cα | α < δ〉,
∨
〈ĉα | α ≤ δ〉

〉
∈ IE .

(a) Prove that IE is x-consistent for every x ∈ ω2.

Suppose κ is Woodin. Let E be a collection of extenders strongly wit-
nessing that κ is Woodin. (See exercise 6.3.6.)

(b) Prove that C(IE) is a set of size κ and, as a Boolean algebra, has the
κ-chain condition.

Hint. Let Cκ = C ∩ Vκ. Let Cκ(IE) be the corresponding Boolean sub-
algebra of C(IE). It suffices to prove that Cκ(IE) has the κ-chain condition.
To prove this, use the fact that E strongly witnesses that κ is Woodin.

Exercise 6.3.8. Let E be a set of extenders. Let M be a transitive class
model of ZFC with E ∈ VOrdM . Note that CM = C ∩ M . For E ∈ E
with E = 〈Ea | a ∈ [λ]<ω〉, let E � M = 〈Ea ∩ M | a ∈ [λ]<ω〉. Let
E �M = {E �M | E ∈ E}. Suppose that E �M ∈M and that E �M strongly
witnesses in M that κ is Woodin. In M we have the algebra (CM(IME�M))M .
Let PM

E�M be the partially ordered set (CM(IME�M))M \ {0}. Let x ∈ ω2.
Attempt to define Gx ⊆ PM

E�M by

[[c]]M(∼IME�M
)M ∈ Gx ↔ x ∈ Bc,

where Bc is as in Exercise 6.3.7. Prove that Gx is well-defined and is PM
E�M -

generic over M and that M [Gx] = M [x].

Hint. Use an absoluteness argument to show that

(∼IME�M )M =∼IME�M � CM .

(This is perhaps easier using the inductive definition of ∼I .) It follows that
(CM(IME�M))M is an M -complete subalgebra of C(IME�M).
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Next observe that
IME�M = IE ∩M.

This implies, by part (a) of Exercise 6.3.7, that IME�M is y-consistent in V
for every y ∈ ω2. In particular, IME�M is x-consistent in V . Thus, in V , a
complete homomorphism σ : C(IME�M)→ {0,1} is given by

σ([[c]]∼IME�M
) = 1 ↔ x ∈ Bc.

The restriction of σ to (CM(IME�M))M is thus an M -complete homomorphism.
The preimage of {1} is just Gx.



Chapter 7

Iteration Trees

In this chapter, which can be read immediately after §6.1 if one is will-
ing to refer back to Chapter 6 for one or two definitions, we introduce
and prove some basic results about the main technical tool of the deter-
minacy proofs of Chapter 8. This material comes from Martin–Steel [1988],
[Martin and Steel, 1989], and [Martin and Steel, 1994]. Our treatment will
follow that of [Martin and Steel, 1994], which is a bit more general than that
of the other two papers.

Iteration trees are a generalization of iterated ultrapowers, which we stud-
ied in §3.3. They are more general in three ways: (1) The individual ultra-
powers are with respect to extenders and not just ultrafilters. (2) The indi-
vidual ultrapowers are not all with respect to images of the same ultrafilter
or extender. (3) The iteration is not linear, but has a tree structure, and the
individual ultrapowers are of models at one node of the tree but with respect
to extenders in models at possibly different nodes.

In fact we have already introduced an even wider generalization of type (1).
In §3.3 we defined transfinite iterations of an arbitrary elementary embedding
j : V ≺M .

Before considering iterations with all three properties, we will consider,
in §1, those with properties (1) and (2). Iterations with property (2) were
first used in [Kunen, 1970], and [Mitchell, 1979] introduced iterations which
essentially also had property (1)

In §2 we introduce iteration trees. In §3 we study finite iteration trees,
and in §4 we study those of length ω. The definitions and results in the text
of §2–§4 are almost all from [Martin and Steel, 1994], though—in order to
avoid continually citing the paper—we will mostly omit explicitly citation.
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7.1 Internal Iterations

Most of the business of this chapter will be proving that the direct limit
models of various iterations are wellfounded. Even when the initial model of
the iteration is V , we will have to deal in the proofs with iterations whose
models are sets that may not satisfy full ZFC. To handle this, we introduce
a concept from [Martin and Steel, 1994] that is general enough to cover all
the models that will arise in our proofs.

First we need two preliminary definitions.
The Lévy hierarchy of formulas defined on page 19 can be defined for any

language extending the language of set theory. The clauses in the definition
are exactly the same as those on page 19, but now “atomic formula” means
atomic formula of the extended language. Let L(P ) be the result of adding
to the language of set theory a one-place function symbol P . A class model
(M ;E) satisfies Σ1(P) Replacement if M satisfies the Power Set Axiom and
the expansion of (M ;∈) in which P is interpreted as the power set operation
satisfies Replacement for Σ1 formulas of L(P ).

If (M ;E) is a class model and u ∈M , then (M ;E) satisfies Replacement
for the domain u if, for every formula ϕ(u, x, y, z1, . . . , zn) of the language of
set theory,

(M ;E) |= (∀z1) · · · (∀zn) ((∀x ∈ u)(∃!y)ϕ → (∃v)(∀x ∈ u)(∃y ∈ v)ϕ) .

Replacement for domain u implies that the range of any class function whose
domain is u is a set, and so that the class function is a set function.

Now we turn to the concept from [Martin and Steel, 1994] that was men-
tioned above. A class model M = (M ;∈, δ) is a premouse if

(a) M is transitive;

(b) δ is an ordinal belonging to M ;

(c) (M ;∈) |= ZC + Σ1(P) Replacement + Replacement for the domain
Vδ.

For premice M = (M ;∈, δ) we write δ = δM.
It is easy to show that if (M ;∈) satisfies ZC + Σ1(P) Replacement, then

(M ;∈) |= (∀α ∈Ord)Vα exists.

Thus clauses (a), (b), and the first two parts of clause (c) imply that M
saitisfies “Vδ exists,” and so that the third part of clause (c) makes sense.
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Remark. The name “premouse” may seem an odd one. Premice and mice
were introduced in [Dodd and Jensen, 1981] and generalizations have been
defined by various authors. In all these versions, including ours, a premouse
is required to satisfy some fragment of ZFC. In most versions—though not in
ours, i.e., not in that of [Martin and Steel, 1994]—it is required also that a
premouse have some specific structure, such as being L[E] for E a “coherent”
sequence of extenders. In all versions, what makes a premouse a mouse
is iterability, the existence of wellfounded limit models of any appropriate
iteration whose initial model is the premouse. We will not define or discuss
mice, but the main results of this chapter can be thought of as establishing
mouse-like properties for certain classes of premice.

We have already noted that every premouse M satisfies the sentence
“(∀α ∈Ord)Vα exists.” It is also easy to show that, for premice M,

M |= (∀x)(∃α ∈Ord)x ∈ Vα.

If M = (M ;∈, δ) is a premouse and E is an extender in M , i.e. E ∈ M
andM |= “E is an extender,” then we can define

∏M
E M just as we defined,

on page 339,
∏M

E (M ;∈) for class models M of ZFC. Our notation for such
ultrapowers will be like that for the earlier ones. Since there seems no reason
for preferring, e.g., one of the notations [[a, f ]]ME and [[a, f ]]ME over the other,
we will in this and other cases indiscriminately use both notations.  Loś’
Theorem generalizes to these ultrapowers, except that we must restrict E to
be a (κ, λ)-extender with κ ≤ δ :

Theorem 7.1.1. Let M = (M ;∈, δ) be a premouse. Let κ and λ > κ be or-
dinals of M with κ ≤ δ. Let E be an (κ, λ)-extender in M. Let ϕ(v1, . . . , vn)
be any formula of the language of set theory. Let 〈a1, f1〉, . . . , 〈an, fn〉 be
elements of DME . Let b =

⋃
1≤i≤n ai. Then

∏M
E M |= ϕ[[[a1, f1]]ME , . . . , [[an, fn]]ME ] ↔
{z ∈ [κ]|b| | M |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb.

Proof. The proof is by an induction on ϕ as usual. We sketch the case ϕ
is (∃v0)ψ to indicate how the axioms that hold in premice are used. In that
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case we have, suppressing some subscripts and superscripts,∏M
E M |= ϕ[[[a1, f1]], . . . , [[an, fn]]]

↔ (∃a0 ∈ [λ]<ω)(∃f0 ∈ [κ]|a0|M ∩M)

(
∏M

E M |= ψ[[[a0, f0]], . . . , [[an, fn]]])

↔ (∃a0 ∈ [λ]<ω)(∃f0 ∈ [κ]|a0|M ∩M)(
{z ∈ [κ]|a0∪b| | M |= ψ[f0(za0,a0∪b), . . . , fn(zan,a0∪b)]} ∈ Ea0∪b

)
↔ {z ∈ [κ]|b| | (∃x ∈M)M |= ψ[x, f1(za1,b), . . . , fn(zan,b)]} ∈ Eb
↔ {z ∈ [κ]|b| | M |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb.

To show that the fourth line implies the third, one argues as follows: Because
Replacement for the domain Vδ holds inM, the fourth line implies that there
is an ordinal α ∈M such that

{z ∈ [κ]|b| | (∃x ∈ V M
α )M |= ψ[x, f1(za1,b), . . . , fn(zan,b)]} ∈ Eb.

Since this set belongs to M as well as to Eb, Choice in M yields the third
line. �

Theorem 7.1.1 gives us the canonical (i′)ME : M ≺
∏M

E M. The usual
proofs give the following two results.

Lemma 7.1.2. Let M be a premouse, let κ ≤ δM, and let E be a (κ, λ)-
extender in M for some λ. Then M |= “

∏M
E M is set-like,” and so

∏M
E M

is set-like.

Lemma 7.1.3. Let M be a premouse, let κ ≤ δM, and let E be a (κ, λ)-
extender in M for some λ. Then M |= “

∏M
E M is wellfounded,” and so∏M

E M is wellfounded.

Thus, if M = (M ;∈, δ), we get a unique

πME :
M∏
E

M∼= Ult(M;E) = (Ult(M ;E);∈, δUlt(M;E))

with Ult(M ;E) transitive, and we define

iME = πME ◦ (i′)ME :M≺ Ult(M;E).
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Note that all of the classes
∏M

E M, (i′)ME , πME , Ult(M ;E), Ult(M;E), and
iME are classes in M . Note also that Ult(M;E) is a premouse.

We now begin our study of iterations that have the first two of the prop-
erties mentioned in the introduction to this Chapter. We will define such
iterations for transitive class models of ZFC and then for premice.

First we need some more terminology for talking about direct limits.
Suppose that Md is a transitive class for each d ∈ D and that

(〈(Md;∈) | d ∈ D〉, 〈jd,d′ | d ∈ D ∧ d′ ∈ D ∧ dR d′〉)

is a directed system of elementary embeddings. Let (M̃, 〈̃d | d ∈ D〉) be the
direct limit of this directed system. We say that M̃ is the direct limit model
of the directed system. If M̃ is wellfounded and set-like, let π : M̃ ∼= (N ;∈),
with N transitive. We say that

((N ;∈), 〈π ◦ ̃d | d ∈ D〉)

is the canonical limit of the directed system and that (N ;∈) is the canonical
limit model of the directed system. If either wellfoundedness or set-likeness
fails, then there is no canonical limit and no canonical limit model. Note
that if there is an R-maximal element d of D, then the direct limit model
is isomorphic to Md, the canonical limit is (Md, 〈jd′,d | d′ ∈ D〉), and the
canonical limit model is Md.

Similarly define the direct limit model, the canonical limit , and the canon-
ical limit model when the individual models of the directed system have
additional structure, e.g., when they are premice (Md;∈, δd).

If M is a transitive class model of ZFC and θ is a non-zero ordinal number,
an internal iteration of M of length θ is a sequence 〈Eα | α + 1 < θ〉 such
that there are transitive classes Mα, α < θ, and embeddings jα,β, α ≤ β < θ,
satisfying

(a) M0 = M ;

(b) each Eα is an extender in Mα;

(c) for α ≤ β ≤ γ < θ, jα,γ = jβ,γ ◦ jα,β;

(d) for each α such that α+ 1 < θ, Mα+1 = Ult(Mα;Eα) and jα,α+1 = iMα
Eα

;

(e) for each limit λ < θ, (Mλ, 〈jα,λ | α < λ〉) is the canonical limit of
(〈Mα | α < λ〉, 〈jα,β | α ≤ β < λ〉).
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Note that the Mα and the jα,β are uniquely determined by M and the Eα.

Remark. Our notion of internal iteration is in one sense less general and in
another sense more general than the name suggests. A broader notion would
permit the Eα to be extenders in the general sense of Exercise 6.1.2; an
even broader notion would replace the iMα

Eα
by embeddings jα : Mα ≺ Mα+1,

requiring only that each jα be a class in Mα. A narrower notion would require
the iteration 〈Eα | α + 1 < θ〉 to belong to M .

If M is a premouse and θ is a non-zero ordinal number, an internal
iteration of M of length θ is a sequence 〈Eα | α+ 1 < θ〉 such that there are
premice Mα, α < θ, and embeddings jα,β, α ≤ β < θ, satisfying

(a) M0 =M;

(b) each Eα is an extender in Mα with Eα ∈ VMα

δMα ;

(c) for α ≤ β ≤ γ < θ, jα,γ = jβ,γ ◦ jα,β;

(d) for each α such that α+1 < θ,Mα+1 = Ult(Mα;Eα) and jα,α+1 = iMα
Eα

;

(e) for each limit λ < θ, (Mλ, 〈jα,λ | α < λ〉) is the canonical limit of
(〈Mα | α < λ〉, 〈jα,β | α ≤ β < λ〉).

Remark. The condition that Eα ∈ VMα

δMα is stronger than necessary. One
could simply require that Eα be a (κ, λ)-extender in Mα for some κ and λ
with κ ≤ δMα .

We would like to think of transitive class models M of ZFC as giving
“premice” (M ;∈,Ord∩M), so that, for example, we can think of the internal
iterations of such M as special cases of internal iterations of premice. Let us
therefore say that M is a premouse∗ if either of the following holds:

(i) M is a premouse;

(ii) M = (M ;∈) for some transitive class model M of ZFC.

IfM = (M ;∈) is a premouse∗, then by δM we mean Ord ∩M (which is not
a genuine ordinal number if M is a proper class).

[Mitchell, 1974] proved wellfoundedness results for internal iterations in
the special case that all the Eα are given by normal ultrafilters on their
critical points. His methods extend to the case of general extenders. We will
now present a different and simpler approach to the same theorems. This
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approach is attributed to R. Jensen in Dodd [1982]. The results we prove
with it in this section are essentially from Dodd [19??]. The first lemma is
the key to the whole method.

Lemma 7.1.4. Let M = (M ;∈, δM) be a countable premouse∗. Suppose
that, for some ordinals η and δ ≤ η, there is a

τ :M≺ (Vη;∈, δ).

Let E be a (κ, λ)-extender in M with κ ≤ δM. Then there is a

σ : Ult(M;E) ≺ (Vη;∈, δ)

such that σ ◦ iME = τ .

Proof. By the elementarity of τ , we have that τ(E) is a (τ(κ), τ(λ))-extender
in the premouse∗ (Vη;∈, δ) and so in V . For each a ∈ [λ]<ω, let

Xa =
⋂
Y ∈Ea

τ(Y ).

Since M is countable, each Xa is a countable intersection of elements of
(τ(E))τ(a); hence each

Xa ∈ (τ(E))τ(a).

By the countability of [λ]<ω and the countable completeness of τ(E) (clause (4)
of Lemma 6.1.2), there is an order preserving h : τ ′′[λ]<ω → τ(κ) such that

(∀a ∈ [λ]<ω)h′′τ(a) ∈ Xa.

We define σ by setting

σ(πME ([[a, f ]]ME )) = (τ(f))(h′′τ(a)).

To see that σ is well-defined, suppose that [[a, f ]]ME = [[b, g]]ME . Then

Y = {z ∈ [κ]|a∪b| | f(za,a∪b) = g(zb,a∪b)} ∈ Ea∪b.

By the definition of Xa∪b,

h′′τ(a ∪ b) ∈ Xa∪b ⊆ τ(Y ).
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Thus

(τ(f))((h′′τ(a ∪ b))τ(a),τ(a∪b)) = (τ(g))((h′′τ(a ∪ b))τ(b),τ(a∪b)).

Since, e.g., (h′′τ(a ∪ b))τ(a),τ(a∪b) = h′′τ(a), we get that

(τ(f))(h′′τ(a)) = (τ(g))(h′′τ(b)),

i.e., that
σ(πME ([[a, f ]]ME )) = σ(πME ([[b, g]]ME )).

The proof that σ is elementary is similar to the proof that it is well-
defined, and we omit it.

Finally we must prove commutativity. Let x ∈M .

σ(iME (x)) = σ(πME ([[∅, cx]]))
= cτ(x)(h

′′τ(∅))
= τ(x),

as required. �

Remark. Note that the proof gives directly an elementary embedding of∏M
E M into (Vη,∈, δ). Since (Vη;∈ δ) is wellfounded it follows that

∏M
E M

is wellfounded. Thus the proof gives a different way of showing e.g. that
ultrapowers of V with respect to extenders are wellfounded.

The next lemma extends Lemma 7.1.4 to countable internal iterations.

Lemma 7.1.5. Let M = (M ;∈, δM) be a countable premouse∗. Suppose
that, for some ordinals η and δ ≤ η, there is a τ :M≺ (Vη;∈, δ). Let θ > 0
be a countable ordinal and let 〈Mα | α < θ〉 and 〈jα,β | α ≤ β < θ〉 witness
that 〈Eα | α + 1 < θ〉 is an internal iteration of M. Let (M̃θ, 〈̃α,θ | α < θ〉)
be the direct limit of (〈Mα | α < θ〉, 〈jα,β | α ≤ β < θ〉). Then there is a

τ ∗ : M̃θ ≺ (Vη;∈, δ)

such that τ ∗ ◦ ̃0,θ = τ .

Proof. SinceM is countable and θ is countable, it follows by induction that
all the Mα, α < θ, are countable.
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By induction on α < θ, we define embeddings

τα :Mα ≺ (Vη;∈, δ).

When we define τα, we will make sure that

(∀β < α) τα ◦ jβ,α = τβ.

Let τ0 = τ .

Next consider the case that α = γ+1 for some γ. We apply Lemma 7.1.4
with Mγ as the M of that lemma, with τγ as the τ , and with Eγ as the E.
Let τα be the σ given by this application of Lemma 7.1.4. It is easy to see
that our induction hypotheses for α are satisfied.

Now consider the case that α < θ is a limit ordinal. Let x ∈ Mα, where
each Mβ = (Mβ,∈; δMβ). Then x = jβ,α(y) for some β < α and some
y ∈Mβ. Set

τα(x) = τβ(y).

It is easy to see that τα is well-defined and that τα ◦ jβ,α = τβ for all β < α.

The definition of τ ∗ is similar to that of limit τα. Let x ∈ M̃θ, where
M̃θ = (M̃θ; ∈̃θ, δ̃θ). Then x = ̃α,θ(y) for some α < θ and some y ∈Mα. Set

τ ∗(x) = τα(y).

It is easy to see that τ ∗ has the required properties. �

Corollary 7.1.6. Assume all the hypotheses of Lemma 7.1.5. Then the di-
rect limit model M̃θ is wellfounded.

Proof. If τ ∗ is given by the lemma, then τ ∗ embeds M̃θ into a wellfounded
structure. �

Remark. The corollary is trivial in the case θ is a successor ordinal, but
the lemma is not.

Theorem 7.1.7. Every internal iteration of V has a wellfounded direct limit
model.
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Proof. Let J be an internal iteration of V . Assume for a contradiction that
the direct limit model of J is not wellfounded. Let δ be such that J ∈ Vδ
and let η > δ be such that (Vη;∈, δ) is a premouse satisfying “the direct limit
model of J is not wellfounded.” Let (X;∈, δ) be a countable elementary
submodel of (Vη;∈, δ) such that J ∈ X. Let π : X ∼= M with M transitive.
Let I = π(J ). Then (M ;∈, π(δ)) is a countable premouse and

π−1 : (M ;∈, π(δ)) ≺ (Vη;∈, δ).

Moreover

(M ;∈, π(δ)) |= “the direct limit model of I is not wellfounded.”

By the absoluteness of wellfoundedness, it follows that the direct limit model
of I is not wellfounded. But this contradicts Corollary 7.1.6. �

If M is a model of ZFC, then applying Theorem 7.1.7 in M gives that, if
I is an internal iteration of M and I ∈M , then the direct limit model of I
is wellfounded. Exercise 7.1.1 eliminates the assumption that I ∈ M in the
case that Ord ∩M has uncountable cofinality.

Exercise 7.1.1. Let M be transitive class model of ZFC such that Ord∩M
is not an ordinal number of cofinality ω. Prove that every internal iteration
of M has a wellfounded direct limit model.

Hint. Suppose that J is a counterexample.
First assume that M is a proper class. Deduce that there is a premouse

(V M
η ;∈, δ) ∈ M such that J is also an internal iteration of (V M

η ;∈, δ) with
illfounded direct limit model. Next use the Löwenheim–Skolem Theorem to
show that there are a premouse M̄ with countable universe, an embedding
τ : M̄ ≺ (V M

η ;∈, δ), and a countable iteration I of M̄ whose direct limit
model is not wellfounded. Now use an absoluteness argument to show that
Corollary 7.1.6 fails in M .

Now assume that M is a set. Use the Löwenheim–Skolem Theorem as
above to get a countable M̄ , an embedding τ : M̄ ≺ M , and a countable
iteration I of M̄ with illfounded direct limit model. Use the hypothesis
about cf(Ord ∩M) to prove the existence of an ordinal η of M such that
range (τ) ⊆ V M

η ≺ M . Now contradict Corollary 7.1.6 in M as in the first
case.
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7.2 General Iteration Trees

The main applications of iterations and iteration trees are in the study of
canonical inner models for large cardinal axioms. One defines the property
of being a “canonical” model, proves that canonical models exist and satisfy
the large cardinal axiom, and one proves (the “Comparison Lemma”) that
canonical models are indeed canonical by proving that any two of them can
be elementarily embedded into a third. The elementary embeddings in ques-
tion are some j0,α of an iteration or an iteration tree. This technique was
used in a primitive form in [Kunen, 1970], where the large cardinal axiom is
(mainly) the existence of a measurable cardinal, and the iterations were the
iterated ultrapowers we discussed in Chapter 3. [Mitchell, 1974] introduced
the general Comparison Lemma method, in the context of axioms asserting
the existence of measurable cardinals with a rich array of normal ultrafilters.
[Mitchell, 1979] extended the method beyond the range of normal ultrafilters.
[Dodd, ] and [Baldwin, 1986] developed it far enough to get canonical inner
models for strong cardinals and more, employing internal iterations in our
general sense. At, or a little before, the level of Woodin cardinals, internal
iterations are no longer adequate. [Steel,?] used primitive iteration trees
in studying inner model theory at about this level. Iteration trees proper
were introduced in [Martin and Steel, 1988] and [Martin and Steel, 1989],
and they were used as we will use them in Chapter 8, to prove determi-
nacy results. In [Martin and Steel, 1994] their theory was further developed
and they were applied to get inner models for Woodin cardinals.

Remark. The historical sketch just given omitted a major part of inner
model theory: fine structure and core models. This omitted subject was
invented by Ronald Jensen. Dodd, Mitchell, and Steel have, after Jensen,
probably made the most important contributions to it. See the introduction
to [Martin and Steel, 1994] for a longer historical sketch that does not omit
fine structure and core models.

The basic step in generating an iteration tree is, like the basic step in
generating an internal iteration, the ultrapower of a given model with respect
to an extender. In the case of internal iterations, the extender belongs to
the given model and is an extender in it. In the case of iteration trees, the
extender may be an extender in a different model and may not belong to the
given model at all. Already in the last chapter (page 360), we discussed this
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kind of ultrapower for the case of transitive class models of ZFC. We now
must extend the discussion to the case of premice.

Let us say that premice M = (M ;∈, δM) and N = (N ;∈, δN ) agree
through α if α ≤ min{δM, δN} and M and N agree through α. More gener-
ally, let us say that premice∗M and N agree through α if α ≤ min{δM, δN}
and the universes (first components) of M and N agree through α. (The
hybrid concept of a premouse∗ was defined on page 374.)

Suppose that κ is an ordinal and that M and N are premice∗ agreeing
through κ+ 1. Suppose that E is a (κ, λ)-extender in M , for some λ. Then
we can define

∏N
E N just as we defined, on page 360,

∏N
E (N ;∈) for N a

transitive class model of ZFC and E a (κ, λ)-extender in another such model
M agreeing with N through κ+1. Our notation for such ultrapowers will be
the obvious combination of that for the

∏N
E (N ;∈) and that for the

∏M
E M

of the preceding section.
The proof of the following theorem is just like that of the special case

M = N (Theorems 7.1.1 and 6.1.3).

Theorem 7.2.1. Let M and N be premice∗. Let κ and λ > κ be ordinals
of M with κ < δN . Assume that M and N agree through κ + 1. Let E be
an (κ, λ)-extender inM. Let ϕ(v1, . . . , vn) be any formula of the language of
set theory. Let 〈a1, f1〉, . . . , 〈an, fn〉 be elements of DNE . Let b =

⋃
1≤i≤n ai.

Then ∏N
E N |= ϕ[[[a1, f1]]NE , . . . , [[an, fn]]NE ] ↔
{z ∈ [κ]|b| | N |= ϕ[f1(za1,b), . . . , fn(zan,b)]} ∈ Eb.

Theorem 7.2.1 gives us the canonical (i′)NE : N ≺
∏N

E N . The next
lemma is proved as were earlier analogous lemmas.

Lemma 7.2.2. Let M, N , κ, λ, and E be as in the statement of Theo-
rem 7.2.1. Then

∏N
E N is set-like.

∏N
E N may not be wellfounded. If it is, and if N is a premouse (N ;∈, δ),

then we get a unique

πNE :
N∏
E

N ∼= Ult(N ;E) = (Ult(N ;E);∈, δUlt(N ;E))



7.2. GENERAL ITERATION TREES 381

with Ult(N ;E) transitive. If it is wellfounded and if N = (N ;∈), then we
get a unique

πNE = πNE :
N∏
E

N ∼= Ult(N ;E) = (Ult(N ;E);∈)

with Ult(N ;E) transitive. In either case we define

iNE = πNE ◦ (i′)NE : N ≺ Ult(N ;E).

When N = (N ;∈), we may of course also write iNE for iNE . Note that
Ult(N ;E) is a premouse∗ and is a premouse if and only if N is a premouse.

The following analogue of Lemma 6.3.17 is proved just as was that lemma.

Lemma 7.2.3. Let M be a premouse∗. Let E be a (κ, λ)-extender in M.
Let ζ ≥ κ be an ordinal of M. Let N be a premouse∗ such that κ ≤ δN and
such that M and N agree through ζ+ 1. Assume that

∏N
E N is wellfounded.

Then

(a) If a ∈ [λ]<ω and f : [κ]|a| → (ζ+)M ∪ VMζ+1, then

πME ([[a, f ]]ME ) = πNE ([[a, f ]]NE );

(b) (∀α)(α ≤ (ζ+)M → iME (α) = iNE (α)); in particular, iME (κ) = iNE (κ);

(c) Ult(M;E) and Ult(N ;E) agree through iME (ζ) + 1; in particular,
they agree through iME (κ) + 1.

If there is a premouse∗ M such that E is an (κ, λ)-extender in M, set
crit (E) = κ. Thus, for any premouse∗ N such that iNE exists, we have

crit (E) = crit (iME ) = crit (iNE ).

The next lemma is a consequence of Lemma 7.2.3 describing the amount
of agreement between M and Ult(N ;E) for E an extender in M.

Lemma 7.2.4. Assume all the hypotheses of Lemma 7.2.3. Let ρ = strengthM(E).
Then

(1) Ult(N ;E) and M agree through ρ;
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(2) V
Ult(N ;E)
ρ+1 ( VMρ+1.

Proof. By the definition of strengthM(E) and the fact that Ult(M;E) is a
class in M,

V
Ult(M;E)
ρ+1 ( VMρ+1.

By (c) of Lemma 7.2.3 and the fact that ρ ≤ iME (κ),

V
Ult(N ;E)
ρ+1 = V

Ult(M;E)
ρ+1 .

The lemma follows. �

Let θ be a non-zero ordinal number. A partial ordering T of θ is a tree
ordering of θ if

(i) for all β < θ, the set of all α such that αT β is wellordered by T ;

(ii) T respects the natural order: if αT β then α < β;

(iii) 0 is the T -least element of θ: if 0 < α < θ then 0Tα;

(iv) for all α < θ, α is a successor ordinal if and only if α is a T -successor,
i.e., if and only if α has an immediate predecessor with respect to T ;

(v) for all limit ordinals λ < θ, the set of all α such that αT λ is an
unbounded subset of λ (with respect to <).

For successor ordinals α < θ, we define α−T to be the immediate prede-
cessor of α with respect to T , which exists by clause (iv). When there is no
ambiguity, we write α− for α−T .

To avoid giving two definitions of “iteration tree,” we make use of the
concept of premice∗. An iteration tree is a triple

T = (M, T, 〈Eα | α + 1 < θ〉),

such that there are premice∗ Mα, α < θ, and embeddings jα,β, αT β < θ,
satisfying

(a) T is a tree ordering of θ;

(b) M0 =M;

(c) each Eα is an extender in Mα with Eα ∈ VMα

δMα ;

(d) for αT β T γ < θ, jα,γ = jβ,γ ◦ jα,β;
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(e) for each α such that α + 1 < θ,

(i) Mα and M(α+1)−T
agree through crit (Eα) + 1;

(ii) Mα+1 = Ult(M(α+1)−T
;Eα);

(iii) j(α+1)−T ,α+1 = i
M

(α+1)−
T

Eα
;

(f) for each limit λ < θ, (Mλ, 〈jα,λ | αT λ〉) is the canonical limit of
(〈Mα | αT λ〉, 〈jα,β | αT β T λ ∨ α = β T λ〉), where jα,α is the identity
embedding of Mα into itself for each α < θ.

Note that (c) and (e)(i) imply that crit (Eα) < δ
M

(α+1)−
T . Note also that

T uniquely determines the Mα and the jα,β. By T T , ETα , and jTα,β we mean
repectively the tree ordering, the αth extender, and the αth embedding of T .
Our notation for the premice∗ of T will be in terms of the first component
of T : If the first component is N , then N Tα is the αth premouse∗ of T .

If T = (M, T, 〈Eα | α+1 < θ〉) is an iteration tree, then T is an iteration
tree on M, and θ is the length of T . We write `h(T ) for the length of T . If
M is a transitive class model of ZFC and T is an iteration tree on (M ;∈),
then we will also say that T is an iteration tree on M .

If I is an internal iteration of M, then (M, <, I) is an iteration tree
on M. Thus internal iterations are essentially iteration trees whose tree
orderings are linear and so, by property (ii) of tree orderings, are the natural
orderings of their lengths.

It would accord better with the concept of internal iterations if we defined
iteration trees on M to be of the form 〈T, 〈Eα | α + 1 < θ〉〉. This would
have the additional virtue of making iteration trees sets, where the actual
definition makes them proper classes ifM is a proper class. Indeed it was for
just this reason that we did not make M a component of internal iterations
on M. Unfortunately, our notation would become too cumbersome if we
were to do likewise for iteration trees on M. We will often need notation
such as “jTα,β,” and we do not want to write instead “jT ,Mα,β ” or something
more complicated when we have a more complex name than “M.”

The amount of agreement between two of the models of an iteration tree
is related to the strength of the extenders of the tree. If T is an iteration
tree on M and α < β ≤ `h(T ), then set

ρT (α, β) = min {strengthM
T
γ (ETγ ) | α ≤ γ < β}.
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Lemma 7.2.5. Let T be an iteration tree on M and let α < β < `h(T ).
Then

(1) MT
α and MT

β agree through ρT (α, β);

(2) V
MTβ
ρT (α,β)+1

( V
MTα
ρT (α,β)+1

.

Proof. We suppress the superscript T , and we suppress the subscript T .
Fix α < `h(T ). We proceed by induction on β for α < β < `h(T ).

First suppose that β = γ + 1 for some γ ≥ α. Let δ = β−. Now
Mβ = Ult(Mδ;Eγ), and by part (1) of Lemma 7.2.4 Ult(Mδ;Eγ) agrees
withMγ through strengthMγ (Eγ). If α = γ, then ρ(α, β) = strengthMγ (Eγ).
If α < γ, then ρ(α, β) = min {strengthMγ (Eγ), ρ(α, γ)}, and induction gives
us that Mα and Mγ agree through ρ(α, γ). In either case, we have (1). If
α = γ or if strengthMγ (Eγ) ≤ ρ(α, γ), then part (2) of Lemma 7.2.4 and (if
α < γ) induction give that

V
Mβ

strengthMγ (Eγ)+1
( V

Mγ

strengthMγ (Eγ)+1
⊆ VMα

strengthMγ (Eγ)+1
.

If α < γ and ρ(α, γ) ≤ strengthMγ (Eγ), then part (2) of Lemma 7.2.4 and
induction give that

V
Mβ

ρ(α,γ)+1 ⊆ V
Mγ

ρ(α,γ)+1 ( VMα

ρ(α,γ)+1.

In either case (2) follows.
Now suppose that β is a limit ordinal. We first show that there are only

finitely many γ such that

(γ + 1)T β ∧ crit (Eγ) ≤ ρ(α, β).

