
CHAPTER 3

INTRODUCTION TO THE THEORY OF PROOFS

In order to study proofs as mathematical objects, it is necessary to introduce
deductive systems which are richer and model better the intuitive proofs we
give in mathematics than the Hilbert system of Part A. Our (limited) aim in
this Part is to formulate and establish in outline a central result of Gentzen,
which in addition to its foundational significance also has a large number of
applications.

3A. The Gentzen Systems

The main difference between the Hilbert proof system and the Gentzen sys-
tems G and GI is in the proofs, which Gentzen endows with a rich, com-
binatorial structure that facilitates their mathematical study. It will also
be convenient, however, to enlarge the language FOL(τ) with a sequence of
propositional variables

p1, p1, . . . ,

so that the Propositional Calculus is naturally embedded in FOL(τ), for any
signature τ . So the formulas of FOL(τ) are now defined by the recursion

χ :≡ p | s = t | R(t1, . . . , tn) (the prime formulas)

| ¬(φ) | (φ)→ (ψ) | (φ) & (ψ) | (φ) ∨ (ψ) | ∀vφ | ∃vφ

where p is any propositional variable; and in the semantics of the system, we
admit assignments which in addition to their values on individual variables
also assign a truth value π(p) (either 1 or 0) to every propositional variable p.

We should also note that the identity symbol is treated like any other relation
constant by the Gentzen systems, i.e., we do not postulate the Axioms for
Identity and we will need to include them among the hypotheses when they
are relevant.
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106 3. Introduction to the theory of proofs

Definition 3A.1. A sequent (in a fixed signature τ) is an expression

φ1, . . . , φn ⇒ ψ1, . . . , ψm

where φ1, . . . , φn, ψ1, . . . , ψm are τ -formulas. We view the formulas on the
left and the right as comprising multisets, i.e., we identify sequences which
differ only in the order in which they list their terms. The empty multisets
are allowed, so that the simplest sequent is just ⇒ . The next simplest ones
are of the form ⇒ φ and φ ⇒ .

Definition 3A.2. The axioms and rules of inference of the classical Gentzen
system G and the intuitionistic system GI are listed in Table 1; the only
difference between the two systems is that in GI we only allow sequents which
have at most one formula on the right, they look like

A ⇒ φ or A ⇒
There is one axiom (scheme), the sequent φ ⇒ φ, for each formula φ; one

introduction rule (on the left) and one elimination rule (on the right)
for each logical construct; a similar pair of thinning (T) and contraction
(C) introduction and elimination rules; and the Cut Rule at the end—which
may be viewed as an elimination rule but plays a very special role. In all rules
where an extended formula φ(v) and a substitution instance φ(t) or φ(x) of
that formula occur, we assume that the term t or the variable x is free for
v in φ(v), and there is an additional Restriction in the ∀-introduction and
∃-elimination rules which is listed in the Table.

3A.3. Terminology. We classify the rules of G and GI into three cate-
gories, as follows:

1. The structural rules T (Thinning) and C (Contraction).
2. The Cut.
3. The logical rules, two for each logical construct, which are again sub-

divided into propositional and quantifier rules in the obvious way.
Each rule has one or two premises, the sequents above the line, and a

conclusion, the sequent below the line; a single sequent axiom is its own
conclusion and has no premises.

The formulas in A, B are the side formulas of a rule. The remaining zero,
one or two formulas in the premises are the principal formulas of the rule,
and the remaining formulas in the conclusion are the new formulas of the
rule. Notice that an axiom has no side formulas, no principal formulas and
two new (identical) formulas; a Cut has two principal formulas and no new
formulas; and every other rule has exactly one new formula.