Assume that γ0 < γ1 < · · · witness that this fails. For each i ∈ ω, crit (Eγi) ≤
ρ(α, β). Hence we have for each i that

j(γi+1)−,(γi+1+1)−(crit (Eγi)) ≥ j(γi+1)−,γi+1(crit (Eγi))

= i
M(γi+1)−

Eγi
(crit (Eγi))

= i
Mγi
Eγi

(crit (Eγi))

≥ strengthMγi (Eγi)

≥ ρ(α, β).
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Since j(γi+1)−,(γi+1+1)−(crit (Eγi)) > crit (Eγi), it follows that

j(γi+1)−,(γi+1+1)−(ρ(α, β)) > ρ(α, β).

This gives us the contradiction that 〈j(γi+1)−,β(ρ(α, β)) | i ∈ ω〉 is an infinite
descending sequence of ordinals. Next we observe that, since {δ | δ T β} is
unbounded in β, there is a δ such that α < δ T β and

(∀γ)((δ < γ ∧ (γ + 1)T β) → crit (iEγ ) > ρ(α, β)).

Thus crit (jδ,β) > ρ(α, β), and so Mβ and Mδ agree through ρ(α, β) + 1 =
ρ(α, δ) + 1. Hence (1) and (2) for α and β follow from (1) and (2) for α and
δ. �

Corollary 7.2.6. Let T = (M, T, 〈Eα | α+ 1 < `h(T )〉) be an iteration tree
and let α + 1 < `h(T ). Then

(a) crit (Eα) + 1 ≤ ρT ((α + 1)−T , α);

(b) (∀β)((α + 1)−T ≤ β < α → crit (Eα) + 1 ≤ strengthM
T
β (Eβ)).

Proof. We omit the superscript T and the subscript T .
By clause (e) in the definition of an iteration tree,Mα andM(α+1)− agree

through crit (Eα) + 1. But part (2) of Lemma 7.2.5 implies that they do not
agree through ρ((α + 1)−, α) + 1. Thus crit (Eα) + 1 ≤ ρ((α + 1)−, α).

Assume that (α + 1)− ≤ β < α. By the definition of the ρ function,
ρ((α + 1)−, α) ≤ strengthMβ(Eβ). Thus (b) for β follows from (a). �

The main constructions of Chapter 8 will be constructions of iteration
trees. There are three ingredients needed to construct an iteration tree on
M:

(1) the extenders Eα;

(2) wellfoundedness at successor ordinals α + 1, i.e., wellfoundedness of∏M(α+1)−

Eα
M(α+1)− ;

(3) wellfoundedness at limit ordinals λ, i.e., the existence of a T -chain that
is unbounded in λ such that the corresponding direct limit model is
wellfounded.
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For (1) we will use the One-Step Lemma, Lemma 6.3.18. The only suc-
cessor ordinals that will concern us are the finite ordinals, and in the next
section we will prove that, for α finite, (2) holds very generally, e.g. it holds
if M is a model of ZFC. The only limit ordinal that will concern us is ω,
and in §4 we will prove that (3) holds for λ = ω under conditions that will
be satisfied by our constructions in Chapter 8.

7.3 Finite Trees

In our wellfoundedness proofs, we will be given an iteration tree T on a
premouseM, a tree for which wellfoundedness fails, and we will also be given
an elementary embedding τ : M ≺ Q ( N = (V ;∈, δ). We will construct
an iteration tree U on N and embeddings τα : MT

α ≺ Qα ( N Uα . In the
first proof, we will make sure that each τα belongs to the universe of N Uα and
use this fact to derive a contradiction. In the second proof, we will get our
contradiction from some further models and embeddings that are constructed
at the same time as the Nα and the τα. To keep our inductive constructions
going, we will in both cases need a certain amount of agreement among the
τα. The next definition gives the appropriate notion of “agreement.”

Suppose that τ :M ≺ N and τ ′ :M′ ≺ N ′, where M, M′, N , and N ′
are premice. For ordinals η, say that τ and τ ′ agree through η if

(a) M and M′ agree through η;

(b) τ(VMη ) = τ ′(VM
′

η );

(c) τ � VMη = τ ′ � VM
′

η .

Note that (b) can be restated as follows: τ(η) = τ ′(η) and N and N ′ agree
through τ(η). Note also that (b) follows from (c) if η is a successor ordinal.

The next lemma will be one of the main tools in our construction of
the embeddings τα. A slight variant of it is called the Shift Lemma in
[Martin and Steel, 1994].

Lemma 7.3.1. Let τ : M ≺ N and τ ′ : M′ ≺ N ′, with M, M′, N , and
N ′ premice. Suppose that τ and τ ′ agree through κ + 1. Suppose that E is
an extender in M with crit (E) = κ. Suppose that

∏N ′
τ(E)N ′ is wellfounded.

Then
∏M′

E M′ is wellfounded. Moreover, if

σ : Ult(M′;E)→ Ult(N ′; τ(E))
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is given by
σ(πM

′

E ([[a, f ]]M
′

E )) = πN
′

τ(E)([[τ(a), τ ′(f)]]N
′

τ(E)),

then σ is well-defined and elementary, and σ and τ agree through strengthM(E).
Furthermore, the following diagram commutes:

Ult(M′;E)
σ−→ Ult(N ′; τ(E))

↑ iM′
E ↑ iN ′

E

M′ τ ′−→ N ′

Proof. For [[a, f ]]M
′

E ∈
∏M′

E M′, set

σ̃([[a, f ]]M
′

E ) = [[τ(a), τ ′(f)]]N
′

τ(E).

We will show that σ̃ is well-defined and that

σ̃ :
M′∏
E

M′ ≺
N ′∏
τ(E)

N ′.

Since
∏N ′

τ(E)N ′ is wellfounded by hypothesis, this will show that
∏M′

E M′ is
wellfounded. It will also show that σ is welldefined and elementary.

To show that σ̃ is well-defined, suppose that [[a, f ]]M
′

E = [[b, g]]M
′

E . Then

X = {z ∈ [κ]|a∪b| | f(za,a∪b) = g(zb,a∪b)} ∈ Ea∪b.

Now X ∈ VM′κ+1, so our hypotheses about agreement imply that X ∈ VMκ+1 and
that τ(X) = τ ′(X). The elementarity of τ gives that τ(X) ∈ (τ(E))τ(a∪b).
Using these facts and the elementarity of τ ′, we get that

{z ∈ [τ ′(κ)]|a∪b| | (τ ′(f))(za,a∪b) = (τ ′(g))(zb,a∪b)} = τ ′(X)

= τ(X)

∈ (τ(E))τ(a∪b).

Hence [[τ(a), τ ′(f)]]N
′

τ(E) = [[τ(b), τ ′(g)]]N
′

τ(E).
We omit the proof that σ̃ is elementary, as it is similar to the proof that

σ̃ is well-defined.
By Lemma 7.2.4, Ult(M′;E) and M agree through strengthM(E). To

show that σ and τ agree through strengthM(E), what we must show is that

σ � (V
Ult(M′;E)

strengthM(E)
∪ {V Ult(M′;E)

strengthM(E)
}) = τ � (V

Ult(M′;E)

strengthM(E)
∪ {V Ult(M′;E)

strengthM(E)
}).
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Now strengthM(E) ≤ iME (κ), and Lemma 7.2.3 gives that iM
′

E (κ) = iME (κ)
and that

V
Ult(M′;E)

iM
′

E (κ)+1
= V

Ult(M;E)

iM
′

E (κ)+1
,

with the latter clearly a subset of the universe ofM. Thus it suffices to prove
that

σ � V Ult(M′;E)

iM
′

E (κ)+1
= τ � V Ult(M′;E)

iM
′

E (κ)+1
.

Every element of V
Ult(M′;E)

iM
′

E (κ)+1
is of the form πM

′
E ([[a, f ]]M

′

E ), with f : [κ]|a| →

VM
′

κ+1. Consider such a πM
′

E ([[a, f ]]M
′

E ). By definition,

σ(πM
′

E ([[a, f ]]M
′

E )) = πN
′

τ(E)([[τ(a), τ ′(f)]]N
′

τ(E)).

Since f can be coded by an element of VM
′

κ+1, we get that τ(f) = τ ′(f) and
so that

πN
′

τ(E)([[τ(a), τ ′(f)]]N
′

τ(E)) = πN
′

τ(E)([[τ(a), τ(f)]]N
′

τ(E)).

The agreement of τ and τ ′ through κ + 1 means, in particular, that N and
N ′ agree through τ(κ) + 1, and so Lemma 7.2.3 gives that

πN
′

τ(E)([[τ(a), τ(f)]]N
′

τ(E)) = πNτ(E)([[τ(a), τ(f)]]Nτ(E)).

By the elementarity of τ ,

πNτ(E)([[τ(a), τ(f)]]Nτ(E)) = τ(πME ([[a, f ]]ME )).

Since M and M′ agree through κ + 1, another application of Lemma 7.2.3
gives that

τ(πME ([[a, f ]]ME )) = τ(πM
′

E ([[a, f ]]M
′

E )).

By this chain of equalities, it follows that

σ(πM
′

E ([[a, f ]]M
′

E )) = τ(πM
′

E ([[a, f ]]M
′

E )).

It remains only to show that the diagram commutes. Let x belong to the
universe of M′. Then

σ(iM
′

E (x)) = σ(πM
′

E ([[∅, cx]]M
′

E ))

= πN
′

τ(E)([[∅, cτ ′(x)]]
N ′
τ(E))

= iN
′

τ(E)(τ
′(x)).
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�

We are now ready to prove our wellfoundedness results for finite iteration
trees.

Theorem 7.3.2. Let n ∈ ω.
(1) Let T be an iteration tree of length n+ 1 on a premouse M. Suppose

that τ :M≺ (Vν ;∈, δ) for some ordinals ν and δ. Suppose that n∗ < n and

that E is an extender in MT
n with crit (E) < ρT (n∗, n). Then

∏MT
n∗

E MT
n∗ is

wellfounded.
(2) Let U be an iteration tree of length n + 1 on V . Suppose that n′ <

n and that F is an extender in (V ;∈)Un with crit (F ) < ρU(n′, n). Then∏(V ;∈)U
n′

F (V ;∈)Un′ is wellfounded.

Proof. We first observe that, for each n, (1) implies (2). To see this, suppose
that U , n′, and F witness that (2) fails for n. Let δ be large enough that all
the EUm and F belong to Vδ, and let ν > δ be such that M = (Vν ;∈, δ) is

a premouse and such that (i′)
(V ;∈)U

n′
F (jU0,n(Vν)) is not wellfounded. (This last

condition is actually automatic.) Then (M, T U , 〈EUm | m < n〉), the identity
embedding, n′, and F witness that (1) fails for n.

Assume that the theorem is false. We may assume that n is the least
number for which the theorem is false.

We will also assume that the universe M ofM (given by the hypotheses
of (1)) is countable. To see that this assumption involves no loss of generality,
let η be a limit ordinal such that our given T belongs to Vη. Let X be a
countable elementary submodel of Vη such that T and E are members of X.
Let π : X ∼= M ′ with M ′ transitive. Then τ ◦ (π−1 � π(M)) elementarily
embeds π(M) into (Vν ;∈, δ) and, along with π(T ), n∗, and π(E), witnesses
that (1) fails for n.

We will get a contradiction by building an iteration tree U on N = (V ;∈
, δ) of length n+1 and proving that for some extender F inN Un the ultrapower∏NUn

F N Un is not wellfounded.
The tree ordering of U will be T . We will mostly suppress the subscript

T and the superscripts T and U . In particular, we will write Em for the
extender ETm (but never for EUm).

As we construct U , we will also construct, for m ≤ n, embeddings

τm :Mm ≺ (V Nmνm ;∈, δm),
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where in fact νm = jU0,m(ν) and δm = jU0,m(δ). We denote V Nmνm by Qm and
(V Nmνm ;∈, δm) by Qm. We will make sure that

(∀m≤ n) τm ∈ Nm.

This will be the key to obtaining our contradiction.
The iteration tree U will be

(N , T, 〈τm(Em) | m ≤ n〉).

Let N0 = N = (V ;∈, δ). Let δ0 = δ, ν0 = ν, and τ0 = τ .
Let m < n and assume that we have defined, for each k ≤ m, Nk =

(Nk;∈, δk) and

τk :Mk ≺ Qk = (Qk;∈, δk) = (V Nkνk
;∈, δk),

in such a way that (N , T �m+ 1, 〈τk(Ek) | k < m〉) is an iteration tree whose
premice∗ are the Nk and that τk ∈ Nk for each k ≤ m. Assume also that

(a) for all k < n such that (k+ 1)− ≤ m ≤ k, τ(k+1)− and τm agree through
crit (Ek) + 1;

(b) if n∗ ≤ m then τn∗ and τm agree through crit (E) + 1.

The elementarity of τm implies that τm(Em) is an extender in the pre-
mouse Qm and so is an extender in Nm.

If we can show that

(m+ 1)− < m → crit (τm(Em)) < ρU((m+ 1)−,m),

then we can deduce from the minimality of n that
∏N(m+1)−

τm(Em) N(m+1)− is well-
founded. By Lemma 7.2.5, this is equivalent with showing that N(m+1)−

and Nm agree through crit (τm(Em)) + 1. But this is a consequence of
the assumption—a special case of (a)—that τ(m+1)− and τm agree through
crit (Em) + 1.

Let

Nm+1 = Ult(N(m+1)− ; τm(Em)).

Since Em ∈ VMm

δMm , it follows that τm(Em) ∈ V Qmδm
= V Nmδm

. Hence (N0, T �
m+ 2, 〈τk(Ek) | k < m+ 1〉) is an iteration tree on N0.
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Set νm+1 = i
N(m+1)−

τm(Em) (ν(m+1)−) and δm+1 = i
N(m+1)−

τm(Em) (δ(m+1)−). Now

Ult(Q(m+1)− ; τm(Em)) = (V Nm+1
νm+1

;∈, δm+1).

Thus we may apply the Shift Lemma (Lemma 7.3.1) with Mm for M,
M(m+1)− for M′, Qm for N , Q(m+1)− for N ′, τm for τ , τ(m+1)− for τ ′,
crit (Em) for κ, and Em for E. This gives us an embedding

σ :Mm+1 ≺ Ult(Q(m+1)− ; τm(Em)) = Qm+1,

such that σ and τm agree through strengthMm(Em).
Suppose that k < n is such that (k+ 1)− < m+ 1 ≤ k; i.e., suppose that

(k + 1)− ≤ m < k < n. Our induction hypothesis (a) for m guarantees that
τ(k+1)− and τm agree through crit (Ek) + 1. By part (b) of Corollary 7.2.6,

crit (Ek)+1 ≤ strengthMm(Em). Thus τ(k+1)− and σ agree through crit (Ek)+
1.

The argument just given shows that, for all k < n,

(k + 1)− < m+ 1 ≤ k → τ(k+1)− and σ agree through crit (Ek) + 1.

Hence induction hypothesis (a) would be true for m + 1 if we were to set
τm+1 = σ.

If n∗ < m+1 then the fact that crit (E)+1 ≤ ρT (n∗, n) ≤ strengthMm(Em)
and our induction hypothesis (b) for m imply that that τn∗ and σ agree
through crit (E) + 1. It follows easily that induction hypothesis (b) would
also be true for m+ 1 if we made τm+1 = σ.

Nevertheless, we cannot take σ for τm+1 because σ might not belong to
Nm+1. Let

µ(m) = sup {crit (Ek) | (k + 1)− ≤ m < k < n}.

Let

µ′(m) =

{
µ(m) if m < n∗;
max{µ(m); crit (E)} if n∗ ≤ m.

If we can find a τ̄ :Mm+1 ≺ Qm+1 such that

τ̄ � (V
Mm+1

µ′(m)+1) = σ � (V
Mm+1

µ′(m)+1) ∧ τ̄ ∈ Nm+1,

then, since τ̄ and σ will agree through µ′(m) + 1, we can set τm+1 = τ̄ , and
the induction step of our construction will be complete.
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Since n is finite, µ(m) and hence also µ′(m) are suprema of finite sets of
ordinals, each of which is smaller than strengthMm(Em). Hence µ′(m) + 1 ≤
strengthMm(Em). Let χ = σ � (V

Mm+1

µ′(m)+1) = τm � (V
Mm+1

µ′(m)+1). Since τm ∈ Nm, it
follows that χ ∈ Nm. All the universes Mk of theMk are countable transitive
sets; since crit (jU0,m+1) is a measurable cardinal, they all belong to and are
countable in each Nk, k ≤ m + 1. The function χ has a subset of Mm+1 for
its domain, thus χ can be coded by a subset of V Nmµ′(m)+1 that is countable in

Nm. Now µ′(m) is either 0 or an infinite ordinal. For any infinite ordinal
α, a countable subset of Vα+1 can be coded by an element of Vα+1. Hence χ
can be coded by an element of V Nmµ′(m)+1. But Nm and Nm+1 agree through

µ′(m) + 1, and therefore χ is an element of Nm+1.
Let 〈ai | i ∈ ω〉 ∈ Nm+1 enumerate Mm+1. Let U be the tree of all

u ∈ <ω(Qm+1) such that

(i) u(i) = χ(ai) for all i < `h(u) with ai ∈ domain (χ);

(ii) for all formulas ϕ(v1, . . . , vk) of the language of set theory and for all
natural numbers i1, . . . , ik with each ij < `h(u), Mm+1 |= ϕ[ai1 , . . . , aik ]
if and only if Qm+1 |= ϕ[u(i1), . . . , u(ik)].

The function i 7→ σ(ai) belongs to [U ]. By absoluteness, there is an f ∈ Nm+1

that belongs to [U ]. Then ai 7→ f(i) is our desired τ̄ : Mm+1 ≺ Qm+1 such
that τ̄ ∈ Nm+1 and τ̄ extends χ.

Since E is an extender in Mn, we know that τn(E) is an extender in Qn
and so in Nn. To finish the proof, we will derive a contradiction from the
fact that N |= “τn(E) is countably complete.” (By Lemma 6.1.5, this is the
same as contradicting the wellfoundedness of

∏Nn
τn(E)Nn.)

Let κ = crit (E). By assumption, we have that
∏Mn∗

E Mn∗ is not well-
founded. Let then

· · · ∈Mn∗
E [[a2, f2]]Mn∗

E ∈Mn∗
E [[a1, f1]]Mn∗

E ∈Mn∗
E [[a0, f0]]Mn∗

E .

Without loss of generality, we may assume that

(∀i ∈ ω) ai ⊆ ai+1.

For each i ∈ ω, let

Xi+1 = {z ∈ [κ]|ai+1| | fi+1(z) ∈ fi(zai,ai+1
)},
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and let X0 = [κ]|a0|. By Theorem 7.2.1, Xi+1 ∈ Eai+1
for all i ∈ ω; X0 ∈ Ea0

trivially. Since τn is elementary,

(∀i ∈ ω) τn(Xi) ∈ (τn(E))τn(ai).

All subsets of the hereditarily countable Mn belong to Nn, and therefore both
〈ai | i ∈ ω〉 and 〈Xi | i ∈ ω〉 belong to Nn. But τn ∈ Nn, and so

〈τn(ai) | i ∈ ω〉 ∈ Nn ∧ 〈τn(Xi) | i ∈ ω〉 ∈ Nn.

Let b =
⋃
i∈ω τn(ai). Since τn(E) is countably complete in Nn, there is a

function h : b→ τn(κ) such that

(∀i ∈ ω)h′′τn(ai) ∈ τn(Xi).

Since Mn and Mn∗ agree through ρT (n∗, n) ≥ κ + 1, all the Xi belong to
Mn∗ . By the elementarity of τn∗ ,

(∀i ∈ ω)(∀z ∈ τn∗(Xi)) (τn∗(fi+1))(z) ∈ (τn∗(fi))(zai,ai+1
).

But τn and τn∗ agree through κ+ 1, so

(∀i ∈ ω)(∀z ∈ τn(Xi)) (τn∗(fi+1))(z) ∈ (τn∗(fi))(zai,ai+1
).

Hence
(∀i ∈ ω) (τn∗(fi+1))(h′′τn(ai+1)) ∈ (τn∗(fi))(h

′′τn(ai)).

But this contradicts the wellfoundedness of Nn∗ . �

Remark. Theorem 7.3.2 does not cover the case n∗ = n, but of course∏MTn
E MT

n is always wellfounded for E an extender in MT
n with crit (E) ≤

δM
T
n . Part (2) of Theorem 7.3.2 thus guarantees that failure of wellfound-

edness will never interfere with our construction of iteration trees on V of
length ≤ ω.

7.4 Trees of length ω

If T is an iteration tree of length θ, then a branch of T is a nonempty subset
b of θ such that

(i) b has no <-greatest element;
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(ii) b is linearly ordered by T T ;

(iii) if β ∈ b and αT T β, then α ∈ b.
Note that being a branch of T depends only on T T . If b is a branch of T
then b is a branch of any other iteration tree with the same tree ordering.

If T is an iteration tree onM and b is a branch of T , then we denote by

(M̃T
b , 〈̃Tα,b | α ∈ b〉)

the direct limit of
(MT

α , 〈jTα,β | αT T β ∈ b〉).
We say that a branch b of T is wellfounded with respect to T if the direct
limit model M̃T

b is wellfounded. When there is no ambiguity, we will omit
the phrase “with respect to T .” If b is wellfounded, then we denote by
(MT

b , 〈jTα,b | α ∈ b〉) the canonical limit of (MT
α , 〈jTα,β | αT T β ∈ b〉).

If T is an iteration tree of limit length θ, then a cofinal branch of T is
a branch b of T such that b is an unbounded subset of θ. For θ = ω, all
branches are thus cofinal branches.

Two possible problems can arise at limit steps θ in the construction of an
iteration tree: (1) There may be no cofinal branch. (2) There may be cofinal
branches, but no cofinal wellfounded branches. By clause (f) in the definition
of iteration trees, either (1) or (2) would make it impossible to extend the
iteration tree to one of length θ + 1. Since the iteration trees we construct
in Chapter 8 will all be of length ≤ ω, we will not be worried about this
problem per se. Nevertheless, we will have to rule out (1) and (2) for the
trees of length ω that we construct, for it will be crucial for us that each
of our trees has a cofinal wellfounded branch. (In fact, problem (1) will not
arise: it will be obvious that our trees have cofinal branches.)

It is an open question whether every iteration tree of length ω on V has
a wellfounded branch. The trees we construct in Chapter 8 will, fortunately,
have two special properties. We next introduce these two properties, one at
a time.

An iteration tree T of length ω on M is continuously illfounded if there
are ξn, n ∈ ω, such that each ξn is an ordinal of MT

n and such that, for m
and n ∈ ω,

mT n → jTm,n(ξm) > ξn.

A continuously illfounded tree cannot have wellfounded branches, for if b is
a branch then

〈̃Tn,b(ξn) | n ∈ ω〉
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is an infinite descending sequence of ordinals of M̃T
b .

Lemma 7.4.1. Let T be an iteration tree of length ω on V with no branches.
Then T is continuously illfounded.

Proof. Let T be the tree ordering of T . The absence of branches is equivalent
with the wellfoundedness of T ∗, where where mT ∗ n if and only if nT m. For
n ∈ ω define, by induction on T ∗,

ξm = sup{ξn + 1 | nT ∗m} = sup{ξn + 1 | mT n}.

For mT n we have that

jTm,n(ξm) ≥ ξm > ξn.

Hence the ξn witness that T is continuously illfounded. �

If T is an iteration tree of length ω with tree ordering T and if b is a
branch of T , then say that T is continuously illfounded off b if there are ξn,
n ∈ ω, such that each ξn is an ordinal of MT

n and such that, for all m and
n ∈ ω,

mT n →
{
jTm,n(ξm) > ξn if n /∈ b;
jTm,n(ξm) = ξn if n ∈ b.

Each iteration tree T we construct in Chapter 8 will be continuously
illfounded off some branch b of T , and we will want to know that b is well-
founded. Lemma 7.4.3 below shows that this will follow if we know that T
is not continuously illfounded.

First we need to prove an equivalent of illfoundedness for such limit mod-
els.

Lemma 7.4.2. Let Mn, n ∈ ω, be premice∗ and let jm,n : Mm ≺ Mn for
m ≤ n ∈ ω. Assume that whenever m ≤ n ≤ p ∈ ω then jm,p = jn,p ◦ jm,n.
Assume also that j0,n

′′OrdM0 is unbounded in the ordinals of Mn for each
n ∈ ω. Let (M̃, 〈̃n | n ∈ ω〉) be the direct limit of (Mn, 〈jm,n | m ≤ n ∈ ω〉).
The following are equivalent:

(a) M̃ is not wellfounded.

(b) There are ζn, n ∈ ω, such that each ζn is an ordinal ofMn and such
that, for all m and n ∈ ω,

m < n → jm,n(ζm) > ζn.
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Proof. If ζn, n ∈ ω, witness that (b) holds, then 〈̃n(ζn) | n ∈ ω〉 is an
infinite descending sequence of ordinals of M̃.

To see that (a) implies (b), assume that M̃ is illfounded. If 〈xi | i ∈ ω〉
is an infinite descending sequence with repect to the membership relation of
M̃, then 〈rankM̃(xi) | i ∈ ω〉 is an infinite descending sequence of ordinals of
M̃. Since every ordinal of M̃ is of the form ̃n(γ) for some n ∈ ω and some
ordinal γ of Mn, we may assume that there are sequences 〈ni | i ∈ ω〉 and
〈γi | i ∈ ω〉 such that

(i) (∀i ∈ ω) γi is an ordinal of Mni ;

(ii) 〈̃ni(γi) | i ∈ ω〉 is an infinite descending sequence of ordinals of M̃.

If some number n were ni for infinitely many i, then the corresponding sub-
sequence of the γi would be an infinite descending sequence of ordinals of
Mn. Thus we may assume that

i < i′ → ni < ni′ .

Since j0,n0
′′OrdM0 is unbounded in the ordinals ofMn0 , we may assume also

without loss of generality that n0 = 0. Replacing, if necessary, each γi by ωγi,
we may assume that each γi is a limit ordinal. For i ∈ ω and ni ≤ n < ni+1,
set

ζn = jni,n(γi) + ni+1 − n.
The ζn, n ∈ ω, witness that (b) holds. �

Lemma 7.4.3. Let T be an iteration tree of length ω and let b be a branch
of T . Assume that T is continuously illfounded off b and that b is not well-
founded. Then T is continuously illfounded.

Proof. Let 〈ξi | i ∈ ω〉 witness that T is continuously illfounded off b. Let
〈ζn | n ∈ ω〉 be as given by the illfoundedness of b and Lemma 7.4.2. For
i ∈ ω let

ξ∗i =

{
ξi if i /∈ b;
ξi + ζi if i ∈ b.

The ξ∗i , i ∈ ω, witness that T is continuously illfounded. �

It is unknown whether there is a continuously illfounded iteration tree of
length ω on V . But we can show that there are no such trees that obey a
certain technical restriction, which we now describe.
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Let T = (M, T, 〈Eα | α + 1 < `h(T )〉) be an iteration tree. For β + 2 <
`h(T ), let

µT (β) = sup {crit (Eα) | (α + 1)−T ≤ β < α}.

For T the tree of Theorem 7.3.2 and for m+ 2 < `h(T ), µT (m) is the same
as the ordinal µ(m) defined in the proof of Theorem 7.3.2. By part (a) of
Corollary 7.2.6, µT (β) ≤ strengthMβ(Eβ). In the proof of Theorem 7.3.2,
we used the fact that, for T finite, µT (β) < strengthMβ(Eβ). Unfortunately,
this may fail for infinite iteration trees.

For n ∈ ω, we say that an iteration tree T is a plus n iteration tree if, for
every β such that β + 2 < `h(T ),

µT (β) + n ≤ strengthMβ(Eβ).

The technical restriction mentioned above is thus being a plus one iteration
tree. Some of the results of [Martin and Steel, 1994] require plus two trees.

Remark. Iteration trees in the sense of [Martin and Steel, 1988] and
[Martin and Steel, 1989] are a special kind of plus one trees. See Exer-
cise 7.4.1.

Theorem 7.4.4. Let M be a premouse and suppose that τ :M≺ (Vν ;∈, δ)
for some ordinals ν and δ. Then there is no continuously illfounded plus one
iteration tree of length ω on M.

Proof. Assume for a contradiction that T = (M, T, 〈En | n ∈ ω〉) is a plus
one iteration tree and that 〈ξn | n ∈ ω〉 witnesses that T is continuously
illfounded.

As in the proof of Theorem 7.3.2, we may assume that the universe of M
is countable.

We will construct an iteration tree U = (N , T, 〈Fm | m ∈ ω〉) with
N = (V ;∈, δ). For each m ∈ ω, we will also construct

(a) an uncountable premouse N̄m;

(b) ψm : N̄m ≺ Pm = (V Nmηm ;∈, δm), where δm = jU0,m(δ);

(c) τ̄m :Mm ≺ Q̄m = (V N̄mν̄m ;∈, δ̄m), where δ̄m = δN̄m and hence ψm(δ̄m) =
δm, and where ψm(ν̄m) = νm = jU0,m(ν).
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We set τm = ψm ◦ τ̄m. Thus we will have

τm :Mm ≺ Qm = (V Pmνm ;∈, δm) = (V Nmνm ;∈, δm).

The extender Fm will be τ(Em).
For each of our premice whose name is a subscripted calligraphic letter,

we denote the universe of the premouse by the corresponding roman letter.
We will suppress the subscript T and—as we already have done—suppress
the superscripts T and U except where there is ambiguity.

For all m ∈ ω, the following conditions will be satisfied:

(i) for all k ∈ ω, if (k + 1)− ≤ m ≤ k then τ̄(k+1)− and τ̄m agree through
crit (Ek) + 1;

(ii) for all k ≤ m, ψk and ψm agree through

min {strengthN̄i(τ̄i(Ei)) | k ≤ i < m}

(= min {τ̄i(strengthMi(Ei)) | k ≤ i < m});
(iii) τ̄m ∈ N̄m;

(iv) {α | ν̄m < α ∈ OrdN̄m ∧ (V N̄mα ;∈, δ̄m) is a premouse} has order type
at least τ̄m(ξm).

(v) N̄m+1 ∈ N̄m.

Because condition (v) contradicts the Axiom of Foundation, our construction
will give the desired reductio ad absurdum.

The independent objects we must define are N̄m, ηm, ψm, and τ̄m.
Let η0 be such that (Vη0 ;∈, δ) is a premouse and {α | ν < α < η0 ∧ (Vα;∈

, δ) is a premouse} has order type τ(ξ0). Let N̄0 = P0 (= Vη0). Let ψ0 be the
identity. Let τ̄0 = τ .

Let m ∈ ω and suppose we have defined N̄k, ηk, ψk, and τ̄k for all k ≤ m.
Suppose that (N , T �m+ 1, 〈Fk | k < m〉) is an iteration tree. Suppose that,
for all m′ ≤ m, (a)–(c) hold with “m′” replacing “m.” Suppose that (i)–(iv)
hold and that, for all m′ < m, (v) holds with “m′” replacing “m.”

The elementarity of τm gives that Fm = τm(Em) is an extender in Qm
and so in Nm.

We first show that conditions (i) and (ii) imply that τ(m+1)− and τm
agree through crit (Em) + 1. By condition (i), we will have shown this if we
prove that conditions (i) and (ii) imply that ψ(m+1)− and ψm agree through
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crit (τ̄m(Em)) + 1. Corollary 7.2.6 gives that crit (Em) + 1 ≤ ρT (m+ 1)−,m),
i.e., that crit (Em)+1 ≤ strengthMi(Ei) for all i such that (m+1)− ≤ i < m.
Since condition (i) gives that τ̄i(crit (Em)) = τ̄m(crit (Em)) for all such i, the

elementarity of the τ̄i implies that crit (τ̄m(Em)) + 1 ≤ strengthQ̄i(τ̄i(Ei)) =

strengthN̄i(τ̄i(Ei)) for all such i. The desired conclusion follows from condi-
tion (ii).

The agreement of τ(m+1)− and τm implies that Q(m+1)− and Qm agree
through crit (τm(Em))+1, and soN(m+1)− andNm agree through crit (τm(Em))+
1. Thus either (m + 1)− = m or else crit (τm(Em)) + 1 < ρU((m + 1)−,m).

Thus we can apply part (2) of Lemma 7.3.2 to deduce that
∏N(m+1)−

τm(Em) N(m+1)−

is wellfounded. Since Fm = τm(Em) belongs to V Nmδm
, it follows that (N , T �

m+ 2, 〈Fk | k < m+ 1〉) is an iteration tree.

By the elementarity of τ̄m, we get that F̄m = τ̄m(Em) is an extender in

Q̄m and so in N̄m and that F̄m belongs to V N̄m
δ̄m

. Moreover ψm(F̄m) = Fm.

Thus we can apply the Shift Lemma (Lemma 7.3.1) with N̄m forM, N̄(m+1)−

for M′, Pm for N , P(m+1)− for N ′, ψm for τ , ψ(m+1)− for τ ′, crit (F̄m) for κ,

and F̄m for E. This gives us that
∏N̄(m+1)−

F̄m
N̄(m+1)− is wellfounded, and it

gives us an embedding

σ̂ : Ult(N̄(m+1)− ; F̄m) ≺ Ult(P(m+1)− ;Fm) = Pm+1,

such that σ̂ and ψm agree through strengthN̄m(F̄m).

Let us next see that, for all k ≤ m, ψk and σ̂ agree through

min {strengthN̄i(F̄i) | k ≤ i < m+ 1},

where each F̄i = τ̄i(Ei). We know that ψm and σ̂ agree through strengthN̄m(τ̄m(Em)).
This gives us the case k = m and, together with condition (ii), gives the case
k < m also.

Another application of the Shift Lemma gives us an embedding

σ̄ :Mm+1 ≺ Ult(Q̄(m+1)− ; F̄m),

such that σ̄ and τ̄m agree through strengthMm(Em) and such that σ̄◦i
M(m+1)−

Em
=

i
Q̄(m+1)−

F̄m
◦ τ̄(m+1)− . (We are finally going to make use of the commutativity

clause of the Shift Lemma.)
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By an argument exactly like that in the analogous step of the proof of
Theorem 7.3.2, we get that, for all k ∈ ω,

(k + 1)− ≤ m+ 1 ≤ k → τ̄(k+1)− and σ̄ agree through crit (Ek) + 1.

We next show that there is a τ̄ ∈ Ult(N̄(m+1)− ; F̄m) such that τ̄ :Mm+1 ≺
Ult(Q̄(m+1)− ; F̄m), such that τ̄ and σ̄ agree through µT (m)+1, and such that
τ̄(ξm+1) = σ̄(ξm+1). The argument is like that in the proof of Theorem 7.3.2
of the existence of the embedding there called τ̄ . We will mention only the
points of difference. The fact that all the Mk belong to, and are countable
in, all the N̄k′ follows from the uncountability of the N̄k. In the earlier proof,
the finiteness of the length of the iteration tree gave us that µ(m) + 1 ≤
strengthMm(Em) and so that µ′(m) + 1 ≤ strengthMm(Em). Here the fact
that T is a plus one tree gives us directly that µT (m)+1 ≤ strengthMm(Em).
To take care of the extra condition that τ̄(ξm+1) = σ̄(ξm+1), we simply add
to our new version of requirement (i) in the definition of the tree U the clause
“and u(i) = σ̄(ai) for the i such that ai = ξm+1.”

The only thing preventing us from setting N̄m+1 = Ult(N̄(m+1)− ; F̄m),

ηm+1 = i
N(m+1)−

Fm
(ηm), τ̄m+1 = τ̄ , and ψm+1 = σ̂ is condition (v).

By hypothesis, ξm+1 < i
M(m+1)−

Em
(ξ(m+1)−). Thus

i
N̄(m+1)−

F̄m
(τ̄(m+1)−(ξ(m+1)−)) = i

Q̄(m+1)−

F̄m
(τ̄(m+1)−(ξ(m+1)−))

= σ̄(i
M(m+1)−

Em
(ξ(m+1)−)

> σ̄(ξm+1)

= τ̄(ξm+1).

Let δ̄ = i
N̄(m+1)−

F̄m
(δ̄m). It follows from condition (iv) that there are at least

i
N̄(m+1)−

F̄m
(τ̄(m+1)−(ξ(m+1)−)) ordinals α of Ult(N̄(m+1)− ; F̄m) that are larger than

i
N̄(m+1)−

F̄m
(ν̄m) and are such that (V

Ult(N̄(m+1)− ;F̄m)
α ;∈, δ̄) is a premouse. Let η̄

be the τ̄(ξm+1)st such α. Let ηm+1 = σ̂(η̄).
Let N̄ = Ult(N̄(m+1)− ; F̄m) and let N̄ = Ult(N̄(m+1)− ; F̄m). Applying the

Löwenheim-Skolem Theorem in N̄ , we get an X ⊆ V N̄η̄ such that

(1) (X;∈, δ̄) ≺ (V N̄η̄ ;∈, δ̄);

(2) V N̄
strengthN̄m (F̄m)

∪ {τ̄ , i
N̄(m+1)−

F̄m
(ν̄m)} ⊆ X;
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(3) in N̄ , the cardinal of X is the same as that of V N̄
strengthN̄m (F̄m)

.

Since (X;∈, δ̄) is an elementary submodel of a premouse, the structure
to which it is isomorphic via Lemma 3.2.4 is a premouse. Let then

π : (X;∈, δ̄) ∼= (N̄m+1;∈, δ̄m+1) = N̄m+1.

Define ψm+1 and τ̄m+1 by

ψm+1 = σ̂ ◦ π−1 : N̄m+1 ≺ Pm+1;

τ̄m+1 = π(τ̄) :Mm+1 ≺ (V
N̄m+1

π(i
N̄

(m+1)−
F̄m

(ν̄m))

;∈, δ̄m+1) = Q̄m+1.

Note that τ̄m+1 = π ◦ τ̄ , since, for x ∈ Mm+1, we have that τ̄m+1(x) =
(π(τ̄))(x) = (π(τ̄))(π(x)) = π(τ̄(x)).

Since V N̄
strengthN̄m (F̄m)

⊆ X, we have that π � V N̄
strengthN̄m (F̄m)

is the identity

and that π(V N̄
strengthN̄m (F̄m)

) = V N̄
strengthN̄m (F̄m)

. This implies that σ̂ and ψm+1

agree through strengthN̄m(F̄m), and it also implies that τ̄ and τ̄m+1 agree
through strengthMm(Em).

The agreement of σ̂ and ψm+1 through strengthN̄m(F̄m) and the agreement
of ψm and σ̂ through this same ordinal imply that ψm and ψm+1 agree through
strengthN̄m(F̄m). Together with condition (ii), this gives condition (ii) with
“m+ 1” replacing m.

Let k ∈ ω be such that (k + 1)− ≤ m + 1 ≤ k. Since τ̄ and τ̄m+1 agree
through strengthMm(Em) > µT ≥ critEk, they agree through crit (Ek) + 1.
But τ̄ and σ̄ agree through µT (m) + 1, so it follows that τ̄m+1 and σ̄ agree
through crit (Ek) + 1. Because σ̄ and τ̄(k+1)− also agree through crit (Ek) + 1,
we finally deduce that τ̄(k+1)− and τ̄m+1 agree through crit (Ek) + 1. Thus we
have verified condition (i) with “m+ 1” replacing “m.”

Condition (iii) with “m + 1” replacing “m” follows from the fact that
τ̄ ∈ X.

By the definition of η̄, there are τ̄(ξm+1) ordinals α of N̄ that are larger

than i
N̄(m+1)−

F̄m
(ν̄m) such that (V N̄α ;∈, δ̄) is a premouse. It follows that there

are τ̄m+1(ξm+1) ordinals of N̄ that are larger than ν̄m+1 such that (V N̄m+1
α ;∈

, δ̄m+1) is a premouse. Thus condition (iv) holds with “m+1” replacing “m.”
By property (3) of X, the cardinal in N̄ of N̄m+1 is the same as that of

V N̄
strengthN̄m (F̄m)

. Hence N̄m+1 can be coded as an element of V N̄
strengthN̄m (F̄m)+1

.



402 CHAPTER 7. ITERATION TREES

But Lemma 7.2.3 implies that Ult(N̄(m+1)− ; F̄m) (i.e., N̄ ) and Ult(N̄m; F̄m)

agree through iN̄m
F̄m

(crit (F̄m))+1, which is at least as large as strengthN̄m(F̄m)+
1. Hence

N̄m+1 ∈ Ult(N̄m; F̄m) ⊆ N̄m.

We have verified all the induction hypotheses for m + 1, and so we have
completed our construction and reached our contradiction. �

Theorem 7.4.5. There is no continuously illfounded plus one iteration tree
of length ω on V .

Proof. By an argument like the proof that part (1) of Theorem 7.3.2 implies
part (2) of that theorem, any counterexample to the the present theorem
would give rise to a counterexample to Theorem 7.4.4. �

Corollary 7.4.6. Let T be a plus one iteration tree of length ω on V and let
b be a branch of T . If T is continuously illfounded off b then b is wellfounded.

Proof. The corollary follows directly from Lemma 7.4.3 and Theorem 7.4.5.
�

Corollary 7.4.6 is the result needed in Chapter 8. Nevertheless, we will
now make a few more remarks about further results and questions concerning
wellfounded cofinal branches.

Suppose that M is a premouse and that τ : M ≺ (Vν ;∈, δ). It follows
from Lemma 7.4.3 and Theorem 7.4.4 that, if T is a plus one iteration tree
of length ω on M and if T is continuously illfounded off b, then b is well-
founded. One can also prove this assertion directly, without going through
Theorems 7.4.4 and 7.4.5 (and doing so gives an alternate proof of Corol-
lary 7.4.6). Such a direct proof is like the proof of Theorem 7.4.4, except for
two modifications. The first is that condition (v) of that proof (N̄m+1 ∈ N̄m)
is now restricted to the case m+ 1 /∈ b. For m+ 1 ∈ b, one just sets

N̄m+1 = Ult(N̄(m+1)− ; F̄m);

ψm+1 = σ̂;

τ̄m+1 = τ̄ .

From the modified condition (v), it follows that

(∀m)(m+ 1 ∈ b → ((m+ 1)− = m ∨ N̄m ∈ N̄(m+1)−))
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and hence that

(∀m)(m+ 1 ∈ b → F̄m ∈ N̄(m+1)−).

If 〈mi | i ∈ ω〉 is an enumeration of b in order of magnitude, then one has
that 〈F̄mi | i ∈ ω〉 is an internal iteration of N̄0 = (Vη0 ;∈, δ). It is thus a
consequence of Theorem 7.1.5 that there is a canonical limit (N̄b, 〈̄n,b | n ∈
b〉). To finish the proof, one constructs an elementary embedding τ̄b : M̃b ≺
N̄b. The purpose of the second modification of the proof of Theorem 7.4.4 is
to make this possible. One arranges, for all k ∈ ω and all x ∈Mk, that

(∃k′ ≥ k)(∀m≥ k′) i
N̄(m+1)−

F̄m
(τ̄(m+1)−(jTk,m(x))) = τ̄m+1(i

M(m+1)−

Em
(jTk,m(x))).

This can be done, since it involves, for each stage m of the construction,
making the function τ̄ agree with σ̄ on finitely many additional arguments.
One then sets

τ̄b(̃k,b(x)) = limn∈ω∩b ̄n,b(τ̄n(jTk,n(x))).

Suppose that M is a premouse and that τ :M ≺ (Vν ;∈, δ). Suppose in
addition that the universe of M is countable. If T is a plus one iteration
tree of length ω on M, then T has a wellfounded branch, and indeed T has
a branch b such that there is a τ ∗ : M̃T

b ≺ (Vν ;∈, δ) with τ ∗ ◦ ̃T0,b = τ . (See
Exercise 7.4.3.)

If T = (M, T, 〈Eα | α+ 1 < θ〉) is an iteration tree and if θ′ ≤ θ, then by
T � θ′ we mean the iteration tree (M, T, 〈Eα | α + 1 < θ′〉).

Let θ be a countable limit ordinal and let T be an iteration tree of length
θ on a premouse∗ M.

(a) T is continuously illfounded if there is a subset X of θ of order type ω
and there are ξα, α < θ, such that

(i) each ξα belongs to the universe of MT
α ;

(ii) (∀α)(∀β)((αT T β ∧ (∃γ ∈X)α < γ ≤ β) → jTα,β(ξα) > ξβ);

(iii) (∀α)(∀β)((αT T β ∧ ¬(∃γ ∈X)α < γ ≤ β) → jTα,β(ξα) = ξβ).

(b) If b is a cofinal branch of T , then T is continuously illfounded off b if
there is a subset X of θ of order type ω and there are ξα, α < θ, such
that

(i) each ξα belongs to the universe of MT
α ;
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(ii) (∀α)(∀β)((αT T β ∧ β /∈ b ∧ (∃γ ∈X)α < γ ≤ β) → jTα,β(ξα) >
ξβ);

(iii) (∀α)(∀β)((αT T β ∧ (β ∈ b∨¬(∃γ∈X)α < γ ≤ β)) → jTα,β(ξα) =
ξβ).

An iteration tree T of countable length θ is self-justifying if, for all limit
θ′ < θ, T is continuously illfounded off the branch {α < θ′ | αT θ′}.

Let us consider the problem of extending our results to trees of length
greater than ω. (1) Can we show that Theorem 7.3.2 remains true if we
replace the natural numbers n and n∗ < n by arbitrary countable ordinals α
and α∗ with α∗ < α, and if we assume that the given iteration tree is a plus
one tree and is self-justifying? (2) Can we similarly generalize Theorems 7.4.4
and 7.4.5, i.e., can we prove, for all countable ordinals θ, that if M is a
premouse and if τ :M≺ (Vν ;∈, δ) then there is no continuously illfounded,
self-justifying, plus one iteration tree of length θ on M? For α of the form
ω + n, the answer to (1) is yes. We first do the construction outlined on
page 402; then do a construction like that of the proof of Theorem 7.3.2.
The fact that (ω + n) − ω is finite implies, at step ω, that χ (the analogue
of the χ of the earlier proof) belongs to some N̄k, k ∈ ω, that agrees enough
with N̄ (the analogue of the N̄ of the proof of Theorem 7.4.4) to give that
ξ ∈ N̄ . This allows us to construct the required τ̄ ∈ N̄ , and so to get a
τ̄ω ∈ N̄ω. We do, however, encounter an obstacle if we try to get a positive
answer to (2) for the case θ = ω + ω. Now step ω cannot be carried out, for
we cannot show that χ belongs to N̄ .

In [Martin and Steel, 1994], positive answers to questions (1) and (2) are
given, except that “plus one” is replaced by “plus two.” In other words the
following is proved:

Let T be a self-justifying, plus two iteration tree of countable length θ on
a premouse M that is elementarily embeddable into some (Vν ;∈, δ). Then

(a) if θ is a limit ordinal, then T is not continuously illfounded;

(b) if θ = α+1, α∗ < α, E is an extender in MT
α , and crit (E) < ρT (α∗, α),

then
∏MT

α∗
E MT

α∗ is wellfounded.

Instead of merely replacing σ̄ by τ̄ , one uses a tree argument to replace
the whole construction up to step ω by a new one. This argument requires
the assumption that T is a plus two tree. The necessity of such an argu-
ment also means that, for general countable θ, one needs not just a single
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construction of the kind we have been discussing but a transfinite sequence
of such constructions.

The Cofinal Branches Hypothesis (the CBH) is the assertion that if T is
an iteration tree on M = (V ;∈) then

(a) if T has limit length, then T has a wellfounded cofinal branch;

(b) if α∗ < α < `h(T ), if MT
α |= “E is an extender,” and if crit (E) <

ρT (α∗, α), then
∏MT

α∗
E MT

α∗ is wellfounded.

The Unique Branches Hypothesis (the UBH) says that every iteration tree
on V has at most one wellfounded cofinal branch.

The CBH, if true, would guarantee that illfoundedness never blocks the
construction of iteration trees on V . For sufficiently closed iteration trees,
the UBH implies the CBH. Unfortunately, large cardinal hypotheses in the
range of Woodin cardinals imply that both the CBH and the UBH are false.
See [Neeman and Steel, 2006].

Provable special cases of the UBH are very useful. Knowing that it-
eration trees have at most one wellfounded cofinal branch is often impor-
tant in proving the existence of wellfounded cofinal branches of trees. For
example, the theorem of [Martin and Steel, 1994] mentioned on page 404
gives wellfounded cofinal branches only for trees whose restrictions have
unique wellfounded cofinal branches. Indeed, the application of this result in
[Martin and Steel, 1994] is in a situation where the result of Exercise 7.4.6
gives such uniqueness.

Any failure of the UBH gives an inner model with a Woodin cardinal.
(See Exercise 7.4.6.) In [Steel, 2002], Steel gets inner models with more
Woodin cardinals from the failure of UBH for non-overlapping iteration trees.
An iteration tree T is non-overlapping if whenever (α + 1)T T (β + 1) then
crit (ETβ ) is greater than the λ such that ETα is a (κ, λ)-extender inMT

α . The
trees are used in inner model theory are essentially only non-overlapping
trees. Non-overlapping trees are involved also in Exercises 7.4.12 and 7.4.13.
[Sargsyan and Trang, 2016] shows that the failure of UBH for tame trees
yields inner models of strong large cardinal hypotheses.

An important weakening of the CBH is the Strategic Branches Hypothesis
(the SBH). For each ordinal θ, consider the game in which players I and
II attempt to build an iteration tree T of length θ on V . I must pick the
extenders ETα , satisfying the obvious conditions. At limit ordinals γ, player II
must choose a cofinal branch of T � γ. Any failure of wellfoundedness, either
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at successor or limit steps, results in a loss for II. If T is actually built, then
II wins. The SBH says that, for every ordinal θ, player II has a winning
strategy. Clearly the CBH implies the SBH, since the CBH provides II with
a trivial winning quasistrategy. See §5 of [Martin and Steel, 1994] for more
on the SBH.

Exercise 7.4.1. In [Martin and Steel, 1988] and [Martin and Steel, 1989] it
is required in the definition of an iteration tree T that there be a nondecreas-
ing sequence 〈ρα | α + 1 < `h(T )〉 such that, for each α,

ρα < strengthMα(Eα) ∧ crit (Eα) ≤ ρ(α+1)− .

Prove that every such iteration tree is a plus one tree.

Exercise 7.4.2. LetM be a premouse and suppose that τ :M≺ (Vν ;∈, δ).
Let T be an iteration tree of length ω on M. Construct an iteration tree U
on V and a sequence 〈τn | n ∈ ω〉 such that

(a) T U = T T ;

(b) if k ∈ ω and T is a plus k tree, then so is U ;

(c) τ0 = τ ;

(d) for n ∈ ω, τn :MT
n ≺ jU0,n(Vν ;∈, δ);

(e) for mT T n ∈ ω, τn ◦ jTm,n = jUm,n ◦ τm.

Exercise 7.4.3. Let M be a premouse whose universe is countable and
suppose that τ :M≺ (Vν ;∈, δ). Let T be a plus one iteration tree of length
ω on M. Show that there are a branch b of T and a τ ∗ : M̃T

b ≺ (Vν ;∈, δ)
such that τ ∗ ◦ ̃T0,b = τ .

Hint. Let T = T T . Form a tree W whose members are initial segments
of attempts to enumerate b and τ ∗ with the required properties. To define
W , let 〈yki | i ≤ k ∈ ω〉 be such that each yki belongs to the universe MT

k

of MT
k , such that jTk′,k(y

k′
i ) = yki for i ≤ k′ T k ∈ ω, and such that, for any

branch b of T ,
{̃Tk,b(yki ) | i ≤ k ∈ b} = M̃T

b ,

where M̃T
b is the universe of M̃T

b . Let W be the set of all 〈ki, ai | i ≤ n〉
such that (1) n ∈ ω, (2) ki T ki′ for i < i′ ≤ n, (3) ai ∈ Vν , (4) ykni 7→ ai is
a partial elementary embedding of MT

kn
into (Vν ;∈, δ), and (5) for all x in
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the universe of M and for all i ≤ n, if jT0,k(x) = yki , then ai = τ(x). If the
desired b and τ ∗ do not exist, then W is wellfounded.

Assume that W is wellfounded. Let U and 〈τn |∈ ω〉 be as given by
Exercise 7.4.2. For k ∈ ω, define wk = 〈ki, ai | i ≤ n〉 as follows. Let n be
the number of T -predecessors of k. Let k0 T · · ·T kn = k. Let ai = τk(y

k
i ).

Show that wk ∈ jU0,k(W ). Now set

ξk = ‖wk‖j
U
0,k(W ).

Show that the ξk witness that U is continuously illfounded.

Exercise 7.4.4. Assume the result from [Martin and Steel, 1994] stated on
page 404, and prove the following (the main wellfoundedness result for iter-
ation trees in that paper).

Let M be a premouse whose universe is countable and suppose that τ :
M ≺ (Vν ;∈, δ). Let T be a plus two iteration tree of countable length θ on
M. Assume that there is no maximal (not properly extendable) non-cofinal
branch b of T such that there is a τ ∗ : M̃T

b ≺ (Vν ;∈, δ) such that τ ∗◦ ̃T0,b = τ .
Then

(a) if θ is a limit ordinal, then there are a cofinal branch b of T and a
τ ∗ : M̃T

b ≺ (Vν ;∈, δ) such that τ ∗ ◦ ̃T0,b = τ ;

(b) if θ = α + 1, α∗ < α, E is an extender in MT
α , and crit (E) <

ρ(α∗, α), then the ultrapower
∏MT

α∗
E MT

α∗ is wellfounded and there is a

τ ∗ : Ult(MT
α∗ ;E) ≺ (Vν ;∈, δ) such that τ ∗ ◦ iM

T
α∗

E ◦ jT0,α∗ = τ .

Hint. By taking direct limits at limit ordinals, construct U and 〈τγ | γ <
θ′〉 having the properties (a)–(e) of Exercise 7.4.2, except that ω is replaced
by θ′, where θ′ is either θ or the least ordinal at which illfoundedness prevents
continuing the construction. Use an argument similar to the one in the hint
for Exercise 7.4.3 to show that U is self-justifying. Part (b) of the result
on page 404 implies that θ′ is not a successor ordinal < θ. Part (a) and a
routine generalization of Lemma 7.4.3 imply that θ′ is not a limit ordinal
< θ. Thus θ′ = θ. Another Exercise 7.4.3 argument then shows that (a)
follows from part (a) of the page 404 result. For (b), use part (b) of the

page 404 result to establish the wellfoundedness of
∏jU

0,α∗ (V )

τα(E) jU0,α∗(V ). This

gives a τ̂ : Ult(MT
α∗ ;E) ≺ Ult(jU0,α∗(Vν ;∈, δ); τα(E)) such that τ̂◦iM

T
α∗

E ◦jT0,α∗ =



408 CHAPTER 7. ITERATION TREES

i
jU
α∗ (V )

τα(E) ◦ jU0,α∗ ◦ τ = i
jU
α∗ (V )

τα(E) ◦ jU0,α∗(τ). Use the absoluteness of illfoundedness of

trees to show that there is such a τ̂ belonging to Ult(jU0,α∗(V ); τα(E)). The

existence of τ ∗ follows from the absoluteness of i
jU
α∗ (V )

τα(E) ◦ jU0,α∗ .

Remark. The proof of this theorem, and the proof of the theorem on which
it depends, go through under weaker assumptions than ZFC. For example
(and we mention this example only because it will be used in subsequent
exercises), if κ is an ordinal number then the theorem holds in any transitive
proper class satisfying ZF + DC<κ + V = L(Vκ). (DC<κ is is the assertion
that sequences of dependent choices of arbitrary length β < κ can always be
made.)

Exercise 7.4.5. For any class model M̃ for the language of set theory (or an
expansion of that language), we let wford (M̃) be the largest ordinal that is
order isomorphic to a not necessarily proper initial segment of the ordinals of
M̃ if not every ordinal is so isomorphic, and let wford (M̃) = Ord otherwise.
(This is the same as wfo(A), where A is the ordering of the ordinals of M̃ .
See page 289.)

Assume the result of Exercise 7.4.4, in the version mentioned in the re-
mark above, and prove the following theorem of Hugh Woodin.

Let κ be an ordinal and let M be a transitive proper class satisfying ZF
+ DC<κ + V = L(Vκ). Note that all extenders of M belong to V M

κ . Let θ be
an ordinal number and let T be a plus two iteration tree of length θ on M .

(a) If θ is a limit ordinal, then for every ordinal λ there is a generic
maximal branch of T (i.e., there is in some forcing extension of V a maximal
branch of T ) such that wford (M̃b) is ≥ λ.

(b) If θ = α+1, α∗ < α, E is an extender in MT
α , and crit (E) < ρ(α∗, α),

then either the conclusion of (a) holds or else
∏MT

α∗
E MT

α∗ is wellfounded.

Hint (for part (a); the proof of (b) is similar). Assume that (a) fails.
Let λ > max{κ, `h(T )} be arbitrary. Let ψ(v1, v2, v3, v4) be a formula saying
that v1 and v2 > v1 are ordinals, that v3 is a premouse with Ordv3 = v2, that
v4 is an countable iteration tree of countable limit length on v3, and that
there is no maximal branch b of v4 such that wford ((ṽ3)b) ≥ v1. Let γ be any
ordinal greater than λ such that (V M

γ ;∈, κ) is a premouse. Let Coll(ω, γ) be
the usual partial ordering for collapsing γ to ω. (See 539 for the definition.)
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Show that if G is Coll(ω, γ)-generic over V , then

V [G] |= ψ[λ, γ, (V M
γ ;∈, κ), T (γ)],

where T (γ) is the iteration tree on (V M
γ ;∈, κ) with the same tree ordering

and extenders as T . Argue by absoluteness that there is a T ′ ∈ M [G] such
that

M [G] |= ψ[λ, γ, (V M
γ ;∈, κ), T ′].

Let η > (γ+)M be such that (V M
η ;∈, κ) is a premouse. Let X ∈ M be such

that X is countable, γ ∈ X, and (X;∈, κ) ≺ (V M
η ;∈, κ). Let N be transitive

with π : X ∼= N . Let Ḡ ∈M be Coll(ω, π(γ))-generic over N . Then

N [Ḡ] |= ψ[π(λ), π(γ), (V N
π(γ);∈, π(κ)), π(T ′)].

Now use the absoluteness of ψ and Exercise 7.4.4, applied in M , to get a
contradiction.

Exercise 7.4.6. Let θ be a limit ordinal and let T = (M, T, 〈Eα | α + 1 <
θ〉) be an iteration tree. Suppose that b and c are distinct wellfounded cofinal
branches of T . Let

κ∗ = sup{ρT (α, θ) | α < θ}.

Assume that κ∗ is an ordinal both ofMT
b and ofMT

c . (This is automatically
true ifM is a premouse or if it is a proper class.) Let η = min{OrdMb ,OrdMc }.
Show that in Lη(V

Mb
κ∗ ) (= Lη(V

Mc
κ∗ )) the ordinal κ∗ is a Woodin cardinal.

This is a result of [Martin and Steel, 1994].

Hint. First show that

κ∗ = sup{crit (jTα,b) | α ∈ b} = sup{crit (jTα,c) | α ∈ c}.

Next define inductively

κ0 = min{κ | (∃α)(α + 1 ∈ b \ c ∧ κ = crit (Eα))};
α0 = max{α | α + 1 ∈ b ∧ κ0 = crit (Eα)};
νn = min{ν | (∃β)(β + 1 ∈ c \ (αn + 1) ∧ ν = crit (Eβ))};
βn = max{β | β + 1 ∈ c ∧ νn = crit (Eβ)};

κn+1 = min{κ | (∃α)(α + 1 ∈ b \ (βn + 1) ∧ κ = crit (Eα))};
αn+1 = max{α | α + 1 ∈ b ∧ κn+1 = crit (Eα)}.
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Clearly all four sequences are strictly increasing, and αn < βn < αn+1 for
all n ∈ ω. Show that the αn and βn converge to θ and that the κn and νn
converge to κ∗. Show that, for all n ∈ ω,

νn = crit (Eβn) < strengthMαn (Eαn);

κn+1 = crit (Eαn+1) < strengthMβn (Eβn).

Now fix n ∈ ω and let z belong belong to the ranges of both jT(αn+1)−,b

and jT(βn+1)−,c. Let ϕ(v1, v2, v3) be a Σ0 formula of the language of set theory.

Let γ = min{κn, νn} and let γ′ = min{νn, κn+1}. Prove that

(i) (x ∈ VMb
γ ∧ (∃y ∈ VMb

κ∗ )ϕ(x, y, z)) → (∃y ∈ VMb
γ )ϕ(x, y, z);

(ii) (x ∈ VMb

γ′ ∧ (∃y ∈ VMb
κ∗ )ϕ(x, y, z)) → (∃y ∈ VMb

γ′ )ϕ(x, y, z).

Now let f : κ∗ → κ∗ with f ∈ Lη(VMb
κ∗ ). For some n, f belongs to the

ranges of both jT(αn+1)−,b and jT(βn+1)−,c. Assume for definiteness that κn < νn.

Let ξ = min{νn, κn+1}. Observe that κn < ξ ≤ νn < strengthMαn (Eαn). By
the result just proved, κn is closed under f and f(κn) < ξ. Let

F = 〈(Eαn)a | a ∈ [ξ]<ω〉.

Prove that in Lη(V
Mb
κ∗ ) the cardinal κn and the embedding i

Lη(V
Mb
κ∗ )

F witness
that κ∗ is Woodin for f .

Remarks:

(a) If M satisfies ZFC, then Lη(V
Mb
κ∗ ) satisfies ZF but may not satisfy

the Axiom of Choice. However, Woodin has shown that there is a generic
extension of it in which Choice holds and κ∗ is still Woodin.

(b) Suppose that M̃T
b and M̃T

c are not necessarily wellfounded, but that
η is the minimum of wford (M̃T

b ) and wford (M̃T
c ). (See page 408.) Then

Lη(V
Mb
κ∗ ) (Lη(V

Mc
κ∗ )) still makes sense, though it may not satisfy ZF. The

argument of the hint shows that κ∗ is Woodin in this model.

Exercise 7.4.7. Let κ be an ordinal and let M be a transitive proper class
model of ZF + DC<κ + “κ is inaccessible” + V = L(Vκ). Assume also that
there is no κ′ < κ such that L(V M

κ′ ) |= “κ′ is Woodin.” Show that no iteration
tree on M has more than one wellfounded cofinal branch.
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Hint. Show that the hypotheses about M imply, for any proper class X
of ordinals, that the set of all ordinals < κ that are definable in M from κ
and elements of X is unbounded in κ.

Now assume that b and c are wellfounded cofinal branches of an iteration
tree T on M . Apply the result of the preceding paragraph to Mb and Mc,
with

X = {α ∈ Ord | α = jT0,b(α) = jT0,c(α)}.

Now get a contradiction by generalizing to arbitrary formulas the proposition
about Σ0 formulas in the hint to Exercise 7.4.6.

Exercise 7.4.8. This exercise and the next give corollaries of Woodin’s re-
sult of Exercise 7.4.5

Let κ and M be as in Exercise 7.4.7. For iteration trees T of limit length θ
on M , let us make the following definitions. Let κ∗(T ) = sup{ρT (α, θ) | α <
θ}. For each γ < κ∗(T ), there is an α < θ such that V

MTβ
γ = V

MT
β′

γ for all β and

β′ such that α ≤ β ≤ β′ < θ. Define M(T ) by letting M(T ) = L(V
M(T )
κ∗(T ) ),

where V
M(T )
κ∗(T ) is the limit of the V

MTβ
κ∗(T ). If M |= “E is a set of extenders,”

then let E(T ) be the limit of the jT0,β(E) ∩ Vκ∗(T ).

Let T be a plus two iteration tree on M of limit length. Assume that
M(T ) 6|= “κ∗(T ) is Woodin.” Prove that T has a wellfounded cofinal branch
(which must be unique, by Exercise 7.4.7).

Hint. Assume T has no wellfounded cofinal branch. By Exercise 7.4.6,
T has no wellfounded maximal branch. Use Exercise 7.4.5 and remark (b)
following Exercise 7.4.6 to get the contradiction that some κ′ ≤ κ∗ is Woodin
in L(V

M(T )
κ′ ).

Exercise 7.4.9. Let κ and M be as in Exercises 7.4.7 and 7.4.8. Let T be
a plus two iteration tree on M of successor length α + 1. Let α∗ < α, and

let E be an extender in MT
α with crit (E) < ρ(α∗, α). Show that

∏MT
α∗

E MT
α∗

is wellfounded.

Exercise 7.4.10. This exercise gives an improvement, due to Woodin, of
the result of Exercise 7.4.8.

For M as in Exercise 7.4.7 and for positive integers n, say that M is
n-iterable if, for any plus two iteration tree T of limit length on M , the
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following game GT is a win for II. Plays of GT are as follows:

I α0 α1 . . . αn−1

II β0 β1 . . . βn−1

All αi and all βi must be ordinal numbers. II wins such a play if and only
if there is a generic cofinal branch b of T such that

(1) for all i < n, both αi and βi belong to wford (M̃T
b );

(2) (∀i < n) jT0,b(αi) = βi, where jT0,b is the obvious partial function.

Note that the assertion that GT is a win for II is expressed by a formula of
the language of set theory in the parameters T (i.e., T ’s extender sequence)
and V M

κ .
(a) Let n ∈ ω. Suppose that M (is as in Exercise 7.4.7 and) is (n + 1)-

iterable. Suppose that T is a plus two iteration tree on M of limit length
with no wellfounded cofinal branch. Prove that M and M(T ) satisfy the
same Σn sentences. (M(T ) is defined in Exercise 7.4.8.)

(b) Assume that there is a transitive proper class M that satisfies ZFC
+ “There is a Woodin cardinal.” Prove that, for every n ≥ 1, there is an M
as in Exercise 7.4.7 such that M is n-iterable and M satisfies “κ is Woodin.”

Hint. To prove (b), first show that there is an M as in Exercise 7.4.7
such that M satisfies “κ is Woodin.” Fix such an M and assume for a
contradiction that M is not n-iterable.

Show that there exist 〈Ti | i ∈ ω〉 and 〈Mi |M ∈ ω〉 such that

(i) M0 = M ;

(ii) for each i ∈ ω, Ti is a plus two iteration tree of limit length on Mi;

(iii) for each i ∈ ω, Mi+1 = Mi(Ti);
(iv) for each i ∈ ω, Ti witnesses that Mi is not n-iterable.

Say that an ordinal γ has property P if, for any G that is Coll(ω, γ)-
generic over V , there exist in V [G] a transitive set N and an ordinal δ ≤ κ
such that

(a) V M
δ ∈ N and N is a model of ZC plus, say, Σ100 Replacement;

(b) Ord ∩N = γ;
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(c) N satisfies the formula asserting that there are 〈Ti | i ∈ ω〉 and
〈Mi | i ∈ ω〉 such that M0 = Lγ(V

M
δ ) and (ii), (iii), and (iv) above

hold.

Let γ be the least ordinal that has property P. By the absoluteness for
M of property P, M satisfies that γ is the least ordinal with property P. Let
G be Coll(ω, γ)-generic over V . Work in M [G].

Let N ∈M [G] witness (in M [G]) that γ has property P. Let 〈Ti | i ∈ ω〉
and 〈Mi | i ∈ ω〉 be given by (c).