Each new formula in a rule is associated with zero, one or two formulas in
the premises, which are its parents; the new formula is an “orphan” in an
axiom and in the thinning rule T . We also associate each side formula in the
conclusion of a rule with exactly one parent in one of the premises, from which
is was copied.
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The Gentzen Systems G, GI

Axiom Scheme φ ⇒ φ

→ A, φ ⇒ B, ψ

A ⇒ B, φ→ ψ

A1 ⇒ B1, φ A2, ψ ⇒ B2

A1, A2, φ→ ψ ⇒ B1, B2

&
A ⇒ B, φ A ⇒ B, ψ

A ⇒ B, φ&ψ

φ, A ⇒ B

φ&ψ, A ⇒ B

ψ, A ⇒ B

φ&ψ, A ⇒ B

∨ A ⇒ B, φ

A ⇒ B, φ ∨ ψ
A ⇒ B, ψ

A ⇒ B, φ ∨ ψ
A, φ ⇒ B A, ψ ⇒ B

A, φ ∨ ψ ⇒ B

¬ A, φ ⇒ B

A, ⇒ B, ¬φ
A ⇒ B, φ

A, ¬φ ⇒ B

∀ A ⇒ B, φ(v)
A ⇒ B, ∀xφ(x)

(Restr)
A, φ(t) ⇒ B

A, ∀xφ(x) ⇒ B

∃ A ⇒ B, φ(t)
A ⇒ B, ∃xφ(x)

A, φ(v) ⇒ B

A, ∃xφ(x) ⇒ B
(Restr)

T
A ⇒ B

A ⇒ B, φ

A ⇒ B

A, φ ⇒ B

C
A ⇒ B, φ, φ

A ⇒ B, φ

A, φ, φ ⇒ B

A, φ ⇒ B

Cut
A1 ⇒ B1, χ, χ, A2 ⇒ B2

A1, A2 ⇒ B1, B2

(1) A,B are multisets of formulas in FOL(τ).
(2) For the Intuitionistic system GI, at most one formula is allowed on the

right.
(3) Restr : the active variable v is not free in A,B.
(4) The formulas in A,B are the side formulas of an inference.
(5) The formulas φ, ψ above the line are the principal formulas of the infer-

ence. (One or two; none in the axiom.)
(6) There is an obvious new formula below the line in each inference, except

for Cut.
(7) Each new and each side formula in the conclusion of each rule is associated

with zero, one or two parent formulas in the premises.

Table 1. The Gentzen systems.
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Definition 3A.4 (Proofs). The set of Gentzen proofs of depth ≤ d and
the endsequent of each proof are defined together by the following recursion
on the natural number d ≥ 1.

1. For each formula φ, the pair (∅, φ ⇒ φ) is a proof of depth ≤ 1 and
endsequent φ ⇒ φ. We picture it in tree form by:

φ ⇒ φ

2. If Π is a proof of depth ≤ d and endsequent α and

α

β

is a one-premise inference rule, then the pair (Π, β) is a proof of depth
≤ (d+ 1) and endsequent β. We picture (Π, β) in tree form by:

Π
β
.

3. If Π1, Π2 are proofs of depth ≤ d and respective endsequents α1, α2, and
if

α1 α2

β

is a two-premise inference rule, then the pair ((Π1,Π2), β) is a proof of
depth ≤ (d+ 1). We picture ((Π1,Π2), β) in tree form by:

Π1 Π2

β

A proof Π in G of GI is a proof of depth d, for some d, and it is a proof
of its endsequent; it is a propositional proof if none of the four rules about
the quantifiers are used in it. We denote the relevant relations by

G ` A ⇒ B, G `prop A ⇒ B, GI ` A ⇒ B, or GI `prop A ⇒ B

accordingly.
We let Gprop and GIprop be the restricted systems in which only formulas

for the Propositional Calculus 1K.1 and only propositional rules are allowed.

Proposition 3A.5 (Parsing for Gentzen proofs). Each proof Π satisfies ex-
actly one of the following three conditions.

1. Π = (∅, β), where β is an axiom.
2. Π = (Σ, β), where Σ is a proof of smaller depth and endsequent some α,

and there is a one premise rule
α

β
.