Use Exercises 7.4.8, 7.4.9, and 7.4.5 to show that the tree ordering and
extenders of T0 yield a plus two iteration tree T ∗0 on M and that T ∗0 has a
cofinal branch b whose wellfounded part is at least (γ+)M [G]. This branch
is of course also a branch of T0. To simplify notation, let us identify the

transitive part of the model M̃T ∗0
b with the transitive set isomorphic to it.

With this identification,

M(T ∗0 ) = L(V
M̃T

∗
0
b

κ∗(T ∗0 )).

(See Exercise 7.4.8 for the definition of κ∗(T ∗0 ).)
The model N and the sequences 〈Ti | 1 ≤ i ∈ ω〉 and 〈Mi | 1 ≤ i ∈ ω〉

witness that clauses (a)–(c) above hold with M replaced by M̃T ∗0
b and δ

replaced by κ∗(T ∗0 ). Hence γ has what we might call property j
T ∗0
0,b (P). By

absoluteness, it is true in M̃T ∗0
b that γ has property j

T ∗0
0,b (P).

It follows that j
T ∗0
0,b (γ) ≤ γ and so that j

T ∗0
0,b (γ) = γ. Hence b is a well-

founded cofinal branch of T0 and Ord ∩ (M0)T0b = γ. But this means that

j
T ∗0
0,b gives a winning strategy for II for the game GT0 (where, of course, moves

are restricted to ordinals < γ). By absoluteness, we get that N satisfies that
II wins GT0 , and that is a contradiction.

Exercise 7.4.11. Let M be a premouse∗. Let T be an iteration tree of
length |δM|+ on M. Let b be a cofinal branch of T . Note that b is closed
and unbounded in |δM|+. Prove that there is a stationary subset X of b such
that

(∀α ∈X)(∀β ∈X)(∀γ ∈X)(α ≤ β ≤ γ → jTα,β(crit (jTα,β)) = crit (jTβ,γ)).
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Exercise 7.4.12. This exercise concerns a theorem of Woodin whose proof
uses iteration trees in the way they are used in inner model theory. The
exercise is a sequel to Exercises 6.3.7 and 6.3.8.

For x ∈ ω2, for N a transitive class model of ZFC, and for E strongly
witnessing in N that some κ is Woodin, one can try to define, as Gx was
defined in Exercise 6.3.8, GN,E

x ⊆ PNE by

[[c]]N(∼INE
)N ∈ GN,E

x ↔ x ∈ Bc.

Suppose that M is a transitive class model of ZFC + “there is a Woodin
cardinal” and that every plus two iteration tree on M has a wellfounded
cofinal branch. (Woodin has shown that the existence of such a proper class
M follows from the existence of a transitive proper class model of ZFC +
“there is a Woodin cardinal” plus the hypothesis that every set has a #.)
Let E strongly witness in M that κ is Woodin.

Let x ∈ ω2. Show that there is an iteration tree T of successor length

θ + 1 on M such that G
MTθ ,j

T
0,θ(E)

x is well-defined and is PM
T
θ

jT0,θ(E)
-generic over

MT
θ with MT

θ [G
MTθ ,j

T
0,θ(E)

x ] = MT
θ [x].

Hint. By the argument of the hint to Exercise 6.3.8, it is enough to
construct an iteration tree of successor length θ + 1 on M (i.e., on (M ;∈)),

such that IM
T
θ

jT0,θ(E)
is x-consistent in V . In doing so, one may assume without

loss of generality that

E = {E | E ∈ V M
κ and M |= “E is strong”}.

Construct an iteration tree T on M and a sequence 〈ρα | α + 1 < `h(T )〉
of ordinals, with the following properties. (We omit the superscript T and
the subscript T .)

(i) The length of T is θ + 1 for the least θ < κ+ such that IMθ

j0,θ(E) is

x-consistent in V , if there is such a θ; otherwise `h(T ) = κ+.

(ii) For each α < θ, Eα belongs to j0,α(E), i.e., is inMα a strong extender
belonging to V Mα

j0,α(κ).

(iii) For all α and β such that α ≤ β < θ, strengthMα(Eα) ≤ strengthMβ(Eβ).

(iv) For all α and β such that α ≤ β < θ, ρα ≤ ρβ.

(v) For each α < θ, ρα < strengthMα(Eα).
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(vi) For each α < θ, (α+1)− is the least β ≤ α such that crit (Eα) ≤ ρβ.

Since the strength of a strong extender must be a limit ordinal, proper-
ties (ii) and (v) imply that ρα + ω ≤ strengthMα(Eα) for each α. Proper-
ties (iv) and (vi) and the argument for Exercise 7.4.1 then show that T will
be plus n for every n.

Suppose that T � α+ 1 and 〈ρβ | β < α〉 have been constructed and that
α+1 does not meet condition (i) above for being the length θ+1 of T . Then
there must exist

(1) an E ∈ V Mα

j0,α(κ) that is a strong (δ, λ)-extender in Mα, for some δ and
λ;

(2) a sequence 〈cγ | γ < δ〉 ∈Mα such that each cγ ∈ CMα ∩ V Mα
δ , such

that ĉ, the δth term of the sequence iME (〈cγ | γ < δ〉), belongs to V Mα
λ ,

and such that x ∈ Bĉ \
⋃
γ<δ Bcγ .

Choose such an E and 〈cγ | γ < δ〉 with the least possible λ and, subject
to this, with the least possible value of rank (ĉ). Let Eα = E and let ρα =
rank (ĉ). Also let 〈cαγ | γ < δα〉 = 〈cγ | γ < δ〉

At limit steps α, get Mα by choosing any wellfounded cofinal branch.
Show that T has properties (i)–(vi). The key fact for verifying (iv) is

the following: If E and E ′ are strong extenders with crit (E) = crit (E ′) and
strength (E) < strength (E ′), then E ′�strength (E) = 〈E ′a | a ∈ [strength (E)]<ω〉
is a strong extender.

Assume that `h(T ) = κ+. Let b be a wellfounded cofinal branch of T .
Prove that there is a stationary set X ⊆ b such that, for (α+1)− ≤ (β+1)− ∈
X,

j(α+1)−,(β+1)−(δα) = δβ;

j(α+1)−,(β+1)−(〈cαγ | γ < δα〉) = 〈cβγ | γ < δβ〉.

(The existence of stationary X satisfying the first equation comes directly
from Exercise 7.4.11.) Suppose that (α+1)− and (β+1)− are members of X
with α < β. Now x ∈ Bĉα , and ĉα is the δαth term of the sequence iMα

Eα
(〈cαγ |

γ < δα〉). But ĉ is also the δαth term of the seqence i
M(α+1)−

Eα
(〈cαγ | γ < δα〉).

Clause (vi) implies that crit (jα+1,(β+1)−) > ρα. By the definition of ρα, this
means that ĉα is also the δαth element of the sequence j(α+1)−,(β+1)−(〈cαγ |
γ < δα〉). This a contradiction.
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Exercise 7.4.13. Let κ and M be as in Exercises 7.4.7, 7.4.8, and 7.4.9.
Suppose also that κ is Woodin in M . Let E strongly witness in M that κ is
Woodin. Suppose that x ∈ ω2 is such that M is a class in L[x] and κ < ω

L[x]
1 .

Prove that there is an iteration tree T on M with the following properties:

(1) `h(T ) = ω
L[x]
1 ;

(2) T ∈ L[x];

(3) ω
L[x]
1 is Woodin in M(T );

(4) G
M(T ),E(T )
x is well-defined and is PM(T ),E(T )-generic over M(T ) with

M(T )[G
M(T ),E(T )
x ] = M(T )[x] = L[x].

(See Exercise 7.4.8 for the definitions of M(T ), E(T ), and κ∗(T ).)

This result is due to Woodin. From it, he gets (a) a proof of Π1
2 deter-

minacy different from, and using a slightly weaker hypothesis than, the one
in Chapter 8 and (b) a proof that the consistency of ZFC + “There is a
Woodin cardinal” implies the consistency of ZFC + “Π1

2 determinacy.” (See
Exercise 8.3.3.) (b) is half of an equiconsistency result.

Hint. Construct an iteration tree T ∈ L[x] as in the hint for Exer-
cise 7.4.12. We are not assuming that every iteration tree on M has a well-
founded cofinal branch, and even if true this might fail in L[x]. Therefore we
must replace propery (i) of construction of Exercise 7.4.12 by

(i) The length of T is as small as possible so the one of the following
holds:

(a) `h(T ) = θ + 1 and θ < ω
L[x]
1 is the least ordinal such that IMθ

j0,θ(E)

is x consistent in L[x].

(b) Wellfoundedness fails: either `h(T ) is a limit ordinal and T has
no wellfounded cofinal branch belonging to L[x], or `h(T ) = α+1
and, for the chosen candidate for Eα and the (α + 1)− given by

(vi),
∏MT

(α+1)−

Eα
MT

(α+1)− is not wellfounded.

(c) `h(T ) = ω
L[x]
1 .

Since T is, in particular, a plus two tree, Exercises 7.4.8 and 7.4.9 imply that
(b) can hold only if `h(T ) is a limit ordinal and M(T ) |= “κ∗(T ) is Woodin.”
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If (a) holds, then j0,θ(κ) < ω
L[x]
1 . Since PMθ

j0,θ(E) has the j0,θ(κ) chain

condition in Mθ, this gives the contradiction that

ω
Mθ[x]
1 ≤ j0,θ(κ) < ω

L[x]
1 .

If (c) holds, then the last argument of the hint to Exercise 7.4.12 shows that
(b) must hold also. Thus (b) holds.

Show that IM(T )
E(T ) is x-consistent in L[x].

If κ∗(T ) < ω
L[x]
1 , then we get a contradiction as in the case of (a)’s holding.

Thus κ∗ = `h(T ) = ω
L[x]
1 .
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Chapter 8

Projective Games

The projective hierarchy of subsets of a topological space X is defined (by
induction on all X simultaneously) as follows:

(a) A ∈ Σ1
1 if and only if there is a closed C ⊆ X × ωω such that A =

{x ∈X | (∃y ∈ ωω) 〈x, y〉 ∈ C}.
(b) For all positive integers n, A ∈ Π1

n if and only if X \ A ∈ Σ1
n.

(c) A ∈ Σ1
n+1 if and only if there is a B ⊆ X × ωω such that B ∈ Π1

n and
A = {x ∈X | (∃y ∈ ωω) 〈x, y〉 ∈ B}.

(d) A ∈∆1
n if and only if A ∈ Σ1

n and A ∈ Π1
n.

The class of projective subsets of X is
⋃
n Σ1

n.

Remark. Instead of defining Σ1
1 directly by clause (a), one can start with

n = 0, letting Σ1
0 be the class of all open sets.

In this chapter we will prove, assuming the existence of infinitely many
Woodin cardinals greater than |T |, the determinacy of all projective games
in a game tree T . For the determinacy of all Π1

n+1 games in T , we will need n
Woodin cardinals greater than |T |, plus—say—a measurable cardinal greater
than the n Woodin cardinals. These results are from [Martin and Steel, 1988]
and [Martin and Steel, 1989].

The proof will proceed via Theorem 4.3.5. By this theorem, the deter-
minacy of all Π1

n+1 games in T will follow if we can show that every Π1
n+1

subset of [T ] is |T |+-homogeneously Souslin. By Theorem 4.3.6, we already
have the special case n = 0, provided that there is a measurable cardinal

419
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greater than |T |. What we need is thus a method to propagate homogeneous
Souslinness up the projective hierarchy.

In §8.1 we deal with the first half of the problem of propagating homo-
geneous Souslinness: We give a natural way of transferring homogeneous
Souslinness at one level of the projective hierarchy to Souslinness at the next
level. We first illustrate the idea by defining an operation

〈U, 〈Up | p ∈ U〉〉 7→ U †(〈Up | p ∈ T 〉).

The value U †(〈Up | p ∈ T 〉) is defined whenever 〈Up | p ∈ T 〉 witnesses
that U is homogeneous for T , and this value is a tree witnessing that the
complement of the T -projection of U is Ord-Souslin. We next introduce the
notions of weakly homogeneous trees and weakly κ-homogeneously Souslin
sets. We study various equivalents of these notions, some of which will be
used in Chapter 9. We show that if A ⊆ [T ] × ωω is κ-homogeneously
Souslin—in the obvious sense—then pA is weakly κ-homogeneously Souslin.
We then define a U ‡ operation analogous to the U † operation, but defined on
trees U and witnesses to the weak homogeneity of U . The ultimate origin of
the U † and U ‡ operations is [Martin and Solovay, 1969], though the general
constuctions were discovered a few years later.

In §8.2 we show that, if κ is a Woodin cardinal and U ‡ is the result of ap-
plying our operation to a witness that some set is weakly κ+-homogeneously
Souslin, then (any sufficiently large restriction of) U ‡ is (< κ)-homogeneous,
i.e., is η-homogeneous for every η < κ. This theorem will enable us to prop-
agate homogeneous Souslinness up the projective hierarchy and so to prove
projective determinacy. It will also be the basis for further determinacy
theorems in Chapter 9. To make the ideas of the main construction more
comprehensible, we first do an analogous construction for the simpler U † op-
eration. To motivate our constructions, we aim directly at a weaker property
than homogeneous Souslinness: the property of having an embedding nor-
mal form. The homogeneity of U † and U ‡ falls out of our proofs that the
T -projections of these trees have embedding normal forms.

The construction given in §8.2 is a modification of that given in [Martin and Steel, 1989].
This modification, based on an idea of Itay Neeman, yields a construction
that is slightly more complicated than what could be gotten by a smaller mod-
ification of the earlier proof. The slight extra complexity is more than com-
pensated by the new construction’s yielding immediately not just an embed-
ding normal form but also homogeneity. The construction of [Martin and Steel, 1989]
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gave directly gave an embedding normal form, but more work was needed to
prove homogeneity.
§8.3 is devoted to variations on the proof given in §8.2. First we give a con-

struction that is not too different from the one in [Martin and Steel, 1989].
We then follow [Martin and Steel, 1989] in proving a lemma asserting roughly
that, if T ⊆ Vκ is an iteration tree of length ω on V and 〈Up | p ∈ T 〉 wit-
nesses that some tree is κ-homogeneous, then the embeddings of the former
and the latter act trivially on one another. Armed with this lemma, we show
how the construction of §8.3 can yield the results of §8.2. We next prove a
theorem of Katrin Windßus stating that an embedding normal form with 2ℵ0-
closed models directly implies homogeneous Souslinness. Windßus’ theorem
provides another way to get the determinacy results of §8.2 from either of our
constructions. Finally we mention—and cite references for—machinery due
to Neeman for proving the theorem from an optimal hypothesis, machinery
that he has used to get a large range of determinacy results.

8.1 Weakly Homogeneous Trees

Let T be a game tree, let Y be a set, and let U be a tree on field (T ) × Y .
Suppose that 〈Up | p ∈ T 〉 witnesses that U is homogeneous for T . For p ∈ T ,
let πp = πUp :

∏
Up(V ;∈) ∼= (Ult(V ;Up);∈). For p ⊆ q ∈ T , let

ip,q : Ult(V ;Up) ≺ Ult(V ;Uq)

be defined as on page 200. Similarly define, for x ∈ [T ], the class modelMx

and the embeddings
ixx�n : Ult(V ;Up) ≺Mx

as before.
Define a tree U †(〈Up | p ∈ T 〉) on field (T )×Ord, as follows. If p ∈ T and

t ∈ `h(p)Ord, then 〈|p, t|〉 ∈ U †(〈Up | p ∈ T 〉) if and only if

(∀i1 < `h(p))(∀i2 < `h(p))(i1 < i2 → t(i2) < ip�i1,p�i2(t(i1))).

Let A be the T -projection of U .

Theorem 8.1.1. Let T , Y , U , 〈Up | p ∈ T 〉, and A be as above. Let U † =
U †(〈Up | p ∈ T 〉). Then [T ] \ A is the T -projection of U †. Moreover [T ] \ A
is also the T -projection of U †�α for any ordinal α ≥ max{ω, (2|Y |)+}, where
U †� α = U † ∩ {〈|p, t|〉 | range (t) ⊆ α}.
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Proof. Let x ∈ [T ] be such that [U †(x)] 6= ∅. Let f ∈ [U †(x)]. For each
n ∈ ω,

ix�n,x�n+1(f(n)) < f(n+ 1).

Now

ixx�n(f(n)) = ixx�n+1(ix�n,x�n+1(f(n))) < ixx�n+1(f(n+ 1)).

Hence 〈ixx�n(f(n)) | n ∈ ω〉 is an infinite descending sequence of ordinals of
Mx. Lemma 4.3.4 implies that x /∈ A.

Next let x ∈ [T ] \ A. Thus U(x) is a wellfounded tree. Note that, in the
case that Y is finite, it follows by König’s Lemma that U(x) is finite. This
gives us the function

‖ ‖U(x) : U(x)→ |U(x)|+,

defined on page 25. For each n ∈ ω, let

fn : U [x � n]→ |U(x)|+

be given by setting fn(s) = ‖s‖U(x) for each s ∈ U [x � n]. For n ∈ ω
let tn = πx�n([[fn]]Ux�n). Since, for each n, fn+1(s) < fn(s � n) for every

s ∈ U [x � n + 1], it follows that tn+1 < ix�n,x�n+1(tn) for each n. This shows
that [U †(x)] 6= ∅. Moreover, for each n ∈ ω,

|tn| = |{[[g]]Ux�n | πx�n([[g]]Ux�n) < πx�n([[fn]]Ux�n)}|
≤ |{g : U [x � n]→ Ord | (∀t ∈ U [x � n]) g(t) < fn(t)}|
≤ |U(x)||U(x)|.

For Y infinite, |U(x)||U(x)| ≤ 2|Y |. Hence each tn < max{ω, (2|Y |)+}, and so
the tn witness that [(U †� α)(x)] 6= ∅ for all α ≥ max{ω, (2|Y |)+}.

�

In order to propagate up the projective hierarchy the property of being
homogeneously Souslin, it will be useful to have an operation on homogenous
trees that will yield a result like Theorem 8.1.1, but with the complement
of pA replacing the complement of A. For this purpose, and for use in
Chapter 9, we now introduce the notion of weak homogeneity.

For trees T and R, let

T ⊗R = {〈|p, r|〉 | p ∈ T ∧ r ∈ R ∧ `h(p) = `h(r)}.
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Let T be a game tree, let Y be a nonempty set, and let U be a tree on
field (T )×Y . We say that U is weakly homogeneous for T if there is a system

〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉

satisfying the following conditions:

(1) Each Up,r is a countably complete ultrafilter on U [p].

(2) The Up,r are compatible: For all 〈|p, r|〉 ⊆ 〈|q, s|〉 ∈ T ⊗<ωω, Uq,s projects
to Up,r by χq,p, where χq,p : U [q] → U [p] is given (as on page 200) by
χq,p(t) = t � `h(p).

(3) Let x ∈ [T ] and 〈Zr | r ∈ <ωω〉 be such that each Zr belongs to Ux�`h(r),r.
Then

[U(x)] 6= ∅ → (∃y ∈ ωω)(∃f ∈ ωY )(∀n ∈ ω) f � n ∈ Zy�n.

As was the case for the corresponding clause in the definition of homo-
geneous trees, there is an equivalent of condition (3) in terms of wellfound-
edness of direct limit models. Suppose that (1) and (2) are satisfied. For
〈|p, r|〉 ∈ T ⊗ <ωω, let πp,r = πUp,r :

∏
Up,r(V ;∈) ∼= (Ult(V ;Up,r);∈). For

〈|p, r|〉 ⊆ 〈|q, s|〉 ∈ T ⊗ <ωω〉 let

i〈p,r〉,〈q,s〉 = πq,s ◦ iUp,r,Uq,s,χq,p ◦ πp,r−1.

(See page 199 for the definition of iUp,r,Uq,s,χq,p .) For x ∈ [T ] and y ∈ ωω, let

(Mx,y; 〈ix,y〈x�n,y�n〉 | n ∈ ω〉)

be the direct limit of the directed system of elementary embeddings

(〈Ult(V ;Ux�n,y�n) | n ∈ ω〉; 〈i〈x�m,y�m〉〈x�n,y�n〉 | m ≤ n ∈ ω〉).

(3′) (∀x ∈ [T ])([U(x)] 6= ∅ → (∃y ∈ ωω)Mx,y is wellfounded).

Lemma 8.1.2. Let T and 〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉 be such that (1) and (2)
hold. If x ∈ [T ], then x witnesses the falsity of (3) if and only if x witnesses
the falsity of (3 ′). Thus a tree U on field (T )× Y is weakly homogeneous for
T if and only if there is a system 〈Up,r | 〈|p, r|〉 ∈ T ⊗<ωω〉 satisfying (1), (2),
and (3 ′).
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Proof. The proof parallels that of Lemma 4.3.4, with an extra wrinkle in
the second part.

Suppose first that x and 〈Zr | r ∈ <ωω〉 witness the failure of (3). Let
y ∈ ωω. Let

Sy = {s ∈ U(x) | (∀n≤ `h(s)) s � n ∈ Zy�n}.

Exactly as the tree S was used in the proof of Lemma 4.3.4 to show that
Mx was not wellfounded, the tree Sy can be used to show that Mx,y is not
wellfounded.

Now suppose that x witnesses that (3′) fails. For each y ∈ ωω, let 〈zyn |
n ∈ ω〉 be an infinite descending sequence with respect to ix,y〈∅,∅〉(∈). For each

y ∈ ωω and each n ∈ ω, let my
n and ayn ∈ Ult(V ;Ux�myn,y�myn) be such that

zyn = ix,y〈x�myn,y�myn〉(a
y
n). Without loss of generality, we may assume that

(∀y ∈ ωω)(∀n′ ∈ ω)(∀n ∈ ω)(n′ < n→ my
n′ < my

n).

Let gyn ∈ U [x�myn]V be such that

πx�myn,y�myn([[gyn]]Ux�mn,y�mn ) = ayn.

For each y ∈ ωω and each n ∈ ω, let

Zy
mn+1

= {s ∈ U [x �my
n+1] | gyn+1(s) ∈ gyn(s �my

n)}.

For each m ∈ ω such that m is not of the form my
n+1, let Zy

m = U [x �m]. For
m ∈ ω, we have that Zy

m ∈ Ux�m,y�m. For r ∈ <ωω, let

Zr =
⋂
{Zy

`h(r) | y ∈
ωω ∧ r ⊆ y}.

Since any countably complete ultrafilter is 2ℵ0-complete, Zr belongs to Ux�`h(r),r

for every r ∈ <ωω. To see that 〈Zr | r ∈ <ωω〉 witnesses the failure of (3) for
x, suppose that y ∈ ωω and f ∈ ωY are such that (∀m ∈ ω) f � m ∈ Zy�m.
Then f(my

n) ∈ Zy
mn for every n ∈ ω, and so we get the contradiction that

〈f(my
n) | n ∈ ω〉 is an infinite descending sequence with respect to ∈. �

Remark. As in the case of homogeneous trees, the “→” in the last line of
condition (3) and that in condition (3′) can be replaced by “↔.”

For T a game tree, Y a set, and κ a cardinal number, a tree U on field (T )×
Y is weakly κ-homogeneous for T if there is a system 〈Up,r | 〈|p, r|〉 ∈ T ⊗
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<ωω〉 witnessing that U is weakly homogeneous for T and having the further
property that each Up is κ-complete.

Let T be a game tree. A subset A of [T ] is weakly homogeneously
Souslin if it is the T -projection of a tree weakly homogeneous for T ; A
is weakly κ-homogeneously Souslin if it is the T -projection of a tree weakly
κ-homogeneous for T .

We now prove some results giving equivalents of a tree’s being weakly κ-
homogeneous and of a set’s being weakly κ-homogeneously Souslin. The easy
half of the first of these results is directly relevant to our goal of propagating
homogeneous Souslinness up the projective hierarchy. The other results,
particularly Theorem 8.1.7, will be important in Chapter 9.

It will be convenient to extend our notation 〈|p, q|〉 to infinite sequences.
If x and y are functions with domain ω, let

〈|x, y|〉 = {〈|x � n, y � n|〉 | n ∈ ω}.

If T and T ′ are trees, let us say that a subset A of [T ] × [T ′] is homo-
geneously Souslin if {〈|x, x′|〉 | 〈x, x′〉 ∈ A} is homogeneously Souslin. Simi-
larly define, for subsets of products, the notions of κ-homogeneously Souslin,
weakly homogeneously Souslin, and weakly κ-homogeneously Souslin.

Theorem 8.1.3. Let T be a game tree, let A ⊆ [T ], and let κ be a cardinal
number greater than |T |. Then the following are equivalent:

(a) A is weakly κ-homogeneously Souslin.

(b) There is a B ⊆ [T ] × ωω such that B is κ-homogeneously Souslin
and A = pB

Proof. Suppose first that B is as in (b). Let Û ⊆ (T ⊗ <ωω) ⊗ <ωY be a
tree witnessing that B∗ = {〈|x, y|〉 | 〈x, y〉 ∈ B} is κ-homogeneously Souslin.
Let 〈Û〈|p,r|〉 | 〈|p, r|〉 ∈ T ⊗<ωω〉 witness that Û is κ-homogeneous for T ⊗<ωω.

Let
U = {〈|p, 〈|r, s|〉|〉 | 〈|〈|p, r|〉, s|〉 ∈ Û}.

For x ∈ [T ],

x ∈ A ↔ (∃y ∈ ωω) [Û(〈|x, y|〉)] 6= ∅
↔ (∃y ∈ ωω)(∃z ∈ ωY ) 〈|〈|x, y|〉, z|〉 ∈ [Û ]

↔ (∃y ∈ ωω)(∃z ∈ ωY ) 〈|x, 〈|y, z|〉|〉 ∈ [U ]

↔ [U(x)] 6= ∅.
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Fix p ∈ T and r ∈ <ωω. For Z ⊆ U [p], define Ẑ ⊆ U [〈|p, r|〉] by

Ẑ = {s ∈ <ωY | 〈|r, s|〉 ∈ Z}.

Set
Up,r = {Z ⊆ U [p] | Ẑ ∈ Û〈|p,r|〉}.

It is easy to check that 〈Up,r | 〈|p, r|〉 ∈ T⊗<ωω〉 witnesses that U is weakly
κ-homogeneous.

To prove the other half of the lemma, suppose U is a tree on field (T )×Y
witnessing that A is weakly κ-homogeneously Souslin and suppose that 〈Up,r |
〈|p, r|〉 ∈ T × <ωω|〉 witnesses that U is weakly κ-homogeneous for T .

Let x ∈ [T ] and y ∈ ωω. If there is a system 〈Zn | n ∈ ω〉 such that each
Zn ∈ Ux�n,y�n and such that

(∀f ∈ ωY )(∃n ∈ ω) f � n /∈ Zy�n,

then choose such a system and set Zx,y
n = Zn for each n ∈ ω. Otherwise set

Zx,y
n = U [x � n] for each n.

For 〈|p, r|〉 ∈ T ⊗ <ωω, set

Zp,r =
⋂
{Zx,y

`h(p) | x ∈ [T ] ∧ y ∈ ωω ∧ 〈|p, r|〉 ⊆ 〈|x, y|〉}.

Since κ > |T |, we have that Zp,r ∈ Up,r for every 〈|p, r|〉 ∈ T ⊗ <ωω.

Define a tree Û on (field (T )× ω)× Y by

Û = {〈|〈|p, r|〉, s|〉 | s ∈ Zp,r}.

For 〈|p, r|〉 ∈ T ⊗ <ωω, set

Û〈|p,r|〉 = Up,r ∩ P(Û [〈|p, r|〉]).

Thus Û〈|p,r|〉 is essentially the same ultrafilter as Up,r.
It is evident that the Û〈|p,r|〉 are κ-complete and that 〈Û〈|p,r|〉 | 〈|p, r|〉 ∈

T⊗<ωω〉 satisfies conditions (1) and (2) for witnessing that Û is homogeneous
for T ⊗ <ωω.

To verify condition (3), let us suppose that 〈|x, y|〉 ∈ [Û ]. Let f ∈
[Û(〈|x, y|〉)]. Let 〈Xn | n ∈ ω〉 be such that each Xn belongs to Û〈|x�n,y�n|〉.
Assume for a contradiction that there is no g : ω → Y such that g � n ∈ Xn

for every n. By the definition of the Zx,y
n , it follows that there is no g : ω → Y
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such that g � n ∈ Zx,y
n for every n. For each n, Zx�n,y�n ⊆ Zx,y

n . Hence there
is no g : ω → Y such that g � n ∈ Zx�n,y�n for every n. But

(∀n ∈ ω)Zx�n,y�n = Û [〈|x � n, y � n|〉].

Since f � n ∈ Û [|〉x � n, y � n|〉] for all n, we get our contradiction.
Let B = {〈x, y〉〈|x, y|〉 ∈ [Û ]}. It remains to show that A = pB.
Suppose first that x ∈ pB. Let y be such that 〈x, y〉 ∈ B. Let f be such

that f ∈ [Û(〈|x, y|〉)]. We then have, for all n ∈ ω, that

f � n ∈ Û [〈|x � n, y � n|〉] = Zx�n,y�n ⊆ Zx,y
n ⊆ U [x � n].

Thus f ∈ [U(x)], and so x ∈ A.
Now suppose that x ∈ A. Let us apply condition (3) to the system

〈Zx�`h(r),r | r ∈ <ωω〉, which is identical with 〈Û [〈|x � n, r] | r ∈ <ωω〉. This
gives us a y ∈ ωω and an f : ω → Y such that each f � n belongs to
Û [〈|x � n, y � n|〉]. But then f ∈ [Û(〈|x, y|〉)], and therefore 〈x, y〉 ∈ B.

�

Note that our proof that (b) implies (a) made no use of the hypothesis
that κ > |T |. Hence we have the following result.

Corollary 8.1.4. Let T be a game tree, let κ be a cardinal number, and
let B be a κ-homogeneously Souslin subset of [T ] × ωω. Then pB is weakly
κ-homogeneously Souslin.

Remark. The material between here and the end of the proof of Lemma 8.1.7
will not be used until Chapter 9. The reader may thus prefer to skip this
material and return to it only when it is about to be used (in §9.6).

Let T be a game tree, let Y be a set, and let U be a tree on field (T )×Y .
A T -cover of U by ultrafilters is a set V of of countably complete ultrafilters
on U such that, for each member x of the T -projection of U , there are Vi,
i ∈ ω, satifying (i)–(iv) below.

(i) each Vi belongs to V;

(ii) each Vi is an ultrafilter on U [x � i];

(iii) for i < j ∈ ω, Vj projects to Vi by χj,i, where χj,i : U [x � j]→ U [x � i]
is given by χj,i(s) = s � i;
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(iv) if 〈Zi | i ∈ ω〉 is such that each Zi ∈ Vi, then there is an f : ω → Y
such that f � i ∈ Zi for all i ∈ ω.

For cardinal numbers κ, a T -cover V of U by ultrafilters is κ-complete if
every member of V is κ-complete. A T -cover V of U by ultrafilters is full if
the following holds. Suppose that p ∈ [T ] and that V ∈ V is an ultrafilter
on U [p]. Let p′ ∈ [T ] with p′ ⊇ p and `h(p′) = `h(p) + 1. Then there is a
W ∈ V such that W is an ultrafilter on U [p′] and W projects to V by χi+1,i,
where the χj,i are as in the statement of (iii).

We need the following technical lemma in order to prove Theorem 8.1.7.
It would not have been necessary if we had worked with the definition of
homogeneity of Exercise 4.3.5 and with the corresponding definition of weak
homogeneity. (See Exercise 8.1.1.)

Lemma 8.1.5. Let κ be a cardinal number and let ρ be a measurable cardi-
nal. Let T be a game tree, let Y be a set, and let U be a tree on field (T )×Y .
Suppose that V is a κ-complete T -cover of U by ultrafilters. Then there exist

(1) a set Y ′ ⊇ Y such that |Y ′| ≤ max{ρ, |Y |};
(2) a tree U ′ ⊇ U on field (T ) × Y ′ such that U and U ′ have the same
T -projection;

(3) a set V′ ⊇ V such that |V′| ≤ max{ℵ0, |V|} and V′ is a full,
(min{κ, ρ})-complete T -cover of U .

Proof. Let bβ, β < ρ, be distinct from one another and from all elements
of Y . Let Y ′ = Y ∪ {bβ | β < ρ}.

Let U ′ be the set of all 〈|p, s_〈bβi | i < n〉|〉 such that

(a) p ∈ <ωfield (T );

(b) s ∈ <ωY ;

(c) n ∈ ω;

(d) (∀i < n) βi < ρ;

(e) `h(p) = `h(s) + n;

(f) 〈|p � `h(s), s|〉 ∈ U ;

(g) (∀i < n)(∀j < n)(i < j → βi > βj).
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Note that U ⊆ U ′ and that [U ′(x)] = [U ′(x)] for all x ∈ [T ].
Let U be a uniform normal ultrafilter on ρ. Recall the Robottom ul-

trafilters U [n] of §3.1. For n ∈ ω and q ∈ [ρ]n let gq : n → q be such that
gq(i) > gq(j) whenever i < j < n. For n ∈ ω, let U∗n be the ultrafilter on nρ
defined by

Z ∈ U∗n ↔ (∃X ∈ U [n])(∀q ∈X) gq ∈ Z.
For each V ∈ V and each n ∈ ω, let WV,n be the iterated product of V

and U∗n, i.e., let

X ∈ WV,n ↔ {s | (∃Z ∈ U∗n)(∀t ∈ Z) s_t ∈ X} ∈ V .