3A. The Gentzen Systems 109

3. Π = ((Σ1,Σ2), β), where Σ1, Σ2 are proofs of smaller depth and respective

endsequents α1, α2, and there is a two premise rule
α1 α2

β
.

In all cases, a proof is a pair and the second member of that pair is its endse-
quent.

Proofs in the Gentzen systems are displayed in tree form, as in the following
examples which prove in G three of the propositional axioms of the Hilbert
system:

χ⇒ χ
(⇒ ¬)⇒ χ,¬χ
(¬ ⇒)¬¬χ⇒ χ

(⇒→)⇒ ¬¬χ→ χ

φ⇒ φ
(T )

φ, ψ ⇒ φ
(⇒→)

φ⇒ ψ → φ
(⇒→)

⇒ φ→ (ψ → φ)

φ⇒ φ
(T )

φ, ψ ⇒ φ

ψ ⇒ ψ
(T )

φ, ψ ⇒ ψ
(⇒ &)

φ, ψ ⇒ φ & ψ
(⇒→)

φ⇒ ψ → (φ & ψ)
(⇒→)

⇒ φ→ (ψ → (φ & ψ))

Notice that the first of these proofs is in G, while the last two are in GI.
In the next example of a GI-proof of another of the Hilbert propositional

axioms we do not label the rules, but we put in boxes the principal formulas
for each application:

φ⇒ φ

φ⇒ φ

ψ ⇒ ψ χ ⇒ χ

ψ, ψ → χ ⇒ χ

φ, ψ , φ→ (ψ → χ)⇒ χ

φ , φ→ ψ, φ→ (ψ → χ)⇒ χ

φ→ ψ, φ→ (ψ → χ) ⇒ φ→ χ

φ→ ψ ⇒ φ→ (ψ → χ)→ (φ→ χ)

⇒ (φ→ ψ)→ ((φ→ (ψ → χ))→ (φ→ χ))

The form of the rules of inference in the Gentzen systems makes it much
easier to discover proofs in them rather than in the Hilbert system. Consider,
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for example, the following, which can be constructed step-by-step starting
with the last sequent (which is what we want to show) and trying out the
most plausible inference which gives it:

φ⇒ φ
(∀ ⇒)

∀vφ⇒ φ ⇒ ∃)
∀vφ⇒ ∃uφ

(∃ ⇒, u not free on the right)
∃u∀vφ⇒ ∃uφ

(⇒ ∀, v not free on the left)
∃u∀vφ⇒ ∀v∃uφ

(⇒→)
⇒ ∃u∀vφ→ ∀v∃uφ

In fact these guesses are unique in this example, except for Thinnings, Con-
tractions and Cuts, an it is quite common that the most difficult proofs to
construct are those which required T’s and C’s—especially as we will show
that Cuts are not necessary.

Theorem 3A.6 (Strong semantic soundness of G). Suppose

G ` φ1, . . . , φn ⇒ ψ1, . . . , ψm,

and A is any structure (of the fixed signature): then for every assignment π
into A,

if A, π |= φ & . . . & φn, then A, π |= ψ ∨ . . . ∨ ψm.
Here the empty conjunction is interpreted by 1 and the empty disjunction is
interpreted by 0.

Theorem 3A.7 (Proof-theoretic soundness of G). If G ` A ⇒ B, then
A ` ∨B in the Hilbert system, by a deduction in which no free variable of A
is quantified and the Identity Axioms (5) – (17) are not used.

Theorem 3A.8 (Proof-theoretic completeness of G). If A ` φ in the Hilbert
system by a deduction in which no free variable of A is quantified and the Iden-
tity Axioms (5) – (17) are not used, then G ` A ⇒ φ.

These three theorems are all proved by direct (and simple, if a bit cumber-
some) inductions on the given proofs.