For each 〈|p, 〈bβi | i < n〉|〉 ∈ U ′ and each V ∈ V such that V is an ultrafilter
on U [p �m] for some m, WV,n is a (min{κ, ρ})-complete ultrafilter on U ′[p].
Moreover, for each V ∈ V and each n ∈ ω, WV,n+1 projects to WV,n by
χn+1,n.

Set
V′ = {WV,n | V ∈ V ∧ n ∈ ω}.

It is easy to check that V′ has the required properties. �

Lemma 8.1.6. Let T be a game tree, let Y be a set, let U be a tree on
field (T )× Y , and let κ be a cardinal number. Then the following are equiv-
alent:

(a) U is weakly κ-homogeneous for T .

(b) There is a countable, full, κ-complete T -cover of U by ultrafilters.

Proof. Suppose first that 〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉 witness that U is weakly
κ-homogeneous. Let

V = {Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω}.

Suppose that x ∈ [T ] and [U(x)] 6= ∅. By condition (3′), let y ∈ ωω be
such thatMx,y is wellfounded, whereMx,y is defined as on page 423. By the
proof of Lemma 4.3.4, clauses (i)–(iv) from the definition of a T -covering of
U by ultrafilters hold if we set Vi = Ux�i,y�i for each i. Thus V is a T -covering
of U by ultrafilters.

Obviously V is countable, full, and κ-complete.
Now suppose that V is a countable, full, κ-complete T -cover of U by

ultrafilters.
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We construct Up,r, 〈|p, r|〉 ∈ T ⊗<ωω, by induction on `h(p). Assume that
Up,r has been defined, is an ultrafilter on U [p], and belongs to V. Let p′ ⊇ p
with `h(p′) = `h(p) + 1. Since V is full, there is at least one V ∈ V such
that V is an ultrfilter on U [p′] and V projects to Up,r by χn+1,n. Since V
is countable, we can let 〈Up′,r_〈i〉 | i ∈ ω〉 be an enumeration, possibly with
repetitions, of all such V .

To verify clause (3) in the definition of weak homogeneity, let x belong to
the T -projection of U and let Zr, r ∈ <ωω, be such that each Zr ∈ Ux�`h(r),r.
Let Vi, i ∈ ω, be given by (i)–(iv). By construction, there is a y ∈ ωω such
that Vi = Ux�i,y�i. By (iv) we get an f ∈ ωY such that f � n ∈ Zy�i for each
i ∈ ω. �

Theorem 8.1.7. Let κ be a cardinal, and assume that there is a measurable
cardinal ≥ κ. Let T be a game tree, and let A ⊆ [T ]. Then the following are
equivalent:

(a) A is weakly κ-homogeneously Souslin.

(b) A is the T -projection of a tree U such that the exists a countable,
κ-complete T -cover of U by ultrafilters.

Proof. That (a) implies (b) follows directly from Lemma 8.1.6.
Let U witness that (b) holds. Applying Lemma 8.1.5 to U with some

measurable cardinal ≥ κ as ρ, we get a tree U ′ whose T -projection is (a) and
which has a countable, full, κ-complete cover by ultrafilters. Lemma 8.1.6
gives (a). �

We now turn to the U‡ construction.
Let T be a game tree, let Y be a set, and let U be a tree on field (T )×Y .

Suppose that 〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉 witnesses that U is weakly homo-
geneous for T . Let 〈πp,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉, 〈i〈p,r〉,〈q,s〉 | 〈|p, r|〉 ⊆ 〈|q, s|〉 ∈
T ⊗ <ωω〉, and (Mx,y; 〈ix,y〈x�n,y�n〉 | n ∈ ω〉) be as on page 423. Let i 7→ ri be a

one-one correspondence between ω and <ωω with the property that

(∀i ∈ ω)(∀i′ ∈ ω)(ri ⊆ ri′ → i ≤ i′).

Define a tree U ‡(〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉) on field (T )×Ord, as follows.
If p ∈ T and t ∈ `h(p)Ord, then 〈|p, t|〉 ∈ U ‡(〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉) if and
only if, for all i1 and i2 less than `h(p),

ri1 ( ri2 → t(i2) < i〈p�`h(ri1 ),ri1 〉,〈p�`h(ri2 ),ri2 〉(t(i1)).

Let A be the T -projection of U .
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Theorem 8.1.8. Let T , Y , U , 〈Up | p ∈ T 〉, and A be as above. Let U ‡ =
U ‡(〈Up,r | 〈|p, r|〉 ∈ T⊗<ωω〉). Then [T ]\A is the T -projection of U †. Moreover
[T ]\A is also the T -projection of U ‡�α for any ordinal α ≥ max{ω, (2|Y |)+},
where U †� α = U ‡ ∩ {〈|p, t|〉 | range (t) ⊆ α}.

Proof. Let x ∈ [T ] be such that [U ‡(x)] 6= ∅. Let f ∈ [U †(x)]. Let y ∈ ωω.
For each n ∈ ω, let in be the number such that rin = y � n. For each n ∈ ω,

i〈x�n,y�n〉,〈x�n+1,y�n+1〉(f(in)) > f(in+1).

It follows that 〈ix,y〈x�n,y�n〉(f(n)) | n ∈ ω〉 is an infinite descending sequence of
ordinals ofMx,y. SinceMx,y is thus illfounded for every y ∈ ωω, Lemma 8.1.2
implies that x /∈ A.

Next let x ∈ [T ] \A. Thus U(x) is a wellfounded tree. As in the proof of
Theorem 8.1.1, define, for n ∈ ω,

fn : U [x � n]→ |U(x)|+

by setting fn(s) = ‖s‖U(x) for each s ∈ U [x � n]. For i ∈ ω let

ti = πx�`h(ri),ri([[f`h(ri)]]Ux�`h(ri),ri
).

To show that 〈ti | i ∈ ω〉 ∈ U ‡(x), let i1 and i2 be such that ri1 ⊆ ri2 .
Since f`h(ri2 )(s) < f`h(ri1 )(s � `h(ri1)) for every s ∈ U [x � `h(ri2)], it follows
that ti2 < i〈x�`h(ri1 ),ri1 〉,〈x�`h(ri2 ),ri2 〉(ti1), as required.

The proof that tn < max{ω, (2|Y |)+} for each n is just like the corre-
sponding part of the proof of Theorem 8.1.1. �

Exercise 8.1.1. Give a modified definition of weakly homogeneous , analo-
gous to the modified definition of homogenous given in Exercise 4.3.5. Prove
that, for any game tree T , every Σ1

1 subset of [T ] is weakly homogenously
Souslin in the modified sense. Prove that if a measurable cardinal exists then
the same sets are weakly homogeneously Souslin under the original and the
modified definitions.

8.2 Projective Determinacy

From now until the end of the proof of Theorem 8.2.7, let κ be an inaccessible
cardinal, let T ∈ Vκ be a game tree, let Y be a set, let U be a tree on
field (T )× Y .
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In this section we will prove that if κ is Woodin and 〈Up,r | r ∈ <ωω〉
witnesses that U is weakly κ+-homogeneous for T , then U ‡ = U ‡(〈Up,r |
〈|p, r|〉 ∈ T ⊗ <ωω〉) is γ-homogeneous for every γ < κ.

For the purpose of motivation, it will be helpful to focus on a more modest
goal, the goal of showing that the T -projection A of U ‡ has an embedding
normal form, i.e., that there is a system

(〈Mp | p ∈ T 〉, 〈kp1,p2 | p1 ⊆ p2 ∈ T 〉)

such that

(a) M0 = V and each Mp is a transitive proper class model of ZFC;

(b) for each p ∈ T , kp1,p2 : Mp1 ≺Mp2 ;

(c) for p1 ⊆ p2 ⊆ p3 ∈ T , kp1,p3 = kp2,p3 ◦ kp1,p2 ;

(d) for each x ∈ [T ], x ∈ A if and only if the direct limit model of the
directed system (〈Mx�n | n ∈ ω〉, 〈kx�m,x�n | m < n ∈ ω〉) is wellfounded.

Note that if U ‡ is homogeneous for T then A has an embedding normal form.
Actually our construction of an embedding normal form for A will give the
desired homogeneity of U ‡.

The construction of the tree for U ‡ is notationally somewhat complex. To
exhibit the main ideas of the construction, we will first do a somewhat simpler
construction. We will assume that we have 〈Up | p ∈ T 〉 witnessing the κ+-
homogeneity of U , and we will show that the T -projection of U † = U †(〈Up |
p ∈ T 〉) has an embedding normal form, indeed that U † is γ-homogeneous
for every γ < κ..

To get an embedding normal form for the T -projection of U †, we will
construct, for each x ∈ [T ], a special kind of iteration tree, an alternating
chain. An alternating chain is an iteration tree of length ≤ ω whose tree
ordering S is the restriction of the tree ordering C of ω given by

mC n ↔ (0 = m < n ∨ (∃k ≥ 1)m+ 2k = n).

Thus the models and embeddings of an alternating chain (of length at least
7) begin as follows:
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If C is an alternating chain of length ω, then C has exactly two branches:

Even = {2n | n ∈ ω};
Odd = {0} ∪ {2n+ 1 | n ∈ ω}.

With each x ∈ [T ] we will associate an alternating chain Cx of length ω
on V . For each n ∈ ω, the restrictions Cx � 2n+ 1 will depend only on x � n.
To get our embedding normal form for the projection of U †, we will use the
branches Even of the Cx. We will set Mx�n = MCx

2n ; for m ≤ n ∈ ω, we will
set kx�m,x�n = jCx2m,2n. Our task will then be to build the Cx so that, for each
x ∈ [T ],

[U †(x)] 6= ∅ ↔ M̃C
Even is wellfounded.

If we are to carry out our plan, then we must find a method of constructing
alternating chains, and we must be able to control the wellfoundedness or
illfoundedness of the branch Even for these alternating chains. Before giving
the full construction we will discuss, one at a time, how we intend to solve
these two problems.

Our tool for building alternating chains will be the One-Step Lemma,
Lemma 6.3.18. To illustrate the method, we give a result whose proof will
show how to build finite alternating chains.

For the tree ordering C of infinite alternating chains, note that (k+1)−C =
k .− 1, where

m .− n =

{
m− n if m ≥ n;
0 if m < n.

Lemma 8.2.1. Assume that κ is Woodin. Let n ∈ ω. Then there is an
alternating chain C of length n+ 1 on V such that C ∈ Vκ.

Proof. If n = 0, there is nothing to do, so assume that n > 0. Let γ < κ be
such that T ∈ Vγ. Let δ0 > γ be (n− 1)-reflecting in in ∅ relative to κ. Let
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k < n and assume inductively that we have an alternating chain Ck of length
k + 1 onM = (V ;∈). We denote the extenders ECm by Em, the modelsMC

m

by (Mm;∈), and the embeddings jCm,m′ by jm,m′ . Assume also that there is
an ordinal δk such that γ < δk < κ and such that

(i) Mk and Mk .−1 agree through δk + 1;

(ii) (tpδkκ,n−k−1)Mk(∅) = (tpδkκ,n−k−1)Mk
.−1(∅);

(iii) δk is (n− k − 1)-reflecting in ∅ relative to κ in Mk.

Assume first that n−k > 1. Since all the jm,m′ fix κ, κ is Woodin in Mk.
Thus the hypotheses of the One-Step Lemma hold for κ with

M = Mk;

N = Mk .−1;

δ = δk;

η = δk;

β = n− k − 1;

ξ = n− k − 2;

β′ = n− k − 1;

x = ∅;
y = ∅;
x′ = ∅;

χ(v) = “κ+ v is the greatest ordinal.”

Let λ and E be given by the One-Step Lemma. If k = 0 then the model∏Mk
.−1

E (Mk .−1;∈) =
∏V

E(V ;∈) and so is wellfounded. If k > 0, then
∏Mk

.−1

E (Mk .−1;∈
) =

∏Mk−1

E (Mk−1;∈). By part (2) of Lemma 7.2.5 and the (i) above, we have
that

ρCk(k − 1, k) > δk = crit (E).

Thus part (2) of Theorem 7.3.2 implies that
∏Mk−1

E (Mk−1;∈) is wellfounded.
Let then δ∗, ξ∗, and y∗ be given by the One-Step Lemma. By clause (2∗) of
the One-Step Lemma, y∗ = ∅. By clause (4∗), ξ∗ = n− k − 2. Extend Ck to
an alternating chain Ck+1 of length k + 2 by setting Ek = E. Let δk+1 = δ∗.
Our inductive assumptions hold for k + 1.

Now assume that n = k + 1. Using Lemmas 7.2.5 and 7.3.2 as in the
preceding paragraph, we may extend Ck to an alternating chain Ck+1 of length
k+ 1 by letting Ek witness that κ is 0-reflecting in ∅ relative to κ in Mk. �
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Remark. Clause (4∗) of the One-Step Lemma was not really needed for
the proof of Lemma 8.2.1. The fact that that ξ = n − k − 2 could have
been deduced from clause (2∗) instead of from clause (4∗). In the proofs of
subsequent lemmas, it will be necessary to use clause (4∗), and we will use it
in just the way we used it in the proof of Lemma 8.2.1.

We next show how to use the One-Step Lemma to construct infinite al-
ternating chains. At first this appears impossible, because of that Lemma’s
requirement that ξ < β.

Lemma 8.2.2. There exist ordinals ν, ζ0, ζ1, and ρ such that

(1) ν < ζ0 < ζ1 < ρ;

(2) ν, ζ0, ζ1, and ρ2 are strong limit cardinals of cofinality greater than
κ;

(3) tpνρ,0(〈ζ0〉) = tpνρ,0(〈ζ1〉);

(4) U ∈ Vν.

Proof. Let Z be the class of all strong limit cardinals of cofinality greater
than κ. Let ν be the least element of Z such that U ∈ Vν . Let ρ be the
|Vν+1|+th element of Z. There are at most |Vν+1| distinct values of tpνρ,0(ζ).
Hence there must exist ζ0 and ζ1 belonging to Z and satisfying (1) and (3).
�

From now until the end of the proof of Theorem 8.2.7, let ν, ζ0, ζ1, and
ρ be as in the statement of Lemma 8.2.2.

The next lemma gives the key facts about these ordinals.

Lemma 8.2.3. (a) If T ∈ Vκ is an iteration tree, then each of the ordinals
ν, ζ0, ζ1, and ρ is fixed by each of the embeddings jTβ,γ.

(b) If z ∈ <ω(Vν) and α < κ, then tpακ,ζ0(z) = tpακ,ζ1(z).
(c) If z ∈ <ω(Vν), then δ < κ is ζ0-reflecting in z relative to κ if and only

if δ is ζ1-reflecting in z relative to κ.

Proof. (a) This follows from property (2) of 〈ν, ζ0, ζ1, ρ〉.
(b) Let n ∈ ω and let z = 〈z1, . . . , zn〉 ∈ n(Vν). Let α < κ and let

a = tpακ,ζ0 . By Lemma 6.3.12,

TYPEn(v1, . . . , vn+1, ca, cα, d) ∈ tpκκ,ρ(z
_〈ζ0〉).
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Since κ+ ρ = ρ, it follows from the definition of tpηβ,γ that

TYPEn(cz1 , . . . , czn , v1, ca, cα, cκ) ∈ tpνρ,0(〈ζ0〉).

By property (3) of 〈ζ0, ζ1, ρ〉, we get that

TYPEn(cz1 , . . . , czn , v1, ca, cα, cκ) ∈ tpνρ,0(〈ζ1〉).

By definition this gives that

TYPEn(v1, . . . , vn+1, ca, cα, d) ∈ tpκκ,ρ(z
_〈ζ0〉).

Another application of Lemma 6.3.12 then gives that a = tpακ,ζ0 .
(c) Let z be a in the proof of (b). Let δ < κ. Property (3) of 〈ζ0, ζ1, ρ〉,

Lemma 6.3.13, and the fact that κ + ζ0 = ζ0, yield the following chain of
equivalences:

δ is ζ0-reflecting in z relative to κ
↔ REFLn(v1, . . . , vn+1, cδ, d) ∈ tpδ+1

κ,ρ (z_〈ζ0〉)
↔ REFLn(cz1 , . . . , cvn , v1, cδ, cκ) ∈ tpνρ,0(〈ζ0〉)
↔ REFLn(cz1 , . . . , cvn , v1, cδ, cκ) ∈ tpνρ,0(〈ζ1〉)
↔ REFLn(v1, . . . , vn+1, cδ, d) ∈ tpδ+1

κ,ρ (z_〈ζ1〉)
↔ δ is ζ1-reflecting in z relative to κ

�

The proof of the following lemma will show how we can construct infinite
alternating chains and how we can make the branch Even illfounded.

Lemma 8.2.4. Assume that κ is Woodin. Then there is a an infinite alter-
nating chain C on V such that C ∈ Vκ and such that the branch Even of C is
not wellfounded.

Proof. Let γ < κ be such that T ∈ Vγ. Let δ0 > γ be (ζ0 + 1)-reflecting
in ∅ relative to κ. Let β0 = ζ0. Let k < n and assume inductively that
we have an alternating chain C2k of length 2k + 1 on V . As in the proof of
Lemma 8.2.1 let C2k have extenders Em ∈ Vκ, m < 2k, models Mm, m ≤ 2k,
and embeddings jm,m′ , mCm′ ≤ 2k. Assume also that there is an ordinal
δ2k such that γ < δ2k < κ and that there are ordinals βm, m ≤ k, satifying
the following conditions:
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(i) M2k and M2k .−1 agree through δ2k + 1;

(ii) (tpδ2kκ,βk+1)M2k(∅) = (tpδ2kκ,ζ0+1)M2k
.−1(∅);

(iii) δ2k is (βk + 1)-reflecting in ∅ relative to κ in M2k;

(iv) (∀m< k)(∀m′ ≤ k)(m < m′ → βm′ < j2m,2m′(βm)).

Since all the jm,m′ fix κ, κ is Woodin in M2k. Thus the hypotheses of the
One-Step Lemma hold for κ with

M = M2k;

N = M2k .−1;

δ = δ2k;

η = δ2k;

β = βk + 1;

ξ = βk;

β′ = ζ0 + 1;

x = ∅;
y = ∅;
x′ = ∅;

χ(v) = “κ+ v is the greatest ordinal.”

Let λ and E be given by the One-Step Lemma. As in the analogous step

in the proof of Lemma 8.2.1,
∏M2k

.−1

E (M2k .−1;∈) is wellfounded. Let then δ∗,
ξ∗, and y∗ be given by the One-Step Lemma. By clause (2∗) of the One-Step
Lemma, y∗ = ∅. By clause (4∗), ξ∗ = ζ0. Extend Ck to an alternating chain
C2k+1 of length 2k + 2 by setting E2k = E. Let δ2k+1 = δ∗. We have then
that

(a) M2k+1 and M2k agree through δ2k+1 + 1;

(b) (tp
δ2k+1

κ,ζ0
)M2k+1(∅) = (tp

δ2k+1

κ,βk
)M2k(∅);

(c) δ2k+1 is ζ0-reflecting in ∅ relative to κ in M2k+1.

By (b) and (c) together with parts (b) and (c) of Lemma 8.2.3, we have
that

(b′) (tp
δ2k+1

κ,ζ1
)M2k+1(∅) = (tp

δ2k+1

κ,βk
)M2k(∅);

(c′) δ2k+1 is ζ1-reflecting in ∅ relative to κ in M2k+1.
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Since κ is Woodin in M2k+1, the hypotheses of the One-Step Lemma hold
for κ with

M = M2k+1;

N = M2k;

δ = δ2k+1;

η = δ2k+1;

β = ζ1;

ξ = ζ0 + 1;

β′ = βk;

x = ∅;
y = ∅;
x′ = ∅;

χ(v) = “v = v.”

Let λ and E be given by the One-Step Lemma. By Theorem 7.3.2, the model∏M2k

E (M2k;∈) is wellfounded. Let then δ∗, ξ∗, and y∗ be given by the One-
Step Lemma. Once more, y∗ = ∅. Extend C2k+1 to an alternating chain C2k+2

of length 2k + 3 by setting E2k+1 = E. Let δ2k+2 = δ∗. Let βk+1 = ξ∗. The
inequality ξ∗ < iNE (β′)of the One-Step Lemma gives us that

βk+1 = ξ∗ < iM2k
E (βk) = j2k,2k+2(βk).

From this and induction hypothesis (iv) for k we get hypothesis (iv) for k+1.
Thus all our induction hypotheses hold for k + 1.

Let C be the alternating chain of length ω whose restrictions are the Ck.
We must verify that the model M̃C

Even is not wellfounded. But condi-
tion (iv) implies that

(∀m ∈ ω)(∀n ∈ ω)(m < n→ ̃C2n,Even(βn) < ̃C2m,Even(βm)).

Thus the ̃C2n,Even(βn) are an infinite descending sequence of ordinals of M̃C
Even.

�

We now know how to build infinite alternating chains. Moreover we know
a way to arrange that the Even branch of our chains is illfounded. But how
are we are going to build chains Cx whose Even branches are illfounded if and
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only if [U(x)] 6= ∅? How are we going to make our illfoundedness construction
work only if [U(x)] 6= ∅? And how are we to guarantee that the branch Even
is wellfounded in the case [U(x)] = ∅?

To solve this last problem, we will make sure that Cx is continuously
illfounded off Even if [U(x)] = ∅. Lemma 8.2.5 below asserts that every
alternating chain is plus one. Therefore Corollary 7.4.6 will imply that Even
is wellfounded.

Making an alternating chain continuously illfounded off Even is equivalent
with making Odd illfounded. (See Exercise 8.2.1.) To make Odd illfounded
when [U(x)] = ∅, we will arrange that ̃Cx0,Odd(U(x)) is illfounded for every x.
At the beginning of kth stage of the construction of Cx we will have chosen
an element sk of jCx0,2k .−1(U [x � k]). During the kth stage, we will choose an

element sk+1 of jCx0,2k+1(U [x � k + 1]) such that sk+1 ⊇ jCx2k .−1,2k+1(sk). The

̃Cx2k .−1,Odd(sk) will thus witness the illfoundedness of ̃Cx0,Odd(U(x)). Moreover
the sk will directly provide us with ordinals witnessing that C is continuously
illfounded off Even.

We will get the sk via the One-Step Lemma. Assume that 〈Up | p ∈ T 〉
witnesses that U is κ+-homogeneous. Given k, consider Ult(V ;Ux�k) This is
the same as i∅,x�k(V ), where the ip,q, p ⊆ q ∈ T , are defined as on page 200.
In this model there is a canonical element of i∅,x�k(U [x � k]), namely

sx�k = πUx�k([[id]]Ux�k).

From sx�k, we get
jCx0,2k(sx�k),

an element of jCx0,2k(i∅,x�k(U [x � k])). With the aid of the One-Step-Lemma,
we will arrange inductively that, for some ordinal βk, the type

(tpδ2kκ,βk+1)j
Cx
0,2k(i∅,x�k(V ))(〈jCx0,2k(i∅,x�k(U))〉_jCx0,2k(sx�k))

is the same as
(tpδ2kκ,ζ0+1)M2k

.−1(〈jCx0,2k .−1(U)〉_sk).
We will also arrange inductively that δ2k is (βk + 1)-reflecting in the finite
sequence 〈jCx0,2k(i∅,x�k(U))〉_jCx0,2k(sx�k) relative to κ in jCx0,2k(i∅,x�k(V )).

The ordinals βk will play a role analogous to the role of the βk ap-
pearing in the proof of Lemma 8.2.4. But, whereas the latter gave an
infinite descending sequence of ordinals of M̃Cx

Even, the βk of our new con-
struction will give instead an infinite descending sequence of ordinals of
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(̃Cx0,Even(ix∅))(M̃
Cx
Even) = ̃Cx0,Even(ix∅(V )). When M̃Cx

Even is wellfounded, the se-

quence will show that jCx0,Even(ix∅(V )) is illfounded. By absoluteness and the

elementarity of jCx0,Even, Mx = ix∅(V ) will be illfounded and so we will have
[U(x)] 6= ∅

The βm will also give us ultrafilters that will witness the homogeneity of
U †. For each k ∈ ω, the finite sequence, 〈jCx2m,2k(βm) | m < k〉 will be an

element of jCx0,2k(U
†[x � k]). This finite sequence and Lemma 6.1.1 will yield

an ultrafilter on U †[x � k].
In the preceding discussion, we have been dealing with a fixed x ∈ [T ].

The following theorem and its proof will involve all such x simultaneously,
so we will have to modify some of our notation. Thus sk will become sx�k,

δ2k will become δx�k, βk will become βx�k, M2k will now become Mx�k
2k , etc.

Before proceeding to the theorem, let us first verify that alternating chains
are all plus one.

Lemma 8.2.5. Every alternating chain is plus one.

Proof. By the definition (given on page 397, an iteration tree T = (〈M, T, 〈Eα |
α+ 2 < `h(T )〉) is plus one if and only if, for all β such that β + 2 < `h(T ),

µT (β) < strengthMβ(Eβ),

where
µT (β) = sup {crit (Eα) | (α + 1)−T ≤ β < α}.

Part (b) of Corollary 7.2.6 implies that, for α + 1 < `h(T ) and (α + 1)−T ≤
β < α,

crit (Eα) < strengthMβ(Eβ).

It follows that µT (β) < strengthMβ(Eβ) for every β such that {α | (α+1)−T ≤
β < α} is finite. But, for m and n ∈ ω,

(m+ 1)−C ≤ n < m↔ m = n+ 1,

where C is the tree ordering of alternating chains. �

Recall that, for κ a cardinal number, a set is (< κ)-homogeneously Souslin
if it is γ-homogeneously Souslin for every γ < κ. If T is a game tree, Y is a set,
and U is a tree on field (T )×Y , then let us say that U is (< κ)-homogeneous
for T if U is γ-homogeneous for T for every γ < κ.
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Theorem 8.2.6. Assume that κ is Woodin and that 〈Up | p ∈ T 〉 witnesses
that U is κ+-homogeneous for T . Let U † = U †(〈Up | p ∈ T 〉). Then, for
every sufficiently large ordinal α, U † � α is (< κ)-homogeneous for T .

Proof. Let γ < κ be such that T ∈ Vγ.
Define the embeddings ip,q, p ⊆ q ∈ T , the models Mx, x ∈ [T ], and

the embeddings ixp , p ∈ T and p ⊆ x ∈ [T ], as on page 200. For p ∈ T let
sp = πUp([[id]]Up).

We will define, by induction on p ∈ T , objects δp, βp, Cp, and sp. Both
δp and βp will be ordinals, with δp < κ. sp will be a sequence with `h(sp) =
`h(p), Cp will be an alternating chain of length 2`h(p)+1 on V . Its extenders
will be Ep

m, m < 2`h(p), its models will be Mp
m, m ≤ 2`h(p), and its

embeddings will be jpm,n, mC n ≤ 2`h(p). Whenever p ⊆ q ∈ T then we will
have Cp = Cq � 2`h(p) + 1.

To avoid having excessively cumbersome notation, let us make the follow-
ing definitions. Let p, q, and q′ be elements of T with q ⊆ q′. Let m ≤ `h(p).
Set

ı̆pq,q′ = jp0,2`h(p)(iq,q′);

N̆p
q = ı̆p∅,q(M

p
2`h(p));

Ŭp
q = jp0,2`h(p)(i∅,q(U));

β̄pm = jp2m,2`h(p)(βp�m).

The embedding ı̆pq,q′ is the image of iq,q′ in Mp
2`h(p). The class model N̆p

q is the

image of Ult(V ;Uq) in Mp
2`h(p). In other words,

N̆p
q = jp0,2`h(p)(i∅,q(V )).

The tree Ŭp
q is the image of i∅,q(U) in Mp

2`h(p); i.e., it is the image of U in N̆p
q .

For p = ∅ we have only to define δ∅ and β∅. Choose δ∅ > γ to be ζ0 + 1-
reflecting in 〈U〉 relative to κ. Let β∅ = ζ0.

For the induction step of our definition, let p ∈ T . Let k = `h(p).
Assume that δp′ , βp′ , Cp′ , and sp′ are defined for all p′ ⊆ p so as to satisfy
the conditions stated above and also the following conditions:

(i) Mp
2k and Mp

2k .−1 agree through δp + 1;

(ii) (tp
δp
κ,βp+1)N̆

p
p (〈Ŭp

p 〉_j
p
0,2k(sp)) = (tp

δp
κ,ζ0+1)M

p

2k
.−1(〈jp0,2k .−1(U)〉_sp);
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(iii) δp is (βp + 1)-reflecting in 〈Ŭp
p 〉_j

p
0,2k(sp) relative to κ in N̆p

p ;

(iv) for all m and m′ with m < m′ ≤ k, β̄pm′ < ı̆pp�m,p�m′(β̄
p
m);

(v) sp belongs to jp0,2k .−1(U [p]), and, for all m≤ k,

jp2m .−1,2k .−1(sp�m) ⊆ sp;

(vi) for all m < k, γ < δp�m = crit (Ep
2m) < crit (Ep

2m+1) < δp�m+1;

Note that these conditions all hold for for p = ∅.

Remarks:

(a) Condition (i) and the fact that crit (̆ıp∅,p) ≥ crit (i∅,p) > κ guarantee

that N̆p
p and Mp

2k .−1 agree through δp+ 1. (That they agree through δp is also
implied by condition (ii).)

(b) Conditions (i), (ii), and (iii) are to make possible our applications
of the One-Step Lemma. Condition (iv) will yield that M̃Cx

Even is illfounded
whenever [U(x)] 6= ∅, and it will allow us to use the βp to define ultrafilters
witnessing homogeneity. Condition (v) will yield that M̃Cx

Odd is illfounded
whenever [U(x)] = ∅. Condition (vi) guarantees that T , all members of T ,
and all members of [T ], are fixed by the embeddings of our alternating chains.

Let q be any element of T such that p ⊆ q and `h(q) = k + 1.
By (i) and the fact that crit (̆ıp∅,q) > κ, it follows that N̆p

q and Mp
2k .−1 agree

through δp + 1.
Note that

N̆p
q = ı̆p∅,q(M

p
2k)

= ı̆pp,q (̆ı
p
∅,p(M

p
2k))

= ı̆pp,q(N̆
p
p ),

that

Ŭp
q = jp0,2k(i∅,q(U))

= jp0,2k(ip,q(i∅,p(U)))

= (jp0,2k(ip,q))(j
p
0,2k(i∅,p(U)))

= ı̆pp,q(Ŭ
p
p ),
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and that

jp0,2k(ip,q(sp)) = (jp0,2k(ip,q))(j
p
0,2k(sp))

= ı̆pp,q(j
p
0,2k(sp)).

The fact that crit (̆ıpp,q) > κ, together with the facts just mentioned, gives
that

(tp
δp
κ,βp+1)N̆

p
p (〈Ŭp

p 〉_j
p
0,2k(sp))

= ı̆pp,q((tp
δp
κ,βp+1)N̆

p
p (〈Ŭp

p 〉_j
p
0,2k(sp)))

= (tp
δp
κ,̆ıpp,q(βp+1

))N̆
p
q (〈Ŭp

q 〉_j
p
0,2k(ip,q(sp))).

and so by (ii) this last is the same as (tp
δp
κ,ζ0+1)M

p

2k
.−1(〈jp0,2k .−1(U)〉_sp).

From (iii) it similarly follows that δp is (̆ıpp,q(βp+1))-reflecting in the finite

sequence 〈Ŭp
q 〉_j

p
0,2k(ip,q(sp)) relative to κ in N̆p

q .

Since jp0,2k and ı̆p∅,q fix κ, we have that κ is Woodin in N̆p
q .

Thus the hypotheses of the One-Step Lemma hold for κ with

M = N̆p
q ;

N = Mp
2k .−1;

δ = δp;

η = δp;

β = ı̆pp,q(βp) + 1;

ξ = ı̆pp,q(βp);

β′ = ζ0 + 1;

x = 〈Ŭp
q 〉_j

p
0,2k(ip,q(sp));

y = 〈(jp0,2k(sq))(k)〉;
x′ = 〈jp0,2k .−1(U)〉_sp;

χ(v) = “κ+ v is the greatest ordinal.”

Let λ and E be given by the One-Step Lemma. Since ı̆p∅,q fixes λ, E,
and δp, it follows that E is a (δp, λ)-extender in Mp

2k. Thus Theorem 7.3.2

guarantees that
∏Mp

2k
.−1

E (Mp
2k .−1;∈) is wellfounded. Let then δ∗, ξ∗, and y∗

be given by the One-Step Lemma. By clause (4∗) of the One-Step Lemma,
ξ∗ = ζ0. Extend Cp to an alternating chain that will be Cq � 2k+ 2 by setting
Eq

2k = E. The ordinal δ∗ we will call δ′q. Set sq = (jq2k .−1,2k+1(sp))_y
∗.
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We will use without comment in the sequel the facts M q
n = Mp

n,Eq
n = Ep

n,
and jqm,n = jpm,n whenever these equations make sense.

By the elementarity of jq0,2k and the definition of the sp′ ,

x_y = 〈Ŭp
q 〉_j

p
0,2k(ip,q(sp))

_〈(jp0,2k(sq))(k)〉
= 〈Ŭp

q 〉_j
p
0,2k(ip,q(sp)

_〈sq(k)〉)
= 〈Ŭp

q 〉_j
p
0,2k(sq � k

_〈sq(k)〉)
= 〈Ŭp

q 〉_j
p
0,2k(sq).

Since jp0,2k(sq) is an element of ı̆p∅,q(U) = Ŭp
q , clause (2∗) of the One-Step

Lemma implies that sq ∈ jq0,2k+1(U [q]). Thus the first clause of condition (v)
holds for q. Since jq2k .−1,2k+1(sp) ⊆ sq, the second clause of condition (v) holds
for q in the case m = k.

We have that

(a) M q
2k+1 and N̆p

q agree through δ′q + 1;

(b) (tp
δ′q
κ,ζ0

)M
q
2k+1(〈jq0,2k+1(U)〉_sq)

= (tp
δ′q
κ,̆ıpp,q(βp)

)N̆
p
q )(〈Ŭp

q 〉_j
p
0,2k(sq));

(c) δ′q is ζ0-reflecting in 〈jq0,2k+1(U)〉_sq relative to κ in M q
2k+1.

By (a) and the fact that crit (̆ıp∅,q) > δ′q, it follows that M q
2k+1 and M q

2k

agree through δ′q + 1.
By (b) and (c) together with parts (b) and (c) of Lemma 8.2.3, we have

that

(b′) (tp
δ′q
κ,ζ1

)M
q
2k+1(〈jq0,2k+1(U)〉_sq)

= (tp
δ′q
κ,̆ıpp,q(βp)

)N̆
p
q (〈Ŭp

q 〉_j
p
0,2k(sq));

(c′) δ′q is ζ1-reflecting in 〈jq0,2k+1(U)〉_sq relative to κ in M q
2k+1.

Let f : jp0,2k(U [p])→ Ord belong to Mp
2k and be such that

βp = π
Mp

2k

jp0,2k(Up)
([[f ]]

Mp
2k

jp0,2k(Up)
).

In other words, let f be such that βp = (̆ıp∅,p(f))(jp0,2k(sp)). By (b′) and the
fact that crit (̆ıp∅,q) > δ′q, there is a set X ∈ jp0,2k(Uq) such that, for all t ∈ X,
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(b′′) (tp
δ′q
κ,ζ1

)M
q
2k+1(〈jq0,2k+1(U)〉_sq) = (tp

δ′q
κ,f(t�k))

Mp
2k(〈jp0,2k(U)〉_t).

Choose any element t of X. Since κ is Woodin in M q
2k+1, the hypotheses

of the One-Step Lemma hold for κ with

M = M q
2k+1;

N = Mp
2k;

δ = δ′q;

η = δ′q;

β = ζ1;

ξ = ζ0 + 1;

β′ = f(t � k);

x = 〈jq0,2k+1(U)〉_sq;
y = ∅;
x′ = (〈jp0,2k(U)〉_t;

χ(v) = “v = v.”

Let λ and E be given by the One-Step Lemma. By Theorem 7.3.2, the

model
∏Mp

2k
E (Mp

2k;∈) is wellfounded. Let then δ∗, ξ∗, and y∗ be given by the
One-Step Lemma. (We will make no use of ξ∗ and y∗.)

For all elements u of X,

(tp
δ′q
κ,f(u�k))

Mp
2k(〈jp0,2k(U)〉_u) = (tp

δ′q
κ,f(t�k))

Mp
2k(〈jp0,2k(U)〉_t).

Thus the elementarity of i
Mp

2k
E gives that, for all u ∈ iM

p
2k

E (X),

(tp
i
M
p
2k

E (δ′q)

κ,(i
M
p
2k

E (f))(u�k)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_u)

= (tp
i
M
p
2k

E (δ′q)

κ,(i
M
p
2k

E (f))(i
M
p
2k

E (t)�k)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_iM
p
2k

E (t)).

Since δ∗ < i
Mp

2k
E (δ′q), for all u ∈ iM

p
2k

E (X) we have in particular that

(tpδ
∗+1

κ,(i
M
p
2k

E (f))(u�k)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_u)

= (tpδ
∗+1

κ,(i
M
p
2k

E (f))(i
M
p
2k

E (t)�k)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_iM
p
2k

E (t)).
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For each u ∈ iM
p
2k

E (X), we make an application of the last part of the One-

Step Lemma, with z = 〈iM
p
2k

E (jp0,2k(U))〉_u and with α = (i
Mp

2k
E (f))(u � k). If

ξ̂ and ŷ are as given given by this application, then clause (2̂) of the One-Step
Lemma implies that ŷ = ∅ and ξ̂ is a successor ordinal. Let g(u) be the least
ordinal µ such that clauses (2̂) and (3̂) of the One-Step Lemma hold with
ξ̂ = µ+ 1 (and ŷ = ∅).

Observe that the function g : i
Mp

2k
E (X)→ Ord belongs to Ult(Mp

2k;E).
We finish the definition of Cq by setting Eq

2k+1 = E. Thus Eq
2k+2 =

Ult(Mp
2k;E) and jq2k,2k+2 = i

Mp
2k

E . Clause (1∗) of the One-Step Lemma gives
inductive condition (i) for q .

Let δq = δ∗. Clauses (2̂) and (3̂) of the One-Step Lemma give that, for
all u ∈ jq2k,2k+2(X),

(2̂) (tp
δq
κ,g(u)+1)M

q
2k+2(〈jq0,2k+2(U)〉_u) = (tp

δq
κ,ζ0+1)M

q
2k+1(〈jq0,2k+1(U)〉_sq);

(3̂) δq is (g(u) + 1)-reflecting in 〈jq0,2k+2(U)〉_u relative to κ in M q
2k+2.

The set jq2k,2k+2(X) belongs to jq0,2k+2(Uq). This fact allows us to complete
our definitions by setting

βq = π
Mq

2k+2

jq0,2k+2(Uq)([[g]]
Mq

2k+2

jq0,2k+2(Uq)).

Using  Loś’s Theorem inM q
2k+2 and using the fact that jq0,2k+2(sq) = π

Mq
2k+2

jq0,2k+2(Uq)([[id]]
Mq

2k+2

jq0,2k+2(Uq)),

we see that (2̂) and (3̂) imply that

(ii′) (tp
δq
κ,βq+1)N̆

q
q (〈jq0,2k+2(i∅,q(U))〉_jq0,2k+2(sq))

= (tp
δq
κ,ζ1

)M
q
2k+1(〈jq0,2k+1(U)〉_sq);

(iii′) δq is (βq + 1)-reflecting in 〈jq0,2k+2(i∅,q(U))〉_jq0,2k+2(sq) relative to κ in

N̆ q
q .

(ii′) and (iii′) are just our inductive conditions (ii) and (iii) for q.
The inequality ξ̂ < α of the One-Step Lemma gives us that

(∀u ∈ jq0,2k+2(X)) g(u) + 1 < (jq2k,2k+2(f))(u � k).

This in turn implies that

βq + 1 < ı̆qp,q(j
q
2k,2k+2(βp)).
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Since β̄qk+1 = βq and β̄qk = jq2k,2k+2(βp), condition (iv) for q holds in the case
m = k and m′ = k + 1. To verify condition (iv) for q for m < m′ ≤ k, note
that jp2k,2k+2(β̄pm) = β̄qm, jp2k,2k+2(β̄pm′) = β̄qm′ , and jq2k,2k+2(̆ıpp�m,p�m′) = ı̆qq�m,q�m′ .
By these facts, by condition (iv) for p, and by the elementarity of jq2k,2k+2,

β̄qm′ = jq2k,2k+2(β̄pm′) < jq2k,2k+2(̆ıpp�m,p�m′(β̄
p
m)) = ı̆qp�m,p�m′(β̄

q
m).

Condition (iv) for q holds for m < k and m′ = k + 1 because

β̄qk+1 < ı̆qp�k,p�k+1(β̄qk) < ı̆qp�k,p�k+1(̆ıqp�m,p�k(β̄
q
m)) = ı̆qp�m,p�k+1(β̄qm).

We have already verified for q the first clause of condition (v) and the
case m = k of the second clause of that condition. The other cases of the
second clause follow easily from the corresponding cases for for p and the
case m = k for q.

Because the One-Step Lemma gives that η < δ∗, we have that

δp < δ′q < δq.

Now crit (Eq
2k) = δp and crit (Eq

2k+1) = δ′q. Since condition (vi) holds for p
and (in the case p = ∅) since γ < δ∅, it follows that condition (vi) holds for
q.

This completes our construction and the verification that it has the de-
sired properties.

We will show that the system

(〈Mp
2`h(p) | p ∈ T 〉, 〈j

p
m,2`h(p) | p ∈ T ∧ m < `h(p) ∈ T 〉)

gives an embedding normal form for the T -projection of U †.

Fix x ∈ [T ]. Let Cx be the alternating chain of length ω whose restrictions
are the Cx�n.

We must show that [U †(x)] 6= ∅ if and only if M̃Cx
Even is wellfounded.

Assume first that [U †(x)] 6= ∅. By Theorem 8.1.1, [U(x)] = ∅, i.e., U(x)
is a wellfounded tree. For each k ∈ ω, let

ξ2k = jCx0,2k(‖s∅‖
U(x));

ξ2k+1 = ‖sx�k+1‖j
Cx
0,2k+1(U(x)).
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Condition (v) of our construction implies that, for all m and n ∈ ω with
m < n,

jCx2m .−1,2n .−1(ξ2m .−1) = ‖jCx2m .−1,2n .−1(sx�m)‖j
Cx
0,2n

.−1
(U(x))

> ‖sx�n‖j
Cx
0,2n

.−1
(U(x))

= ξ2n .−1.

Thus the sequence 〈ξn | n ∈ ω〉 witnesses that Cx is continuously illfounded
off Even. Since Lemma 8.2.5 implies that Cx is plus one, Corollary 7.4.6,
gives that M̃Cx

Even is wellfounded.
Now assume that M̃Cx

Even is wellfounded. For m ∈ ω, p ∈ T with p ⊆ x,
and q ⊆ q′ ∈ T , let

β̄xm = = jCx0,Even(βx�m);

ı̆xq,q′ = jCx0,Even(iq,q′);

ı̆xp = jCx0,Even(ixp).

Condition (iv) gives that, for all m < m′ ≤ k ∈ ω,

β̄x�km′ < ı̆x�kx�m,x�m′(β̄
x�k
m ).

Applying jCx2k,Even to both sides of this inequality, we find that

β̄xm′ < ı̆xx�m,x�m′(β̄
x
m).

Applying ı̆xx�m′ to both sides, we get that

ı̆xx�m′(β̄
x
m′) < ı̆xx�m(β̄xm).

Thus the ı̆xx�m(β̄xm), m ∈ ω, form an infinite descending chain in the ordinals

of the model jCx0,Even(M̃x), and so that model is illfounded. It follows by

absoluteness that M̃x is illfounded. This means that [U(x)] = ∅. Therefore
[U †(x)] 6= ∅.

Remark. We did not really have to give the argument of the preceding
paragraph, for our proof of the theorem will not use the fact that [U †(x)] 6= ∅
when MC§

Even is wellfounded. The converse—proved two paragraphs ago—
will, however, be an essential ingredient in our proof of the theorem.
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To complete the proof of the theorem, let α be any ordinal such that
βp < α for all p ∈ T .

For p ∈ T , set

Vp = {X ⊆ (U † � α)[p] | 〈β̄pm | m < `h(p)〉 ∈ jp0,2`h(p)(X)}.

We will show that 〈Vp | p ∈ T 〉 witnesses that U † � α is γ-homogenous.
We first prove that clause (1) of the definition of homogeneity holds—that

each Vp is a γ-complete ultrafilter on (U † � α)[p]. Let p ∈ T . We begin by
proving that (U † � α)[p] ∈ Vp, i.e., that

(i) (∀m< `h(p)) β̄pm < jp0,2`h(p)(α);

(ii) 〈β̄pm | m < `h(p)〉 ∈ jp0,2`h(p)(U
†[p]).

For (i), let m < `h(p). Then

β̄pm = jp2m,2`h(p)(βp�m) < jp2m,2`h(p)(α) ≤ jp0,2`h(p)(α).

By the definition of U †, what we must show to prove (ii) is that, for all
m and m′ such that m < m′ < `h(p),

β̄pm′ < (jp0,2`h(p)(ip�m,p�m′))(β̄
p
m).

But this follows directly from condition (iv) of our construction.
Since (U † � α)[p] ∈ Vp, it follows by Lemma 6.1.1 that Vp is an ultrafilter

on (U † � α)[p].
By condition (vi), γ ≤ crit (jp0,2`h(p)). Hence Lemma 6.1.1 yields that Vp

is γ-complete.
To check clause (2) in the definition of homogeneity, let p ⊆ q ∈ T . We

must verify that

(∀X ∈ Vp) {t ∈ U †[q] | t � `h(p) ∈ X} ∈ Vq.

Let X ⊆ U †[p]. Then

{t ∈ U †[q] | t � `h(p) ∈ X} ∈ Vq
↔ 〈β̄qm | m < `h(q)〉 � `h(p) ∈ jq0,2`h(q)(X)

↔ 〈jp2`h(p),2`h(q)(β̄
p
m) | m < `h(p)〉 ∈ jq2`h(p),2`h(q)(j

p
0,2`h(p)(X))

↔ 〈β̄pm | m < `h(p)〉 ∈ jp0,2`h(p)(X))

↔ X ∈ Vp.
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To complete the proof, we verify clause (3′) in the definition of homo-
geneity. For p ⊆ q ∈ T , let i†p,q : Ult(V ;Vp) ≺ Ult(V ;Vq) be the canonical
elementary embedding. Fix x ∈ [T ]. Let (M†

x, 〈i†xx�n | n ∈ ω〉) be the direct

limit of the system (〈Ult(V ;Vx�n) | n ∈ ω〉, 〈i†x�m,x�n | m ≤ n ∈ ω〉).
Assume that x belongs to the T -projection of U †. We have already shown

that M̃Cx
Even is wellfounded for any such x. We must show that M†

x is
wellfounded. It will be sufficient for us to prove thatM†

x can be elementarily
embedded into M̃Cx

Even.
For m ∈ ω and πVx�n([[f ]]Vx�n) ∈ Ult(V ;Vx�n), set

kn(πVx�n([[f ]]Vx�n)) = (jCx0,2n(f))(〈β̄x�nm | m < n〉).

To see that kn is well-defined, assume that [[f ]]Vx�n = [[g]]Vx�n . Then

{t ∈ U †[x � n] | f(t) = g(t)} ∈ Vx�n,

and the definition of Vx�n gives that

(jCx0,2n(f))(〈β̄x�nm ) | m < n〉) = (jCx0,2n(g))(〈β̄x�nm ) | m < n〉),

and so that kn(πVx�n([[f ]]Vx�n) = πVx�n([[g]]Vx�n). A similar argument shows that

kn : Ult(V ;Vx�n) ≺ MCx
2n . Furthermore, if m ≤ n ∈ ω and πVx�m([[f ]]Vx�m) ∈

Ult(V ;Vx�m), then

jCx2m,2n(km(πVx�m([[f ]]Vx�m)))

= (jCx2m,2n((jCx0,2m(f))(〈β̄x�mm′ ) | m′ < m〉))
= (jCx0,2n(f))(〈β̄x�nm′ ) | m′ < m〉))
= (jCx0,2n(f))(〈β̄x�nm′ )) | m′ < n〉 �m))
= kn(i†x�m,x�n(πVx�m([[f ]]Vx�m))).

This argument shows that

jCx2m,2n ◦ km = kn ◦ i†x�m,x�n.

Thus we can define an elementary embedding k :M†
x ≺ M̃Cx

Even by setting

k(i†xx�n(z)) = ̃Cxn,Even(kn(z))

for z ∈ Ult(V ;Vx�m). �
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We now turn to the U ‡ construction.

Assume that 〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉 witnesses that U is weakly κ+-
homogeneous for T . Let 〈πp,r | 〈|p, r|〉 ∈ T⊗<ωω〉, 〈i〈p,r〉,〈q,s〉 | 〈|p, r|〉 ⊆ 〈|q, s|〉 ∈
T ⊗ <ωω〉, and (Mx,y; 〈ix,y〈x�n,y�n〉 | n ∈ ω〉) be as on page 423. Let i 7→ ri be

the function introduced on page 430. Let U ‡ = U ‡(〈Up,r | 〈|p, r|〉 ∈ T ⊗<ωω〉).
To show that the T -projection of U ‡ has an embedding normal form

(indeed that U ‡ is homogeneous), we will build, for each x ∈ [T ], a plus
one iteration tree Sx of length ω. The set of all branches of Sx will be
{Even} ∪ {by | y ∈ <ωω}, where Even = {2m | m ∈ ω} as before and

by = {2k .− 1 | k ∈ ω ∧ rk ⊆ y}.

We will arrange that M̃Sx
Even is wellfounded if and only if [U(x)] = ∅.

To guarantee that M̃Sx
Even is wellfounded when [U(x)] = ∅, we will make

sure that Sx is continuously illfounded off Even if [U(x)] = ∅. To do this we
will make sure, in a sufficiently continuous fashion, that the trees ̃Sx0,by

(U(x))

are illfounded for every x ∈ [T ] and every y ∈ ωω. This will be done with the
aid of objects sp, p ∈ T , that will play a role similar to the role played by the
sp of the proof of Theorem 8.2.6. Each sx�k will belong to jSx0,2k .−1(U [x�`h(rk)]),

and whenever rk ⊆ rk′ then we will have jSx2k .−1,2k′ .−1(sx�k) ⊆ sx�k′ . To get the
sp, we will use elements sq,r of of i〈∅,∅〉,〈q,r〉(U [q]) that are analogous to the sp of
the proof of Theorem 8.2.6. From the sq,r we will get elements jSx0,2k(sp�`h(rk),rk)

of (jSx0,2k(i〈∅,∅〉,〈p�`h(rk),rk〉(U [x � `h(rk)])), and from these elements we will get
the sp with the aid of the One-Step Lemma.

To arrange that when M̃Sx
Even is wellfounded then [U(x)] = ∅, we will use

ordinals βp, p ∈ T . For each y ∈ ωω, the βx�k, rk ⊆ y, will give rise to
an infinite descending chain of ordinals of ̃Sx0,Even(ix,y〈∅,∅〉(V )). When M̃Sx

Even is
wellfounded, these chains will show that Mx,y is illfounded for every y ∈ ωω
and hence that [U(x)] = ∅.

The βn will generate ultrafilters witnessing the homogeneity of U ‡ in
pretty much the same way that the corresponding ordinals performed the
analoguous task in the proof of Theorem 8.2.7.

Theorem 8.2.7. Assume that κ is Woodin and that 〈Up,r | 〈|p, r|〉 ∈ T⊗<ωω〉
witnesses that U is κ+-homogeneous for T . Let U ‡ = U ‡(〈Up,r | 〈|p, r|〉 ∈
T ⊗ <ωω〉) Then, for every sufficiently large ordinal α, U ‡ � α is (< κ)-
homogeneous for T .
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Proof. Let γ < κ be such that T ∈ Vγ.
Let 〈πp,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉, 〈i〈p,r〉,〈q,s〉 | 〈|p, r|〉 ⊆ 〈|q, s|〉 ∈ T ⊗ <ωω〉,

(Mx,y; 〈ix,y〈x�n,y�n〉 | n ∈ ω〉), and i 7→ ri be as in the discussion preceding the

statement of the theorem. For 〈|p, r|〉 ∈ T ⊗ <ωω, let sp,r = πUp,r([[id]]Up,r).
Let S be the tree ordering of ω defined as follows:

(i) 0S n for every n > 0;

(ii) 2mS 2n if m < n;

(iii) 2m+ 1S 2n+ 1 if rm+1 ( rn+1;

(iv) mS n only if (i), (ii), or (iii) requires that mS n.

Note that the branches of an iteration tree whose tree ordering is S are just
Even and the by, y ∈ ωω, defined above.

We will define, by induction on p ∈ T , objects δp, βp, Sp, and sp. Both
δp and βp will be ordinals, with δp < κ. sp will be a sequence such that
`h(sp) = `h(r`h(p)). Sp will be an iteration tree of length 2`h(p) + 1 on V .
Its tree ordering will be the restriction of S. Its extenders will be Ep

m, m <
2`h(p), its models will be Mp

m m ≤ 2`h(p), and its embeddings will be jpm,n,
mS n ≤ 2`h(p). Whenever p ⊆ q ∈ T then we will have Sp = Sq � 2`h(p) + 1.

To simplify notation, we make some definitions. Let p and q belong to T
and let m ≤ n ≤ `h(q) such that rm ⊆ rn. Let

iq;m,n = i〈q�`h(rm),rm〉,〈q�`h(rn),rn〉;

ı̆pq;m,n = jp0,2`h(p)(iq;m,n);

N̆p
q;m = ı̆pq;0,m(Mp

2`h(p));

Ŭp
q;m = jp0,2`h(p)(iq;0,m(U));

β̄qm = jq2m,2`h(q)(βq�m));

sqm = sq�`h(rm),rm .

The embedding ı̆pq;m,n is the image of iq;m,n in Mp
2`hp. The class model N̆p

q;m

is the image of Ult(V ;Uq�`h(rm),rm) in Mp
2`h(p). In other words,

N̆p
q;m = jp0,2`h(p)(iq;0,m(V )).

The tree Ŭp
q;m is the image of iq;0,m(U) in Mp

2`h(p); i.e., it is the image of U in

N̆p
q;m
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For p = ∅ we have only to define δ∅ and β∅. (Note that s∅ = ∅; for
`h(s∅) = `h(r0) = `h(∅), because of the property of i 7→ ri stated on page
430.) Choose δ∅ > γ to be ζ0 + 1-reflecting in 〈U〉 relative to κ. Let β∅ = ζ0.

Let p ∈ T . Let k = `h(p). Assume that δp′ , βp′ , Sp′ , and sp′ are defined
for all p′ ⊆ p so as to satisfy the conditions stated above and also the following
conditions:

(i) for all m ≤ k, Mp
2k and Mp

2m .−1 agree through δp�m + 1;

(ii) for all m ≤ k, the type (tp
δp�m
κ,β̄pm+1

)N̆
p
p;m(〈Ŭp

p;m〉_j
p
0,2k(s

p
m)) is the same as

(tp
δp�m
κ,ζ0+1)M

p

2m
.−1(〈jp0,2m .−1(U)〉_sp�m);

(iii) for all m ≤ k, δp�m is (β̄pm + 1)-reflecting in 〈Ŭp
p;m〉_j

p
0,2k(s̃

p
m) relative to

κ in N̆p
p;m;

(iv) for all m and m with m < m′ ≤ k, if rm ⊆ rm′ then

β̄p�m′ < ı̆pp;m,m′(β̄
p
m);

(v) for all m ≤ k, sp�m belongs to (jp0,2m .−1)(U [p � `h(rm)]), and

rm ⊆ rk → jp2m .−1,2k .−1(sp�m) ⊆ sp);

(vi) for all m < k,
γ < δp�m < crit (Ep

2m+1) < δp�m+1,

and crit (Ep
2m) = δp�m̄, where 2m̄ .− 1 = (2m+ 1)−S .

Note that these conditions all hold for for p = ∅.

Remark. The first seven conditions have pretty much the same roles
as in the proof of Theorem 8.2.6. Indeed, the present construction can be
thought of as a whole tree of constructions, each one like the construction of
the proof of that lemma. Condition (vi), besides doing the work of the old
condition (vi), will guarantee that these constructions do not conflict with
one another. Condition (vi) will also be used in proving that our iteration
trees Sx are plus one.

Let q be any element of T such that p ⊆ q and `h(q) = k + 1.
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Let n be the largest number ≤ k such that rn ⊆ rk+1. Let e = `h(rn).
By the property of i 7→ ri stated on page 430, `h(rk+1) = e+ 1.

By (i) and the fact that crit (̆ıpq;0,k+1) > κ, it follows that N̆p
q;k+1 and Mp

2n .−1

agree through δp�n + 1.
Note that

N̆p
q;k+1 = ı̆pq;0,k+1(Mp

2k)

= ı̆pq;n,k+1(̆ıpq;0,n(Mp
2k))

= ı̆pq;n,k+1(N̆p
p;n),

that

Ŭp
q;k+1 = jp0,2k(i

p
q;0,k+1(U))

= jp0,2k(i
p
q;n,k+1(ipq;0,n(U)))

= (jp0,2k(i
p
q;n,k+1))(jp0,2k(i

p
q;0,n(U)))

= ı̆pq;n,k+1(Ŭp
p;n),

and that

jp0,2k(iq;n,k+1(spn)) = (jp0,2k(iq;n,k+1))(jp0,2k(s
p
n))

= ı̆pq;n,k+1(jp0,2k(s
p
n)).

Since crit (̆ıpq;n,k+1) > κ, it follows that

(tp
δp�n
κ,β̄pn+1

)N̆
p
p;n(〈Ŭp

p;n〉_j
p
0,2k(s

p
n))

= ı̆pq;n,k+1((tp
δp�n
κ,β̄pn+1

)N̆
p
p;n(〈Ŭp

p;n〉_j
p
0,2k(s

p
n)))

= (tp
δp�n
κ,̆ıpq;n,k+1(β̄pn)+1

)N̆
p
q;k+1(〈Ŭp

q;k+1〉_j
p
0,2k(iq;n,k+1(spn)))

and so by (ii) this last is the same as (tp
δp�n
κ,ζ0+1)M

p

2n
.−1(〈jp0,2n .−1(U)〉_sp�n).

From (iii) it similarly follows that δp�n is (̆ıpq;n,k+1(β̄pn+1))-reflecting in the

sequence 〈Ŭp
q;k+1〉_j

p
0,2k(iq;n,k+1(spn)) relative to κ in N̆p

q;k+1.

Since jp0,2k and ı̆pq;0,k+1 fix κ, we have that κ is Woodin in N̆p
q;k+1.

Thus the hypotheses of the One-Step Lemma hold for κ with

M = N̆p
q;k+1;

N = Mp
2n .−1;
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δ = δp�n;

η = δp;

β = ı̆pq;n,k+1(β̄pn) + 1;

ξ = ı̆pq;n,k+1(β̄pn);

β′ = ζ0 + 1;

x = 〈Ŭp
q;k+1〉_j

p
0,2k(iq;n,k+1(spn));

y = 〈(jp0,2k(s
q
k+1))(e)〉;

x′ = 〈jp0,2n .−1(U)〉_sp�n;

χ(v) = “κ+ v is the greatest ordinal.”

Let λ and E be given by the One-Step Lemma. Since ı̆pq;0,k+1 fixes λ, E,
and δp, it follows that E is a (δp�n, λ)-extender in Mp

2k. Thus Theorem 7.3.2

gives that
∏Mp

2n
.−1

E (Mp
2n .−1;∈) is wellfounded. Let then δ∗, ξ∗, and y∗ be given

by the One-Step Lemma. By clause (4∗) of the One-Step Lemma, ξ∗ = ζ0.
Extend Sp to an alternating chain that will be Sq �2k+2 by setting Eq

2k = E.
The ordinal δ∗ we will call δ′q. Set sq = (jq2n .−1,2k+1(sp))_y

∗.
Note that M q

m = Mp
m, Eq

m = Ep
m, jqm,m′ = jpm,m′ , and iqm,m′ = ipm,m′

whenever these equations make sense. We will use these identities without
comment in the sequel.

We have that

x_y = 〈Ŭp
q;k+1〉_j

p
0,2k(iq;n,k+1(spn))_〈(jp0,2k(s

q
k+1))(e)〉.

Observe that

iq;n,k+1(spn)) = iq;n,k+1(sp�e,rn)

= sq�e+1,rk+1
� e

= sqk+1 � e.

Thus x_y is the concatenation of 〈Ŭp
q;k+1〉 and

jp0,2k(s
q
k+1 � e)

_(jp0,2k(s
q
k+1))(e)〉.

By the elementarity of jp0,2k, we finally get that

x_y = 〈Ŭp
q;k+1〉_j

p
0,2k(s

q
k+1).
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Now sqk+1 = sq�e+1,rk+1
belongs to iq0,k+1(U [q � e+ 1]). Therefore the sequence

jp0,2k(s
q
k+1) belongs to jp0,2k(i

q
0,k+1(U [q � e + 1])) = Ŭp

q;k+1. It follows by clause
(2∗) of the One-Step Lemma that sq ∈ jq0,2k+1(U [q � e + 1]), and so the first
clause of condition (v) holds for q. Since jq2n .−1,2k+1(sq�n) ⊆ sq, the second
clause of condition (v) holds for q the case m = n.

We have that

(a) M q
2k+1 and N̆p

q;k+1 agree through δ′q + 1;

(b) (tp
δ′q
κ,ζ0

)M
q
2k+1(〈jq0,2k+1(U)〉_sq) =

(tp
δ′q
κ,̆ıpq;n,k+1(β̄pn)

)N̆
p
q;k+1(〈Ŭp

q;k+1〉_j
p
0,2k(s

q
k+1));

(c) δ′q is ζ0-reflecting in 〈jq0,2k+1(U)〉_sq relative to κ in M q
2k+1.

By (b) and (c) together with parts (b) and (c) of Lemma 8.2.3, we have
that

(b′) (tp
δ′q
κ,ζ1

)M
q
2k+1(〈jq0,2k+1(U)〉_sq) =

(tp
δ′q
κ,̆ıpq;n,k+1(β̄pn)

)N̆
p
q;k+1(〈Ŭp

q;k+1〉_j
p
0,2k(s

q
k+1));

(c′) δ′q is ζ1-reflecting in 〈jq0,2k+1(U)〉_sq relative to κ in M q
2k+1.

Let f : jp0,2k(U [p � e])→ Ord belong to Mp
2k and be such that

β̄pn = π
Mp

2k

jp0,2k(Up�e,rn )
([[f ]]

Mp
2k

jp0,2k(Up�e,rn )
).

In other words, let f be such that β̄pn = (̆ıpp;0,n(f))(jp0,2k(s
p
n)). By (b′) and the

fact that crit (̆ıpq;0,k+1) > δ′q, there is a set X ∈ jp0,2k(Uq�e+1,rk+1
) such that, for

all t ∈ X,

(b′′) (tp
δ′q
κ,ζ1

)M
q
2k+1(〈jq0,2k+1(U)〉_sq) = (tp

δ′q
κ,f(t�e))

Mp
2k(〈jp0,2k(U)〉_t.

Choose any element t of X. Since κ is Woodin in M q
2k+1, the hypotheses

of the One-Step Lemma hold for κ with

M = M q
2k+1;

N = Mp
2k;

δ = δ′q;

η = δ′q;
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β = ζ1;

ξ = ζ0 + 1;

β′ = f(t � e);

x = 〈jq0,2k+1(U)〉_sq;
y = ∅;
x′ = 〈jp0,2k(U)〉_t;

χ(v) = “v = v.”

Let λ and E be given by the One-Step Lemma. By Theorem 7.3.2, the

model
∏Mp

2k
E (Mp

2k;∈) is wellfounded. Let then δ∗, ξ∗, and y∗ be given by the
One-Step Lemma. (We will make no use of ξ∗ and y∗.)

For all elements u of X,

(tp
δ′q
κ,f(u�e))

Mp
2k(〈jp0,2k(U)〉_u = (tp

δ′q
κ,f(t�e))

Mp
2k(〈jp0,2k(U)〉_t.

Thus the elementarity of i
Mp

2k
E gives that, for all u ∈ iM

p
2k

E (X),

(tp
i
M
p
2k

E (δ′q)

κ,(i
M
p
2k

E (f))(u�e)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_u)

= (tp
i
M
p
2k

E (δ′q)

κ,(i
M
p
2k

E (f))(i
M
p
2k

E (t)�e)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_iM
p
2k

E (t)).

Since δ∗q < i
Mp

2k
E (δ′q), for all u ∈ iM

p
2k

E (X) we have that

(tpδ
∗+1

κ,(i
M
p
2k

E (f))(u�e)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_u)

= (tpδ
∗+1

κ,(i
M
p
2k

E (f))(i
M
p
2k

E (t)�e)
)Ult(Mp

2k;E)(〈iM
p
2k

E (jp0,2k(U))〉_iM
p
2k

E (t)).

Let u ∈ i
Mp

2k
E (X). We make an application of the last part of the One-

Step Lemma, with z = 〈iM
p
2k

E (jp0,2k(U))〉_u and with α = (i
Mp

2k
E (f))(u � e). If

ξ̂ and ŷ are as given given by this application, then clause (2̂) of the One-Step
Lemma implies that ŷ = ∅ and ξ̂ is a successor ordinal. Let g(u) be the least
ordinal ν such that clauses (2̂) and (3̂) of the One-Step Lemma hold with
ξ̂ = ν + 1 and ŷ = ∅.

Observe that the function g : i
Mp

2k
E (X)→ Ord belongs to Ult(Mp

2k;E).
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We finish the definition of Sq by setting Eq
2k+1 = E. Thus Eq

2k+2 =

Ult(Mp
2k;E) and jq2k,2k+2 = i

Mp
2k

E . Clause (1∗) of the One-Step Lemma gives
the case k + 1 of inductive condition (i) for q .

Let δq = δ∗. Clauses (2̂) and (3̂) of the One-Step Lemma give that, for
all u ∈ jq2k,2k+2(X),

(2̂) (tp
δq
κ,g(u)+1)M

q
2k+2(〈jq0,2k+2(U)〉_u) = (tp

δq
κ,ζ0+1)M

q
2k+1(〈jq0,2k+1(U)〉_sq);

(3̂) δq is (g(u) + 1)-reflecting in 〈jq0,2k+2(U)〉_u relative to κ in M q
2k+2.

The set jq2k,2k+2(X) belongs to jq0,2k+2(Uq�e+1,rk+1
). This fact allows us to

complete our definitions by setting

βq = π
Mq

2k+2

jq0,2k+2(Uq�e+1,rk+1
)
([[g]]

Mq
2k+2

jq0,2k+2(Uq�e+1,rk+1
)
).

Using  Loś’s Theorem in M q
2k+2 and using the fact that

sqk+1 = π
Mq

2k+2

jq0,2k+2(Uq�e+1,rk+1
)
([[id]]

Mq
2k+2

jq0,2k+2(Uq�e+1,rk+1
)
),

we see that (2̂) and (3̂) imply that

(ii′) (tp
δq
κ,βq+1)N̆

q
q;k+1(〈jq0,2k+2(iq0,k+1(U))〉_jq0,2k+2(sq))

= (tp
δq
κ,ζ0+1)M

q
2k+1(〈jq0,2k+1(U)〉_sq);

(iii′) δq is (βq + 1)-reflecting in 〈jq0,2k+2(i∅,q(U))〉_jq0,2k+2(sq) relative to κ in

N̆ q
q;k+1.

Observe that (ii′) and (iii′) are just the case k + 1 of our inductive condi-
tions (ii) and (iii) for q.

Let us now verify our all our inductive conditions for q. To verify (i), (ii),
and (iii) for q, let m ≤ k + 1 be arbitrary.

We have already noted that condition (i) for the case m = k + 1 follows
from clause (1∗) of the One-Step Lemma. Suppose that m ≤ k. By condi-
tion (vi) for p, we have that δq�m ≤ δp. Because the One-Step Lemma gives
that η < δ∗, we also have that

δp < δ′q < δq.

By condition (i) for p, M q
2k and M q

2m .−1 agree through δp�m + 1. Since M q
2k+1

and M q
2k agree through δ′q+1, it follows that M q

2k+1 and M q
2m .−1 agree through
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δp�m + 1. Since M q
2k+2 and M q

2k+1 agree through δq + 1, we get that M q
2k+2

and M q
2m .−1 agree through δp�m + 1 = δq�m + 1.

We have already checked that (ii) and (iii) hold for the case m = k + 1.
Now let m ≤ k. By the fact that crit (jq2k,2(k+1)) = δ′q > δq�m and by our
definitions, we have that

(1) jq2k,2(k+1)(δq�m) = δq�m;

(2) jq2k,2(k+1)(β̄
p
m) = β̄qm;

(3) jq2k,2(k+1)(N̆
p
p;m) = N̆ q

q;m;

(4) jq2k,2(k+1)(Ŭ
p
p;m) = Ŭ q

q;m.

The fact that crit (jq2k,2(k+1)) > δq�m also implies that

(tp
δp�m
κ,β̄pm+1

)N̆
p
p;m(〈Ŭp

p;m〉_j
p
0,2k(s

q
m))

is fixed by jq2k,2(k+1). By (1)–(4),

jq2k,2k+2(tp
δp�m
κ,β̄pm+1

)N̆
p
p;m(〈Ŭp

p;m〉_j
p
0,2k(s

q
m))

= (tp
δq�m
κ,β̄qm+1

)N̆
q
q;m(〈Ŭ q

q;m〉_j
q
0,2(k+1)(s

q
m)).

Hence (ii) for q follows from (ii) for p. Similarly case m of (iii) for q follows
from (iii) for p.

The inequality ξ̂ < α of the One-Step Lemma gives us that

(∀u ∈ jq2k,2(k+1)(X)) g(u) + 1 < (jq2k,2(k+1)(f))(u � k).

This in turn implies that

βq + 1 < ı̆qq;n,k+1(jq2k,2k+2(βp)).

Since βq = β̄qk+1 and jq2k,2(k+1)(βp) = β̄qn, we have condition (iv) for q in

the case m = n. Assume that m < m′ ≤ k and that rm ⊆ rm′ . Recall that
jp2k,2k+2(β̄pm) = β̄qm and jp2k,2k+2(β̄pm′) = β̄qm′ and observe that jq2k,2k+2(̆ıpp;m,m′) =
ı̆qq;m,m′ . By these facts, condition (iv) for p, and the elementarity of jq2k,2k+2,

β̄qm′ = jq2k,2k+2(β̄pm′) < jq2k,2k+2(̆ıpp;m,m′(β̄
p
m)) = ı̆qq;m,m′(β̄

q
m).
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The remaining case of condition (iv) for q is m 6= n and m′ = k+ 1. Assume
that m ≤ k, m 6= n, and rm ⊆ rk+1. By the definition of n, we must have
m < n and rm ⊆ rn. But then

β̄qk+1 < ı̆qq;n,k+1(β̄qk) < ı̆qq;n,k+1(̆ıqq;m,n(β̄qm)) = ı̆qq;m,k+1(β̄qm).

We have already verified for q the first clause of condition (v) and the
case m = k of the second clause of that condition. The other cases of the
second clause follow easily from the corresponding cases for for p and the
case m = k for q.

We have noted that δp < δ′q < δq. Note also that 2n .− 1 = (2k + 1)−S .
Now crit (Eq

2k) = δq�n and crit (Eq
2k+1) = δ′q. Since condition (vi) holds for p

and since γ < δ∅, it follows that condition (vi) holds for q.

This completes our construction and the verification that it has the de-
sired properties.

We will show that the system

(〈Mp
2`h(p) | p ∈ T 〉, 〈j

p
m,2`h(p) | p ∈ T ∧ m < `h(p) ∈ T 〉)

gives an embedding normal form for the T -projection of U ‡.

Fix x ∈ [T ]. Let Sx be the iteration tree of length ω whose restrictions
are the Sx�n.

We will need to know that Sx is a plus one tree. To prove this, let n ∈ ω.
It is not true for S, as it was for the alternating chain ordering C, that the
set

{m | (m+ 1)−S ≤ n < m}

is finite. But the first part of the proof of Lemma 8.2.5 shows that it suffices
to prove prove the weaker fact that, for every k ∈ ω, the set

{crit (ESxm ) | (m+ 1)−S ≤ n < m}

is finite. Condition (vi) of our construction implies that, for all m and m′ ∈ ω,

(m+ 1)−S = (m′ + 1)−S → crit (ESxm ) = crit (ESxm′),

and there are only finitely many numbers ≤ n of the form (m+ 1)−S .

We must show that [U ‡(x)] 6= ∅ if and only if M̃Sx
Even is wellfounded.
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Assume first that [U ‡(x)] 6= ∅. By Theorem 8.1.8, [U(x)] = ∅, i.e., U(x)
is a wellfounded tree. For each k ∈ ω, let

ξ2k = jSx0,2k(‖s∅‖
U(x));

ξ2k+1 = ‖sx�k+1‖j
Sx
0,2k+1(U(x)).

Using condition (v), we get that, for all m and n ∈ ω with rm ( rn,

jSx2m .−1,2n .−1(ξ2m .−1) = ‖jSx2m .−1,2n .−1(sx�m)‖j
Sx
0,2n

.−1
(U(x))

> ‖sx�n‖j
Sx
0,2n

.−1
(U(x))

= ξ2n .−1.

Thus the sequence 〈ξn | n ∈ ω〉 witnesses that Sx is continuously illfounded off
Even. Since Sx is plus one, Corollary 7.4.6 gives that MSx

Even is wellfounded.
Now assume that M̃Sx

Even is wellfounded. For elements m and m′ of ω with
m ≤ m′, let

β̄xm = jSx2m,Even(βx�m);

ı̆xm,m′ = jSx0,Even(ix�n;m,n)

ı̆xm = jSx0,Even(ix〈x�`h(rm),rm〉).

Let y ∈ ωω be arbitrary. For each n ∈ ω, let mn be such that y � n = rmn .
Let n < n′ ∈ ω and let k ∈ ω be such that mn′ ≤ k. By condition (iv), we
have that

β̄x�kmn′
< ı̆x�kx�k;mn,mn′

(β̄x�kmn ).

Applying jSx2k,Even to both sides of this inequality, we find that

β̄xmn′ < ı̆xmn,mn′ (β̄
x
mn).

Applying ı̆xmn′ to both sides, we get that

ı̆xmn′ (β̄
x
mn′

) < ı̆xmn(β̄xmn).

This argument shows that the ı̆xmn(β̄xmn), n ∈ ω, form an infinite descending

chain in the ordinals of the model jCx0,Even(Mx,y), and so that model is ill-
founded. It follows by absoluteness that Mx,y is illfounded. Since y was an
arbitrary element of ωω, this means that [U(x)] = ∅. Therefore [U ‡(x)] 6= ∅.
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Remark. As in the proof of Theorem 8.2.6, the second half of the proof
of embedding normal form is not needed for the proof of the theorem.

To complete the proof of the theorem, let α be any ordinal such that
βp < α for all p ∈ T .

For p ∈ T , set

Vp = {X ⊆ (U ‡ � α)[p] | 〈β̄pm | m < `h(p)〉 ∈ jp0,2`h(p)(X)}.

We will show that 〈Vp | p ∈ T 〉 witnesses that U † � α is γ-homogenous.
We first prove that clause (1) of the definition of homogeneity holds—that

each Vp is a γ-complete ultrafilter on (U † � α)[p]. Let p ∈ T . We begin by
proving that (U ‡ � α)[p] ∈ Vp, i.e., that

(i) (∀m< `h(p)) β̄pm < jp0,2`h(p)(α);

(ii) 〈β̄pm | m < `h(p)〉 ∈ jp0,2`h(p)(U
‡[p]).

For (i), let m < `h(p). Then

β̄pm = jp2m,2`h(p)(βp�m) < jp2m,2`h(p)(α) ≤ jp0,2`h(p)(α).

By the definition of U ‡, what we must show to prove (ii) is that, for all
m and m′ such that m < m′ < `h(p),

β̄pm′ < (jp0,2`h(p)(i〈p�`h(rm),rm〉,〈p�`h(rm′ ),rm′ 〉))(β̄
p
m),

i.e., that
β̄pm′ < (jp0,2`h(p)(ip;m,m′))(β̄

p
m).

But this follows directly from condition (iv) of our construction.
Since (U ‡ � α)[p] ∈ Vp, it follows by Lemma 6.1.1 that Vp is an ultrafilter

on (U † � α)[p].
By condition (vi), γ ≤ crit (jp0,2`h(p)). Hence Lemma 6.1.1 yields that Vp

is γ-complete.
The verifications of clauses (2) and (3′) in the definition of homogeneity

is exactly like the corresponding verifications in the proof of Theorem 8.2.6,
and we omit them. �

Corollary 8.2.8. Let κ be a Woodin cardinal, let T be a game tree such that
|T | < κ, and let A ⊆ [T ] be such that [T ] \ A is weakly κ+-homogeneously
Souslin. Then A is (< κ)-homogeneously Souslin.
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Proof. Let Y be a set and U a tree on field (T ) ⊗ Y witnessing that T is
weakly κ+-homogeneously Souslin. Let 〈Up,r | p ∈ T ∧ r ∈ <ωω〉 witness that
U is weakly κ+-homogeous for T . Let U ‡ = U ‡(〈Up,r | p ∈ T ∧ r ∈ <ωω〉).
By Theorem 8.2.7, let α ≥ max{ω, (2|Y |)+} be such that U ‡ � α is (< κ)-
homogeneous for T . By Theorem 8.1.8, A is the T -projection of U ‡ � α, and
so A is (< κ)-homogeneously Souslin. �

Theorem 8.2.9. Let T be a game tree and let n ∈ ω. Let 〈κi | i ≤ n be a
strictly increasing sequence of cardinals such that |T | < κ0, κn is measurable
and, for i < n, κi is Woodin. Then every Π1

n+1 subset of [T ] is (< κ0)-
homogeneously Souslin.

Proof. We prove by induction on m ≤ n that, for every game tree T ′

such that |T ′| ≤ max{ℵ0, |T |}, every Π1
m+1 subset of [T ′] is (< κn−m)-

homogeneously Souslin.
By Theorem 4.3.6, every Π1

1 subset of such a [T ′] is κn-homogeneously
Souslin and so (< κn)-homogeneously Souslin.

Let m < n and assume that what we want to prove holds of m. Let
T ′ be a game tree such that |T ′| ≤ max{ℵ0, |T |}. Let A ⊂ [T ] with A ∈
Π1
m+2. Let B ⊆ [T ] × ωω be such that B ∈ Π1

n and A = [T ] \ pB. Let
B∗ = {〈|x, y|〉 | 〈x, y〉 ∈ B}. Then B∗ ⊆ [T ⊗ <ωω] and B∗ ∈ Π1

n. Since
κn−(m+1) < κn−m, we have that B∗ is (κn−(m+1))

+-homogeneously Souslin.
But this means thatB is (κn−(m+1))

+-homogeneously Souslin. (See page 425.)
By Theorem 8.1.3, [T ]\A is weakly κ-homogeneously Souslin. Since κn−(m+1)

is Woodin, Corollary 8.2.8 implies that A is (< κ)-homogeneously Souslin.
�

Theorem 8.2.10. Let T be a game tree and let n ∈ ω. Assume that there are
n distinct Woodin cardinals all greater than |T | and that there is a measurable
cardinal greater than all of them. Then every Π1

n+1 game in T is determined.

Proof. The theorem follows directly from Theorems 8.2.9 and 4.3.5.
�

Exercise 8.2.1. Let b be one of the two branches of an alternating chain C
of length ω. Assume that the other branch of S is illfounded. Prove that C
is continuously illfounded off b.

Hint. Use Lemma 7.4.2.
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Exercise 8.2.2. Let n ∈ ω. Assume that there is a Woodin cardinal. Prove
that there is an infinite plus n alternating chain on V .

Hint. The most natural way to proceed is to prove a variant of the
One-Step Lemma which will let one build a plus n alternating chain by a
construction just like that of Lemma 8.2.4. It is possible, nevertheless, to get
by with the One-Step Lemma itself.

8.3 Variations

In this section we discuss variants of the construction of the proof of Theo-
rem 8.2.7.

The first variant is a cleaned-up version of the construction of [Martin and Steel, 1989].
It has the advantage of being a little simpler than the construction of the
proof of Theorem 8.2.7. Its disadvantage lies in its not immediately yielding
homogeneity ultrafilters for U ‡. After giving the construction, we prove the
lemma needed to get the existence of these ultrafilters. We then prove a
result of K. Windßus that allows one to sidestep the problem, propagating
homogeneous Souslinness without proving the homogeneity of U ‡.

The second variant construction is due to Itay Neeman. Rather than
propagate homogeneous Souslinness, Neeman propagates what he calls the
auxiliary game property. His method has various advantages, one of which is
that it seems to yield sharper results.

In the proof in §8.2 of Theorem 8.2.7, we maintained inductively relations
between the models

N̆p
q;m = jp0,2k(i

p
p;0,m(V ))

and the models Mp

2m
.−1

= jp
0,2m

.−1
(V ). The induction step of the construction

involved successive applications of the One-Step Lemma. The first of these
applications was to the models N̆p

q;k+1 and Mp

2n
.−1

, for some n ≤ k. But

the second application was not, as one might have anticipated, to Mp
2n+1

and N̆p
q;k+1. Instead we undid the embedding ı̆pq;k+1, made a whole set of

applications of the second half of the One-Step Lemma to the models Mp
2n+1

and Mp
2k, and then applied ı̆qq;0,k+1 to the results of these applications. The

reason for this round-about process was that the direct method would have

yielded, for example, the model i
N̆p
q;k+1

Eq2k
(N̆p

q;k+1) in place of Ñ q
q;k+1.

The analogous construction in [Martin and Steel, 1989] could—at least,
after a mostly cosmetic rearrangement—be regarded as maintaining induc-
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tively certain relations between the models

ipp;0,m(jp0,2k(V ))

and the models Mp

2m
.−1

The induction step could be seen as involving two

straightforward applications of the One-Step Lemma. In [Martin and Steel, 1989]
embedding normal form was not hard to demonstrate, but homogeneity of
U ‡ needed a substantial lemma.

Let us see how would work after the “cosmetic rearrangement.”
Let T , κ, Y , U , ν, ζ0, ζ1, ρ, 〈Up,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉, U ‡, γ, 〈πp,r |

〈|p, r|〉 ∈ T ⊗ <ωω〉, 〈i〈p,r〉,〈q,s〉 | 〈|p, r|〉 ⊆ 〈|q, s|〉 ∈ T ⊗ <ωω〉, (Mx,y; 〈ix,y〈x�n,y�n〉 |
n ∈ ω〉), i 7→ ri, 〈sp,r | 〈|p, r|〉 ∈ T ⊗ <ωω〉, and S be as in the proof of
Theorem 8.2.7.

As in the proof of Theorem 8.2.7, we will define, by induction on p ∈ T ,
objects δp, βp, Sp, and sp. Both δp and βp will be ordinals, with δp < κ. sp
will be a sequence such that `h(sp) = `h(r`h(p)). Sp will be an iteration tree
of length 2`h(p) + 1 on V . Its tree ordering will be the restriction of S. Its
extenders will be Ep

m, m < 2`h(p), its models will be Mp
m m ≤ 2`h(p), and

its embeddings will be jpm,n, mS n ≤ 2`h(p). Whenever p ⊆ q ∈ T then we
will have Sp = Sq � 2`h(p) + 1.

We introduce some notation. Let p and q belong to T . Let k ≤ k′ ≤
2`h(p). Let m ≤ n ≤ `h(q) such that rm ⊆ rn. Let

iq;m,n = i〈q�`h(rm),rm〉,〈q�`h(rn),rn〉;

̂q;mp;k,k′ = iq;0,m(jpk,k′);

N̂ q;m
p = iq;0,m(Mp

2`h(p));

Û q;m
p = iq;0,m(jp0,2`h(p)(U));

β̃pm = ̂q;mp;2m,2`h(p)(βp�m));

sqm = sq�`h(rm),rm .

The embedding ̂q;mp;k,k′ is the image of jpk,k′ in Ult(V ;Uq�`h(rm),rm) = iq;0,m(V ).

The class model N̂ q;m
p is the image of Mp

2`h(p) in iq;0,m(V ). In other words,

N̂ q;m
p = iq;0,m(jp0,2`h(p)(V )).

The tree Û q;m
p is the image of jp0,2`h(p)(U) in iq;0,m(V ); i.e., it is the image of

U in N̂ q;m
p
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For p = ∅ we proceed exactly as in the proof of Theorem 8.2.7. We choose
δ∅ > γ to be ζ0 + 1-reflecting in 〈U〉 relative to κ, and we let β∅ = ζ0.

Let p ∈ T . Let k = `h(p). Assume that δp′ , βp′ , Sp′ , and sp′ are defined
for all p′ ⊆ p so as to satisfy the conditions stated above and also the following
conditions:

(i) for all m ≤ k, Mp
2k and Mp

2m .−1 agree through δp�m + 1;

(ii) for all m ≤ k, the type (tp
δp�m

κ,β̃pm+1
)N̂

p;m
p (〈Ûp;m

p 〉_̂
p;m
p;0,2k(s

p
m)) is the same

as (tp
δp�m
κ,ζ0+1)M

p

2m
.−1(〈jp0,2m .−1(U)〉_sp�m);

(iii) for all m ≤ k, δp�m is (β̃pm + 1)-reflecting in 〈Ûp;m
p 〉_̂

p;m
p;0,2k(s̃

p
m) relative

to κ in N̂p;m
p ;

(iv) for all m and m with m < m′ ≤ k, if rm ⊆ rm′ then

β̃pm′ < ip;m,m′(β̃
p
m);

(v) for all m ≤ k, sp�m belongs to (jp0,2m .−1)(U [p � `h(rm)]), and

rm ⊆ rk → jp2m .−1,2k .−1(sp�m) ⊆ sp);

(vi) for all m < k,

γ < δp�m < crit (Ep
2m+1) < δp�m+1,

and crit (Ep
2m) = δp�m̄, where 2m̄ .− 1 = (2m+ 1)−S .

Note that these conditions all hold for for p = ∅.
Let q be any element of T such that p ⊆ q and `h(q) = k + 1.
Let n be the largest number ≤ k such that rn ⊆ rk+1. Let e = `h(rn).

Thus `h(rk+1) = e+ 1.
By (i) and the fact that crit (iq;0,k+1) > κ, it follows that N̂ q;k+1

p and
Mp

2n .−1 agree through δp�n + 1.
One readily computes that

N̂ q;k+1
p = iq;n,k+1(N̂p;n

p );

Û q;k+1
p = iq;n,k+1(Ŭp;n

p );

̂q;k+1
p;0,2k(iq;n,k+1(spn)) = iq;n,k+1(̂p;np;0,2k(s

p
n)).
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Since crit (iq;n,k+1) > κ, it follows that

(tp
δp�n

κ,β̃pn+1
)N̂

p;n
p (〈Ûp;n

p 〉_̂
p;n
p;0,2k(s

p
n))

= iq;n,k+1((tp
δp�n

κ,β̃pn+1
)N̂

p;n
p (〈Ûp;n

p 〉_̂
p;n
p;0,2k(s

p
n)))

= (tp
δp�n

κ,iq;n,k+1(β̃pn)+1
)N̂

q;k+1
p (〈Û q;k+1

p 〉_̂q;k+1
p;0,2k(iq;n,k+1(spn)))

and so by (ii) this last is the same as (tp
δp�n
κ,ζ0+1)M

p

2n
.−1(〈jp0,2n .−1(U)〉_sp�n).

From (iii) it similarly follows that δp�n is (iq;n,k+1(β̃pn+1))-reflecting in the

sequence 〈Û q;k+1
p 〉_̂q;k+1

p;0,2k(iq;n,k+1(spn)) relative to κ in N̂ q;k+1
p .

Since jp0,2k and iq;0,k+1 fix κ, we have that κ is Woodin in N̂ q;k+1
p .

Thus the hypotheses of the One-Step Lemma hold for κ with

M = N̂ q;k+1
p ;

N = Mp
2n .−1;

δ = δp�n;

η = δp;

β = iq;n,k+1(β̃pn) + 1;

ξ = iq;n,k+1(β̃pn);

β′ = ζ0 + 1;

x = 〈Û q;k+1
p 〉_̂q;k+1

p;0,2k(iq;n,k+1(spn));

y = 〈(̂q;k+1
p;0,2k(s

q
k+1))(e)〉;

x′ = 〈jp0,2n .−1(U)〉_sp�n;

χ(v) = “κ+ v is the greatest ordinal.”

Let λ and E be given by the One-Step Lemma. Since iq;0,k+1 fixes λ, E,
and δp, it follows that E is a (δp�n, λ)-extender in Mp

2k. Thus Theorem 7.3.2

gives that
∏Mp

2n
.−1

E (Mp
2n .−1;∈) is wellfounded. Let then δ∗, ξ∗, and y∗ be given

by the One-Step Lemma. By clause (4∗) of the One-Step Lemma, ξ∗ = ζ0.
Extend Sp to an alternating chain that will be Sq �2k+2 by setting Eq

2k = E.
The ordinal δ∗ we will call δ′q. Set sq = (jq2n .−1,2k+1(sp))_y

∗.
Note that M q

m = Mp
m, Eq

m = Ep
m, jqm,m′ = jpm,m′ , and iqm,m′ = ipm,m′

whenever these equations make sense. We will use these identities without
comment in the sequel.

A computation like the analogous one in the proof of Theorem 8.2.7 gives
that

x_y = 〈Û q;k+1
p 〉_̂q;k+1

p;0,2k(s
q
k+1).
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Since sqk+1 belongs to iq;0,k+1(U [q � e + 1]), the sequence ̂q;k+1
p;0,2k(s

q
k+1) be-

longs to ̂q;k+1
p;0,2k(i

q
0,k+1(U [q � e + 1])) = (iq;0,k+1(jp0,2k))(i

q
0,k+1(U [q � e + 1])) =

iq;0,k+1(jp0,2k(U [q � e+ 1])) = Û q;k+1
p . It follows by clause (2∗) of the One-Step

Lemma that sq ∈ jq0,2k+1(U [q � e+ 1]), and so the first clause of condition (v)
holds for q. Since jq2n .−1,2k+1(sq�n) ⊆ sq, the second clause of condition (v)
holds for q the case m = n.

We have that

(a) M q
2k+1 and N̂ q;k+1

p agree through δ′q + 1;

(b) (tp
δ′q
κ,ζ0

)M
q
2k+1(〈jq0,2k+1(U)〉_sq) =

(tp
δ′q

κ,iq;n,k+1(β̃pn)
)N̂

q;k+1
p (〈Û q;k+1

p 〉_̂q;k+1
p;0,2k(s

q
k+1));

(c) δ′q is ζ0-reflecting in 〈jq0,2k+1(U)〉_sq relative to κ in M q
2k+1.

By (b) and (c) together with parts (b) and (c) of Lemma 8.2.3, we have
that

(b′) (tp
δ′q
κ,ζ1

)M
q
2k+1(〈jq0,2k+1(U)〉_sq) =

(tp
δ′q

κ,iq;n,k+1(β̃pn)
)N̂

q;k+1
p (〈Û q;k+1

p 〉_̂q;k+1
p;0,2k(s

q
k+1));

(c′) δ′q is ζ1-reflecting in 〈jq0,2k+1(U)〉_sq relative to κ in M q
2k+1.

Since κ is Woodin in M q
2k+1, the hypotheses of the One-Step Lemma hold

for κ with

M = M q
2k+1;

N = N̂ q;k+1
p

δ = δ′q;

η = δ′q;

β = ζ1;

ξ = ζ0 + 1;

β′ = iq;n,k+1(β̃pm));

x = 〈jq0,2k+1(U)〉_sq;
y = ∅;
x′ = 〈Û q;k+1

p 〉_̂q;k+1
p;0,2k(s

q
k+1);

χ(v) = “v = v.”
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Let λ and E be given by the One-Step Lemma. From (a) above and the
fact that crit (iq;0,k+1) > κ > δ′q + 1, it follows that that M q

2k+1 and M q
2k

agree through δ′q + 1. Thus the model
∏Mq

2k
E (M q

2k;∈) is wellfounded. By the

elementarity of iq;0,k+1,
∏iq;0,k+1(Mq

2k)

E (iq0,k+1(M q
2k;∈)) is wellfounded. Let then

δ∗, ξ∗, and y∗ be given by the One-Step Lemma. Clause (2∗) of the One-Step
Lemma implies that y∗ = ∅ and that ξ∗ is a successor ordinal. We finish
the definition of Sq by setting Eq

2k+1 = E. Let δq = δ∗. Let βq be such that
βq + 1 = ξ∗.

Observe that

Ult(N̂ q;k+1
p ;E) = Ult(iq;0,k+1(Mp

2k);E)

= iq;0,k+1(Ult(Mp
2k;E))

= iq;0,k+1(M q
2k+2)

= N̂ q;k+1
q

and that

i
N̂q;k+1
p

E = iq;0,k+1(i
Mp

2k
E )

= iq;0,k+1(jq2k,2k+2)

= ̂q;k+1
q;2k,2k+2.

Thus

i
N̂q;k+1
p

E (Û q;k+1
p ) = ((iq;0,k+1(jq2k,2k+2))(iq;0,k+1(jp0,2`h(p)(U))

= iq;0,k+1(jq0,2k+2(U))

= Û q;k+1
q

and

i
N̂q;k+1
p

E (̂q;k+1
p;0,2k(s

q
k+1)) = ̂q;k+1

q;2k,2k+2(̂q;k+1
p;0,2k(s

q
k+1))

= ̂q;k+1
q;0,2k+2(sqk+1).

To verify inductive conditions (i)–(iii) for q, let m ≤ k + 1 be arbitrary.
Since Ult(N̂ q;k+1

p ;E) = iq;0,k+1(M q
2k+2), condition (i) for the case m =

k + 1 follows from clause (1∗) of the One-Step Lemma and the fact that
crit (iq;0,k+1) > κ. The verification of (i) for m ≤ k is exactly like the corre-
sponding step in the proof of Theorem 8.2.7.

Clauses (2∗) and (3∗) of the One-Step Lemma and the identities above
give that
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(ii′) (tp
δq
κ,βq+1)N̂

q;k+1
q (〈Û q;k+1

q 〉_̂q;k+1
q;0,2k+2(sq))

= (tp
δq
κ,ζ0+1)M

q
2k+1(〈jq0,2k+1(U)〉_sq);

(iii′) δq is (βq + 1)-reflecting in 〈Û q:k+1
q 〉_̂q;k+1

q;0,2k+2(sq) relative to κ in N̂ q;k+1
q .

(ii′) and (iii′) are just our inductive conditions (ii) and (iii) for q.

Now let m ≤ k. By the fact that crit (̂q;mq;2k,2(k+1)) = δ′q > δq�m and by our
definitions, we have that

(1) ̂q;mp;2k,2(k+1)(δq�m) = δq�m;

(2) ̂q;mp;2k,2(k+1)(β̃
p
m) = β̃qm;

(3) ̂q;mp;2k,2(k+1)(N̂
p;m
p ) = N̂ q;m

q ;

(4) ̂q;mp;2k,2(k+1)(Û
p;m
p ) = Û q;m

q .

The fact that crit (̂q;mp;2k,2(k+1)) > δq�m also implies that

(tp
δp�m

κ,β̃pm+1
)N̂

p;m
p (〈Ûp;m

p 〉_̂
p;m
p;0,2k(s

q
m))

is fixed by ̂q;mp;2k,2(k+1). Thus we get condition (ii) for q just as we got the

corresponding fact in the proof of Theorem 8.2.7. Condition (iii) for q follows
similarly.

The inequality ξ∗ < iNE of the One-Step Lemma gives us that

βq < ξ∗

< i
N̂q;k+1
p

E (iq;n,k+1(β̃pn))

= (iq;0,k+1(jq2k,2(k+1)))(iq;n,k+1(β̃pn))

= iq;n,k+1((iq;0,n(jq2k,2(k+1)))(β̃
p
n))

= iq;n,k+1(̂q;nq;2k,2(k+1)(β̃
p
n))

= iq;n,k+1(β̃pn).

Since βq = β̃qk+1, this gives us condition (iv) for q in the case m = n. The
other cases are handled as were the corresponding cases in the proof of The-
orem 8.2.7.
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Assume that m < m′ ≤ k and that rm ⊆ rm′ . Note that ̂q;m
′

q;2k,2k+2 =
iq;m,m′(̂

q;m
q;2k,2k+2). Using condition (iv) for p, we get that

β̃qm′ = ̂q;m
′

q;2k,2k+2(β̃pm′)

< ̂q;m
′

q;2k,2k+2(iq;m,m′(β̃
p
m))

= iq;m,m′(̂
q;m
q;2k,2k+2(β̃pm))

= iq;m,m′(β̃
q
m).

The remaining case of condition (iv) for q is m 6= n and m′ = k + 1. The
proof for this case is analogous to the corresponding step in the proof of
Theorem 8.2.7.

The proofs of conditions (v) and (vi) for q are like the corresponding steps
in the proof of Theorem 8.2.7.

We will show that the system

(〈Mp
2`h(p) | p ∈ T 〉, 〈j

p
m,2`h(p) | p ∈ T ∧ m < `h(p) ∈ T 〉)

gives an embedding normal form for the T -projection of U ‡.
Fix x ∈ [T ]. Let Sx be the iteration tree of length ω whose restrictions

are the Sx�n.
The proof that MSx

Even is wellfounded if [U ‡(x)] 6= ∅, is exactly like the
corresponding step in the proof of Theorem 8.2.7.

Now assume that [U ‡(x)] = ∅. Thus [U(x)] 6= ∅. By Lemma 8.1.2, let
y ∈ ωω be such that Mx,y is wellfounded. For each n ∈ ω, let y � n = rmn .
Let n < n′ ∈ ω. Applying condition (iv) with p = x �m′n, we get that

β̃x�mn′mn′
< ix�mn′ ,mn,mn′ (β̃

x�mn′
mn ).

Unpacking our definitions, we find that this means that

βx�mn′ < i〈x�n,y�n〉,〈x�n′,y�n′〉((i〈∅,∅〉,〈x�n,y�n〉(j
Sx
2mn,2mn′

))(βx�mn)).

This in turn gives that

βx�mn′ < (i〈∅,∅,〉,〈x�n′,y�n′〉(j
Sx
2mn,2mn′

))(i〈x�n,y�n〉,x�n′,y�n′〉(βx�mn)).

Applying ix,y〈x�n′,y�n′〉 to both sides of this inequality, we get that

ix,y〈x�n′,y�n′〉(βx�mn′ ) < (ix,y〈∅,∅〉(j
Sx
2mn,2mn′

))(ix,y〈x�n,y�n〉(βx�mn)).
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Applying ix,y〈∅,∅〉(̃
Sx
2mn′ ,Even) to both sides, we get that

(ix,y〈∅,∅〉(̃
Sx
2mn′ ,Even))(ix,y〈x�n′,y�n′〉(βx�mn′ )) < (ix,y〈∅,∅〉(̃

Sx
2mn,Even))(ix,y〈x�n,y�n〉(βx�mn)).

Thus the (ix,y∅,∅(̃
Sx
2mn,Even))(ix,y〈x�n,y�n〉(βx�mn)), n ∈ ω, form an infinite descending

chain in the ordinals of the model ix,y〈∅,∅〉(M̃
Sx
Even). This implies that M̃Sx

Even is
illfounded.

There are two ways to use our construction and the result just proved
about it to get the homogeneous Souslinness of the T -projection of U ‡. One
way is to use it to get the homogeneity of U ‡. We now show how this can be
done.

For p ∈ T and m ≤ `h(p), define β̄pm as in the earlier construction:
β̄pm = jp2m,2`h(p)(βp�m). Let α > βp for all p. We can use the ordinals β̄pm to

define ultrafilters Vp on `h(p)α. For X ⊆ `h(p)α, let

X ∈ Vp ↔ 〈β̄pm | m < `h(p)〉 ∈ jp0,2`h(p)(X).

The arguments of the proofs of Theorems 8.2.6 and 8.2.7 show that the
Vp are compatible, that each Vp is a γ complete ultrafilter on `h(p)α, and
that whenever M̃Sx

Even is wellfounded then the direct limit model for the sys-
tem given by the Vx�n, n ∈ ω, is wellfounded. Since M̃Sx

Even is wellfounded
whenever x belongs to the T -projection of U ‡, we can verify homogeneity
condition (3′).

There is only one problem in showing that 〈Vp | p ∈ T 〉 witnesses that
U ‡ is homogeneous for T : we must prove (U ‡ � α)[p] ∈ Vp for each p. If we
can do this, then we will have shown that each Vp induces an ultrafilter on
(U ‡ � α)[p] and that the corresponding system of ultrafilters witnesses the
γ-homogeneity of U ‡ � α.

To prove that (U ‡ � α)[p] ∈ Vp, we need to show that, for all m and m′

such that m < m′ < `h(p) and rm ⊆ rm′ ,

β̄pm < (jp0,2`h(p)(ip;m,m′))(β̄
p
m′).

To see in simpler terms what we need to show, fix m and m′ with m < m′ <
`h(p) and rm ⊆ rm′ . By the definitions of the ordinals β̄pn, what we must
show is that

jp2m′,2`h(p)(βp�m′) < (jp0,2`h(p)(ip;m,m′))(j
p
2m,2`h(p)(βp�m)).
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By the elementarity of jp2m′,2`h(p), this is equivalent with the assertion that

βp�m′ < (jp0,2m′(ip;m,m′))(j
p
2m,2m′(βp�m)).

Condition (iv) of our construction gives that

(ip;0,m′(j
p
2m′,2`h(p)))(βp�m′) < ip;m,m′((ip;0,m(jp2m,2`h(p)))(βp�m)).

By the elementarity of ip;m,m′ and of ip;0,m′(j
p
2m′,2`h(p)), this is equivalent with

the assertion that

βp�m′ < (ip;0,m′(j
p
2m,2m′))(ip;m,m′(βp�m)).

We will prove a theorem showing that that, on the ordinals,

a) jp0,2m′(ip�m,p�m′) agrees with ip�m,p�m′ ;

b) i∅,p�m′(j
p
2m,2m′) agrees with jp2m,2m′ ;

c) ip�m,p�m′ ◦ jp2m,2m′ agrees with jp2m,2m′ ◦ ip�m,p�m′ .

It will be easy to see that these facts give the equivalence of the two inequal-
ities above.

Instead of proceeding directly to the proof of this result, we first illustrate
the ideas in a simplified form.

Lemma 8.3.1. Let κ be a strong limit cardinal and let Let U be a κ-complete
ultrafilter on some set X. Let V ∈ Vκ be an ultrafilter a some set X̄ (which
must also belong to Vκ). Then

(a) iV(iU) = iU � Ult(V ;V);

(b) iU(iV) = iV � Ult(V ;U);

(c) iU ◦ iV � ON = iV ◦ iU � ON.

Proof. Let j = iV and i = iU .
(a) We will prove two technical facts and deduce (a) from them.

(i) If Y ∈ Ult(V ;V) and Y ⊆ j(X), then

Y ∈ j(U)↔ {z ∈X | j(z) ∈ Y } ∈ U .
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To prove (i), first let Y be an element of j(X). Let f : X̄ → P(X) be
such that Y = πV([[f ]]V). Let

K = {x ∈ X̄ | f(x) ∈ U}.

By Theorem 3.2.5, K ∈ V . Let

Z =
⋂
x∈K

f(x).

The κ-completeness of U implies that Z ∈ V . The following chain of impli-
cations show that j′′Z ⊆ Y .

z ∈ Z → (∀x ∈K) z ∈ f(x)

→ {x | z ∈ f(x)} ∈ V
→ j(z) ∈ πV([[f ]]V)

→ j(z) ∈ Y.

Now let Y ∈ Ult(V ;V), Y ⊆ j(X), and Y /∈ j(U). Then j(X) \ Y ∈
j(U). By what we have already proved, {z ∈ X | j(z) /∈ Y } ∈ j(U). Thus
{z ∈X | j(z) ∈ Y } /∈ U .

(ii) For each F ∈ Ult(V ;V)∩j(X)Ult(V ;V), define Φ(F ) : X → Ult(V ;V)
by

(Φ(F ))(z) = F (j(z)).

Then for each G ∈ XUlt(V ;V) there is an F ∈ Ult(V ;V) ∩ j(X)Ult(V ;V)
such that F : j(X)→ Ult(V ;V) and

[[Φ(F )]]U = [[G]]U .

Let G ∈ XUlt(V ;V). Choose for each z ∈ X an fz such that G(z) =
πV([[fz]]V) = G(z). Define h : X̄ → XV by

(h(x))(z) = fz(x).

Let

F = πV([[h]]V).
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Clearly F ∈ Ult(V ;V) ∩ j(X)Ult(V ;V). For any z ∈ X,

F (j(z)) = (πV([[h]]V))(j(z))

= πV([[fz]]V)

= G(z).

To prove (a), let Φ be as in (ii). For F ∈ Ult(V ;V) ∩ j(X)Ult(V ;V), set

Φ∗([[F ]]j(U)) = [[Φ(F )]]U .

To see that Φ∗ is well-defined, note that

[[F1]]j(U) = [[F2]]j(U) ↔ {y ∈ j(X) | F1(y) = F2(y)} ∈ j(U)

↔ {z ∈X | F1(j(z)) = F2(j(z))} ∈ U
↔ {z ∈X | (Φ(F1))(z) = (Φ(F2))(z)} ∈ U
↔ [[Φ(F1)]]U = [[Φ(F2)]]U .

The second of the biconditionals is a consequence of (i). A similar chain of
equivalences shows that

Φ∗ :

Ult(V ;V)∏
j(U)

Ult(V ;V) ≺
∏
U

Ult(V ;V).

(See the proof of Lemma 8.3.3 below.) By (i), the elementary embed-
ding Φ∗ is a surjection, and so it is an isomorphism. This in turn gives
that πU ◦Φ∗ ◦ (π

Ult(V;V)
j(U) )−1 is an isomorphism between (j(i))(Ult(V ;V)) and

i(Ult(V ;V)). Since these two classes are transitive, they must be identical,
and the isomorphism must be the identity. If w ∈ Ult(V ;V), we have

(j(i))(w) = π
Ult(V;V)
j(U) ([[cw]]

Ult(V ;V)
j(U) )

= πU(Φ∗([[cw]]
Ult(V ;V)
j(U) ))

= πU([[cw]]U)

= i(w).

Here we have ambiguously used “cw” for two distinct functions with constant
value w.

The proof of (a) is now complete.
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(b) The proof of (b) is simpler. Since U is κ-complete and since X̄ ∈
Vκ, Lemma 3.2.11 implies that V and Ult(V ;U) have the same functions

f : X̄ → Ult(V ;U). Since i(V) = V , we have that
∏Ult(V ;U)

i(V) Ult(V ;U) and∏
V Ult(V ;U) are identical and that i(j) � Ult(V ;U) = j � Ult(V ;U).

(c) Let α ∈ ON. By (a) and by the elementarity of j, we have that

i(j(α)) = (j(i))(j(α)) = j(i(α)).

(We could just as well have deduced (c) from (b) and the elementarity of i.)
�

From now through Theorem 8.3.6, let κ be a strong limit cardinal and
let T ∈ Vκ be an iteration tree of length ≤ ω on V with tree ordering T ,
extenders En, n+ 1 < `h(T ), models Mn, n < `h(T ), and embeddings jm,n,
mT n < `h(T ). For n + 1 < `h(T ), let δn and λn be such that En is a
(δn, λ)-extender in Mn.

The following lemma is a generalization of assertion (i) of the proof of
Lemma 8.3.1, with the embedding iV replaced by the embeddings j0,n. (See
Exercise 8.3.1, however.) Because the j0,n are the embeddings of an iteration
as opposed to a single ultrapower, our proof is by induction. The individual
steps are similar to the proof of Lemma 8.3.1. No extra problems are caused
by (1) the fact that the j(m+1)−T ,m+1 come from extenders rather than ultrafil-

ters or (2) the fact that the ultrapowers are of models to which the extenders
to not belong.

Lemma 8.3.2. Let U be a κ-complete ultrafilter on a set X. Let n < `h(T ).
If Y ∈Mn and Y ⊆ j0,n(X), then

Y ∈ j0,n(U)↔ {z ∈X | j0,n(z) ∈ Y } ∈ U .

Proof. We prove the lemma (for fixed U) by induction. It trivially holds
for n = 0. Suppose that it holds for all n′ ≤ n. Let m = (n+ 1)−T .

First let Y be any element of j0,n+1(U). Let a and f be such that Y =

πMm
En

([[a, f ]]Mm

En
). Let

K = {x ∈ [δn]|a| | f(x) ∈ j0,m(U)}.
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By Theorem 6.3.15, we have that K ∈ (En)a. By our induction hypothesis
for m, choose for each x ∈ K a set Zx ⊆ X such that

Zx ∈ U ∧ (∀z ∈ Zx) j0,m(z) ∈ f(x).

Let Z =
⋂
x∈K(Zx). The κ-completeness of U implies that Z ∈ U . The

following chain of implications shows that j′′0,n+1Z ⊆ Y .

z ∈ Z → (∀x ∈K) z ∈ Zx
→ (∀x ∈K) j0,m(z) ∈ f(x)

→ {x | j0,m(z) ∈ f(x)} ∈ (En)a

→ jm,n+1(j0,m(z)) ∈ πMm
En

([[a, f ]]Mm

En
)

→ j0,n+1(z) ∈ Y.

Now let Y ∈Mn,Y ⊆ j0,n+1(x), and Y /∈ j0,n+1(U). Then j0,n+1(X)\Y ∈
j0,n+1(U). By what we have already proved, {z ∈X | j0,n+1(z) /∈ Y } belongs
to U . Thus {z ∈ x | j0,n+1(z) ∈ Y } /∈ U . �

The next lemma generalizes assertion (ii) of the proof of Lemma 8.3.1 in
the way that Lemma 8.3.2 generalizes (i). The proof is in two ways more
complicated than the proof of Lemma 8.3.1: Like the proof of Lemma 8.3.2,
it proceeds by induction. (But see Exercise 8.3.1.) The fact that the En
are extenders rather than ultrafilters occasions an additional use of the κ-
completeness of U .

Lemma 8.3.3. Let U be a κ-complete ultrafilter on a set X. Let n < `h(T ).
For each F ∈Mn ∩ j0,n(X)Mn, define Φn(F ) : X →Mn by

(Φn(F ))(z) = F (j0,n(z)).

Then for each G ∈ XMn there is an F ∈ Mn ∩ j0,n(X)Mn such that F :
j0,n(X)→Mn and

[[Φn(F)]]U = [[G]]U .

Proof. We prove the lemma by induction. The case n = 0 is trivial. Assume
that the lemma holds for U for all n′ ≤ n. Let m = (n+ 1)−T .

Let G ∈ XMn+1. Choose for each z ∈ X a pair 〈az, fz〉 such that G(z) =
πMm
En

([[az, fz]]
Mm

En
). By the κ-completeness of U , let a ∈ [λn]<ω be such that

{z | az = a} ∈ U . Thus

{z | G(z) = πMm
En

([[a, fz]]
Mm

En
)} ∈ U .
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Define G∗ : X →Mm by
G∗(z) = fz.

By our induction hypothesis for M , let F ∗ ∈Mm ∩ j
0,m(X) be such that

[[Φm(F ∗)]]U = [[G∗]]U .

Define h : [δn]|a| →Mm by letting h(x) ∈ j0,m(X)Mm be given by

(h(x))(y) = (F ∗(y))(x).

Let F = πMm
En

([[a, h]]Mm

En
). Clearly F belongs to Mn+1∩ j0,n(X)Mn+1. We must

show that
{z ∈X | F (j0,m(z)) = G(z)} ∈ U .

We know that

{z ∈ X | {z | G(z) = πMm
En

([[a, fz]]
Mm

En
)} ∈ U ∧ F ∗(j0,m(z)) = G∗(z)} ∈ U .

Let z be any member of this set. For any x ∈ j0,m(X), we have that

(h(x))(j0,m(z)) = (F ∗(j0,m(z)))(x)

= (G∗(z))(x)

= fz(x).

Hence

F (j0,n+1(z)) = F (jm,n+1(j0,m(z)))

= πMm
En

([[a, fz]]
Mm

En
)

= G(z).

�

The next lemma and its corollary generalize part (a) of Lemma 8.3.1.
Their proof is essentially the same as the proof of Lemma 8.3.1 from (i) and
(ii).

Lemma 8.3.4. Let U be a κ-complete ultrafilter on a set X. Let i = iU . Let
n < `h(T ). Define Φn as in the statment of Lemma 8.3.3. For F ∈ j0,n(X)Mn,
set

Φ∗n([[F ]]j0,n(U)) = [[Φn(F )]]U .
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Then Φ∗n is well-defined and

Φ∗n :
Mn∏

j0,n(U)

Mn
∼=
∏
U

Mn.

Proof. Let ϕ(v1, . . . , vk) be a formula of the language of set theory and
let F1, . . . Fk be elements of Mn ∩ j0,n(X)Mn. We have the following chain
of equivalences, where Lemma 8.3.2 is used to get the third line from the
second: ∏Mn

j0,n(U) Mn |= ϕ[[[F1]]Mn

j0,n(U), . . . , [[Fk]]
Mn

j0,n(U)]

↔ {y ∈ j0,n(X) |Mn |= ϕ[F1(y), . . . , Fk(y)]} ∈ j0,n(U)
↔ {z ∈X |Mn |= ϕ[F1(j0,n(z)), . . . , Fk(j0,n(z))]} ∈ U
↔ {z ∈X |Mn |= ϕ[(Φn(F1))(z), . . . , (Φn(Fk))(z)]} ∈ U
↔
∏
UMn |= ϕ[[[Φn(F1)]]U , . . . , [[Φn(Fk)]]U ].

Taking v1 = v2 for ϕ, we see that Φ∗n is well-defined. Taking ϕ as arbitrary,
we then see that Φ∗n :

∏Mn

j0,n(U) Mn ≺
∏
UMn.

By Lemma 8.3.3, the elementary embedding Φ∗n is a surjection, and so it
is an isomorphism. �

Corollary 8.3.5. Let U be a κ-complete ultrafilter on a set X. Let i = iU .
Let n < `h(T ). Then

(i) (j0,n(i))(Mn) = i(Mn);

(ii) j0,n(i) = i �Mn.

Proof. (i) follows immediately from Lemma 8.3.4. For (ii), note that, for
w ∈Mn,

((j0,n(i))(w) = πMn

j0,n(U)([[cw]]Mn

j0,n(U))

= πU(Φ∗n([[cw]]Mn

j0,n(U)))

= πU([[cw]]U)

= i(w),

where we have once more ambiguously used “cw” for two distinct constant
functions. �
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The theorem that follows is analogous to Lemma 8.3.1. Besides the extra
complications due to the replacement of the V of Lemma 8.3.1 by the j0,n,
there are other complications. Part (b) of the theorem asserts that i acts
trivially on the jm,n, not just on the j0,n. Part (a) involves not just U but
also another ultrafilter U ′ that projects to U . It says that the j0,n act trivially
on the canonical embedding i∗ : Ult(V ;U) ≺ Ult(V ;U ′).

Theorem 8.3.6. Let U and U ′ be κ-complete ultrafilters on sets X and X ′

respectively. Let i = iU and let i′ = iU ′. Assume that U ′ projects to U by
χ : X ′ → X. (See page 199.) Let i∗ = iU ,U ′ : Ult(V ;U) ≺ Ult(V ;U ′). Let
mT n < `h(T ). Then

(a) j0,n(i∗) = i∗ � j0,m(Ult(V ;U)) = i∗ � i(Mn);

(b) i(jm,n) = jm,n � i(Mm) = jm,n � j0,m(Ult(V ;U));

(c) i∗ ◦ jm,n � ON = jm,n ◦ i∗ � ON.

Proof. Note first that

j0,n(Ult(V ;U)) = j0,n(i(V ))

= (j0,n(i))(j0,n(V )

= (j0,n(i))(Mn)

= i(Mn),

where the last line follows from its predecessor by Corollary 8.3.5.
(a) Define Φn as in the statment of Lemma 8.3.3. Similarly define Φ′n

from U ′. Let x ∈ j0,n(Ult(V ;U)) = i(Mn). By Let F ∈ j0,n(X)Mn be such

that x = πMn

j0,n(U)([[F ]]Mn

j0,n(U)). By Lemma 8.3.4,

πMn

j0,n(U)([[F ]]Mn

j0,n(U)) = πU([[Φ(F )]]U).

We have that

(j0,n(i∗))(πMn

j0,n(U)(x)) = (j0,n(i∗))(πMn

j0,n(U)([[F ]]Mn

j0,n(U))

= πMn

j0,n(U ′)([[F ◦ j0,n(χ)]]Mn

j0,n(U ′)).

But we also have that

i∗(x) = i∗(πU([[Φ(F )]]U))
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= πU([[Φ(F ) ◦ χ]]U ′)

= πU([[F ◦ j0,n ◦ χ]]U ′)

= πU([[F ◦ j0,n(χ) ◦ j0,n]]U ′)

= πU([[Φ′(F ◦ j0,n(χ))]]U ′)

= πMn

j0,n(U ′)([[F ◦ j0,n(χ)]]Mn

j0,n(U ′)).

(b) We proceed by induction on n. Suppose (b) holds for all m′ and n′

such that m′ T n′ ≤ n. Let m̄ = (n + 1)−T . Since U is κ-complete, it follows
from Lemma 3.2.11 that V and Ult(V ;U) have the same functions from
<ωκ to Ult(V ;U). By the elementarity of j0,m̄, this implies that Mm̄ and
j0,m̄(Ult(V ;U) have the same functions from <ωj0,m̄(κ) to j0,m(Ult(V ;U)),
i.e., to i(Mm̄). It follows that Mm̄ and i(Mm̄) have the same functions from
<ωδn to i(Mm̄). Since i(En) = En and since i(Mm̄) is the domain of i(jm̄,n+1,
we get that

i(jm̄,n+1) = jm̄,n+1 � i(Mm̄).

To finish the proof of (b) for n+1, let mT n+1. By our induction hypothesis,
we have that

i(jm,m̄) = jm,m̄ � i(Mm).

Thus

i(jm,n+1) = i(jm̄,n+1 ◦ jm,m̄)

= i(jm̄,n+1) ◦ i(jm,m̄)

= (jm̄,n+1 � i(Mm̄)) ◦ i(jm,m̄)

= (jm̄,n+1 � i(Mm̄)) ◦ (jm,m̄ � i(Mm))

= (jm̄,n+1 ◦ jm,m̄) � i(Mm̄)

= jm,n+1 � i(Mm).

(c) Let α ∈ ON. By two instances of (a) and the elementarity of jm,n, we
have that

i∗(jm,n(α)) = (j0,n(i∗))(jm,n(α))

= jm,n((j0,m(i∗))(α))

= jm,n(i∗(α)).

�
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Let us now apply Theorem 8.3.6 to show that the construction of the
beginning of this section gives the homogeneity of U ‡. In the notation of that
construction and the subsequent discussion, let p ∈ T and let m < m′ < `h(p)
with rm ⊆ rm′ . By the discussion on page 473, it the γ-homogeneity of U �α
will will follow if we can prove that

βp�m′ < (jp0,2m′(ip;m,m′))(j
p
2m,2m′(βp�m)).

By condition (iv) of our construction and by the discussion on page 473, we
have that

βp�m′ < (ip;0,m′(j
p
2m,2m′))(ip;m,m′(βp�m)).

By part (b) of Theorem 8.3.6, we get that

βp�m′ < jp2m,2m′(ip;m,m′(βp�m)).

By part (c) of Theorem 8.3.6, we get that

βp�m′ < ip;m,m′(j
p
2m,2m′(βp�m).

Finally we apply part (a) of Theorem 8.3.6 to get the desired inequality.

The second way to use our construction to get the homogeneous Souslin-
ness of U ‡ is due to Katrin Windßus.

Let T be any game tree and let A ⊆ [T ]. Let λ be an infinite cardinal
number. Say that A of U ‡ has a λ-closed embedding normal form, if there is
a system

(〈Mp | p ∈ T 〉, 〈kp1,p2 | p1 ⊆ p2 ∈ T 〉)

witnessing that A has an embedding normal form and such that

(∀p ∈ T )λMp ⊆Mp.

Here is Windßus’ theorem:

Theorem 8.3.7. Let T be a game tree, let A ⊆ [T ], and let

(〈Mp | p ∈ T 〉, 〈kp1,p2 | p1 ⊆ p2 ∈ T 〉)

witness that A has a 2ℵ0-closed embedding normal form. Let γ be a cardinal
number such that γ ≥ crit kp1,p2 for all p1 and p2 ∈ T with p1 ( p2.

Then A is γ-homogeneously Souslin.
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Proof. For p ∈ T , let Ap be the T -projection of T [p]. Let α ∈ Ord. Let
Uα be the set of all 〈|p, u|〉 such that p ∈ T , u ∈ `h(p)V , and, for all m and n
smaller than `h(p),

(a) u(m) : [T [x �m]] \ Ap�m → α;

(b) m < n→ (∀x ∈ [T [x � n]] \ Ap�n) (u(n))(x) < (u(m))(x).

We first show how to define a tree whose T -projection is A. This con-
struction will make no use of the given embedding normal form.

Let α be infinite. Let 〈|x, f |〉 ∈ [Uα]. We show that A is the T -projection
of Uα. Let x ∈ [T ]. First assume 〈|x, f |〉 ∈ [U ] and that x ∈ [T ] \ A. Then
x ∈ domain f(n) for every n ∈ ω and (f(n))(x) < (f(m))(x) whenever
m < n ∈ ω. This is a contradiction. Now assume that x ∈ A. For n ∈ ω and
y ∈ [T [x �m]] \ Ap�m), let (f(m))(y) be n−m, where n is the least number
such that x(n) 6= y(n). Then 〈|x, f |〉 ∈ [U ].

We now use our embedding normal form to prove that Uα is homogeneous.
For each x ∈ [T ], let (Mx, 〈kxx�m | m ∈ ω〉) be the direct limit of (〈Mx�m |

M ∈ ω〉, kx�m,x�n | m < n ∈ ω〉).
Let X ∈ [T ] \ A. Let 〈zn | n ∈ ω〉 be an infinite descending sequence

of ordinals of the illfounded model Mx. For each n ∈ ω, let βxn and kn be
such that zn = kxx�kn(βxn). We may assume that the sequence 〈kn | n ∈ ω〉
is strictly increasing. Multiplying the given βxn by ω if necessary, we may
assume that each βxn is a limit ordinal. Filling in if necessary, we may assume
that kn = n for all n. Thus the sequence βxn has the property that

(∀m ∈ ω)(∀n ∈ ω)(m < n→ βxn < kx�m,x�n(βxm)).

Let α be an ordinal larger than all the ordinals βxn.
For each p ∈ T , let gp : [T [p]] \ A→ Ord be defined by setting

gp(x) = βx`h(p)

for all x ∈ [T [p]] \ A. Since 2ℵ0Mp ⊆Mp, the function gp belongs to Mp.
For p ∈ T , let

Up = {X ⊆ (Uα)[p] | 〈kp�m,p(gp�m) | m < `h(p)〉 ∈ k∅,`h(p)(X)}.

To see that U [p] ∈ Up, observe that, form and n < `h(p) and x ∈ [T [p]]\A,

m < n → βxn < kx�m,x�n(βxm)

→ kp�n,p(β
x
n) < kp�m,p(β

x
n)

→ kp�n,p(gp�n(x)) < kp�m,p(gp�m(x)).
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By arguments like those in the last parts of the proofs of Theorems 8.2.6
and 8.2.7, one can show that 〈Up | p ∈ T 〉 witnesses that Uα is γ-homogeneous.
�

Using Theorem 6.3.7, it is easy to prove a strengthened One-Step Lemma
in which it is demanded that if the models γ ≤ δ, 2ℵ0M ⊆M , and 2ℵ0N ⊆ N ,
then 2ℵ0 (Ult(N ;E)) ⊆ Ult(N ;E). (In [Martin and Steel, 1989], this is done,
but with the unimportant difference that ℵ0 replaces 2ℵ0 .) If we do the
construction of the beginning of this section using this version of the One-Step
Lemma, then all the MS

p will satisfy 2ℵ0MS
p ⊆ MS

p . Thus the construction
will yield a 2ℵ0-closed embedding normal form for the T -projection of U ‡.
Thus Theorem 8.3.7 will yield Theorems 8.2.8 and 8.2.9.

In [Koepke, 1998], the Windßus’ construction is used to prove the re-
sults of this chapter without any use of homogeneous trees. This is done by
propagating directly the property of having an embedding normal form.

The hypothesis of 2ℵ0-closure cannot be omitted from Theorem 8.3.7.
This seems to have been noted by several people, including Menachem Magi-
dor and Koepke. See Exercise 8.3.2.

In [Neeman, 1995], [Neeman, 2002], [Neeman, 2004], [Neeman, 2010], and
[Neeman, 2007], Neeman develops machinery that starts with something like
the Martin-Steel construction but goes far beyond it. With this machinery,
he is able to prove determinacy for large classes of games. These include not
just larger classes of ordinary ω-length games, but also classes of games with
transfinitely many moves, even certain games of length ω1. Furthermore his
theorems have large-cardinal hypotheses that are provably optimal.

Exercise 8.3.1. Let T be an iteration tree on M and let n ∈ ω. Prove
that there is an extender E in the sense of Exercise 6.1.2 such that E ∈ Vκ
and jT0,n = iE. Using this result one can eliminate the use of induction from
Lemmas 8.3.2 and 8.3.3.

Hint. Let λ be such that each ETm, m < n, is in MT
m a (δ, λ′) extender

for some λ′ ≤ λ. Prove inductively that every element of Mn is of the form
(jT0,n(f))(a) for some a ∈ [λ]<ω. (The basic fact is that

[[b, g]]
M

(m+1)−
T

ETm
= (jT

(m+1)−T ,m+1
(g))(b).

Use this fact to deduce that j0,n = iE, where E the (generalized) (crit (j0,n), λ)-
extender derived from j0,n.
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Exercise 8.3.2. Assume that there is a measurable cardinal and prove that
every A ⊆ ωω has an embedding normal form.

Hint. (The following example is from [Koepke, 1998]. The result was
probably first proved by Magidor.) Let α 7→ xα be a one-one correspondence
between 2ℵ0 and ωω. Let A ⊆ ωω. Let κ be measurable and let U be a
uniform normal ultrafilter on κ. Let i = iU . Let N = Ult2ℵ0 (V ;U). For
s ∈ <ωω, and α ≤ 2ℵ0 , define jsα,β : N ≺ N inductively as follows. Let js0 be
the identity. Let

jsα,α+1 =

{
iωα if s ⊆ xα and xα /∈ A;
the identity otherwise.

(See §3.3 for definitions.) For γ < α let

jsγ,α+1 = jsα,α+1 ◦ jsγ,α.

For limit ordinals λ ≤ 2ℵ0 , let

(N, 〈jsα,λ | α < λ〉)

be the direct limit of the system

(〈N | α < λ〉, 〈jsα,β | α ≤ β < λ〉),

which one can verify inductively to be directed. Now letM∅ = V andMs = N
for s ∈ <ωω \ ∅. For s ⊆ t ∈ <ωω with `h(t) = `h(s) + 1, let

ks,t =

{
i0,2ℵ0 if s = ∅;
js

0,2ℵ0
if s 6= ∅.

Define ks,t for other s ⊆ t ∈ <ωω by commutativity. Show that

(〈Ms | s ∈ <ωω〉, 〈js,t | s ⊆ t ∈ <ωω〉)

gives an embedding normal form for A.

Exercise 8.3.3. Recall that a cone of degrees of unsolvability is the set of
all degrees of unsolvability above some particular degree. For any degree of
unsolvability d, let T(d) be the set of sentences true in class models (L[x])[H]

where x has degee d and H is Coll(ω, ω
L[x]
1 )-generic over L[x]. (See page 539.)

Assume that, for each positive integer n, there is a transitive proper class
M and a countable ordinal κ such that
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(1) M is a model of ZF + V = L(Vκ) + DCκ + “There is no κ′ < κ such
that κ′ is Woodin” + “κ is Woodin”; i.e., M is as in Exercises 7.4.7,
7.4.8, 7.4.9, 7.4.10, and 7.4.13 and κ is Woodin in M ;

(2) M is n-iterable.

(See Exercise 7.4.10.) Use the result of Exercise 7.4.13 to show that T(d) is
constant on a cone of degrees.

This result is due to Woodin, who has also proved that if T(d) is con-
stant on a cone of degrees, then all Π1

2 games in <ωω are determined. Using
the fact that Exercise 7.4.10 and a simple forcing argument show that the
consistency of ZFC + “There is a Woodin cardinal” gives the consistency
of the hypothesis of the present exercise, Woodin also deduced the following
theorem:

If ZFC + “There is a Woodin cardinal” is consistent, then so
is ZFC + “All Π1

2 games in <ωω are determined.”

Woodin has proved the converse of this theorem, so it is an equiconsistency
result. (See part (4) of the hint to Exercise 9.6.4.)

Hint. Fix n ∈ ω, and let M be as given by the assumption for n+ 1.
Let

An = {x ∈ ω2 | κ < ω
L[x]
1 ∧ V M

κ ∈ L[x]}.

It suffices to show that, for H as above, the set of Σn sentences true in L[x]
is constant on An. The set An of degrees of members of An contains a cone.
Hence

⋂
nAn contains a cone, and we will have that T(d) is constant on⋂

nAn.
Argue as follows. For x ∈ A, let Tx be the iteration tree given by Exer-

cise 7.4.13. Let H be as above. Since |PM(Tx),E(Tx)|M(Tx) = ω
L[x]
1 , it follows by

Lemma 25.11 of Jech [1978] that there is an H′ such that H′ is Coll(ω, ω
L[x]
1 )-

generic over M(Tx) and

(L[x])[H] = (M(Tx))[GM(Tx),E(Tx)
x ])[H] = (M(Tx))[H′].

Hence for x ∈ A the set of Σn sentences true in (L[x])[H] depends only on
the set of Σn sentences true in M(Tx). Since M is (n+ 1)-iterable, this is the
same as the set of Σn sentences true in M .
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9e série, 2:53–72.



BIBLIOGRAPHY 575

[Maitra et al., 1991] Maitra, A., Purves, R., and Sudderth, W. (1991). Ap-
proximation theorems for gambling problems and stochastic games. In
Dutta, B., Mookherjee, D., Parthasarathy, T., Raghavan, T., Ray, D., and
Tijs, S., editors, Game Theory and Economic Applications, pages 114–132.
Springer-Verlag, Berlin. Proceedings of conference in New Delhi, December
1990.

[Maitra and Sudderth, 1992] Maitra, A. and Sudderth, W. (1992). An oper-
ator solution of stochastic games. Israel Journal of Mathematics, 78:33–49.

[Maitra and Sudderth, 1993] Maitra, A. and Sudderth, W. (1993). Finitely
additive and measurable stochastic games.

[Martin, 1968] Martin, D. A. (1968). The axiom of determinateness and
reduction principles in the analytical hierarchy. Bulletin of the American
Mathematical Society, 74:687–68.

[Martin, 1970] Martin, D. A. (1970). Measurable cardinals and analytic
games. Fundamenta Mathematicae, 66:287–291.

[Martin, 1975] Martin, D. A. (1975). Borel determinacy. Annals of Mathe-
matics, 102:363–371.

[Martin, 1980] Martin, D. A. (1980). Infinite games. In Lehto, O., edi-
tor, Proceedings of the International Congress of Mathematicians, Helsinki
1978, volume 1, pages 269–273, Helsinki. Academia Scientiarum Fennica.

[Martin, 1985] Martin, D. A. (1985). A purely inductive proof of Borel de-
terminacy. In Nerode, A. and Shore, R. A., editors, Recursion Theory,
Proceedings of Symposia in Pure Mathematics, Volume 42, pages 303–
308, Providence. American Mathematical Society.

[Martin, 1990] Martin, D. A. (1990). An extension of Borel determinacy.
Annals of Pure and Applied Logic, 49:279–293.

[Martin, 1998] Martin, D. A. (1998). The determinacy of Blackwell games.
Journal of Symbolic Logic, 63:1565–1581.

[Martin, 2003] Martin, D. A. (2003). A simple proof that determinacy im-
plies Lebesgue measurability. Rendiconti Del Seminario Matematico, Uni-
versita e Politecuico di Torino, 61:393–398.



576 BIBLIOGRAPHY

[Martin, 2015] Martin, D. A. (2015). Games of countable length. In Kechris,
A., Loewe, B., and Steel, J., editors, The Cabal Seminar, Volume IV,
Cambridge, New York, etc. Cambridge University Press.

[Martin et al., 2003] Martin, D. A., Neeman, I., and Vervoort, M. R. (2003).
The strength of Blackwell determinacy. Journal of Symbolic Logic, 68:615–
636.

[Martin and Solovay, 1969] Martin, D. A. and Solovay, R. M. (1969). A basis
theorem for Σ1

3 sets of reals. Annals of Mathematics, 89:138–159.

[Martin and Solovay, 1970] Martin, D. A. and Solovay, R. M. (1970). Inter-
nal Cohen extensions. Annals of Mathematical Logic, 2:143–178.

[Martin and Steel, 1988] Martin, D. A. and Steel, J. R. (1988). Projective de-
terminacy. Proceedings of the National Academy of Science USA, 85:6582–
6586.

[Martin and Steel, 1989] Martin, D. A. and Steel, J. R. (1989). A proof of
projective determinacy. Journal of the American Mathematical Society,
2:71–125.

[Martin and Steel, 1994] Martin, D. A. and Steel, J. R. (1994). Iteration
trees. Journal of the American Mathematical Society, 7:1–73.

[Mauldin, 1981] Mauldin, R. D., editor (1981). The Scottish Book: Mathe-
matics from the Scottish Café. Birkhäuser, Boston.
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