3A.9. Remark. The condition in Theorem 3A.8 is necessary, because (for
example)

R(x) ` ∀xR(x)(66)

but the sequent
R(x) ⇒ ∀xR(x)
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is not provable in G, because of the strong Soundness Theorem 3A.6. The
Hilbert system satisfies the following weaker Soundness Theorem, which does
not contradict the deduction (67): if A ` φ and every assignment π into A
satisfies A, then every assignment π into A satisfies φ. (We have stated the
Soundness Theorem for the Hilbert system in 4.3 only for sets of sentences as
hypotheses, but to prove it we needed to show this stronger statement.)

Theorem 3A.10 (Semantic Completeness of G). Suppose ψ, φ1, . . . , φn are
τ -formulas such that for every τ -structure A and every assignment π into A,

if A, π |= φ1 & · · · & φn, then A, π |= ψ;

it follows that

G ` IA, φ1, . . . , φn ⇒ ψ,

where IA are the (finitely many) identity axioms for the relation and function
symbols which occur in ψ, φ1, . . . , φn.

Proof This follows easily from Theorem 3A.8 and the Completeness The-
orem for the Hilbert system. a

3A.11. The intuitionistic Gentzen system GI. The system GI is a
formalization of L. E. J. Brouwer’s intuitionistic logic, the logical foundation
of constructive mathematics. This was developed near the beginning of the
20th century. It was Gentzen’s ingenious idea that constructive logic can
be captured simply by restricting the number of formulas on the right of a
sequent. About constructive mathematics, we will say a little more later on;
for now, we just use GI as a tool to understand the combinatorial methods of
analyzing formal proofs that pervade proof theory.

Problems for Section 3A

Problem 3A.1. Prove Theorem 3A.10, the (strong) Semantic Complete-
ness of G.

3B. Cut-free proofs

Cut is the only G-rule which “loses the justification” for the truth of its
conclusion, just as Modus Ponens (which is a simple version of it) does in the
Hilbert system. As a result, Cut-free Gentzen proofs (which do not use the
Cut) have important special properties.
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Proposition 3B.1. If one of the logical symbols ¬, &, ∨, →, ∀ or ∃ does
not occur in the endsequent of a Cut-free proof Π, then that logical symbol
does not occur at all in Π, and hence neither of the rules involving that logical
symbol are applied in Π.

Definition 3B.2. The subformulas of a formula of FOL(τ) are defined
by the following recursion.

1. If χ ≡ p, χ ≡ R(t1, . . . , tn) or χ ≡ s = t is prime, then χ is the only
subformula of itself.

2. If χ is a propositional combination of φ and ψ, then the subformulas of
χ are χ itself, and all the subformulas of φ and ψ.

3. If χ ≡ ∃xφ(x) or χ ≡ ∀xφ(x), then the subformulas of χ are χ and all
subformulas of substitution instances φ(t), where t is an arbitrary term,
free for x in φ(x). (Here t may be a variable, since variables are terms,
and in particular φ(x) is a subformula of χ.)

For example, the subformulas of ∃xR(x, y) are all R(t, y), and there are infin-
itely many of them; if a formula has only finitely many subformulas, then it
is propositional.

Theorem 3B.3 (Subformula Property). If Π is a Cut-free proof with
endsequent α, then every formula which occurs in Π is a subformula of some
formula in α.

Corollary 3B.4. If a constant c, a relation symbol R or a function symbol
f does not occur in the endsequent of a Cut-free proof Π, then c, R or f does
not occur at all in Π.

Problems for Section 3B

Problem 3B.1. Suppose Π is a Cut-free proof in G of a sequent ⇒ φ,
where φ is in prenex form and has n quantifiers; prove that every formula in
Π is prenex with at most n quantifiers.

Problem 3B.2. Suppose Π is a Cut-free proof in G with endsequent A ⇒
B, in which there are no applications of the (four) logical rules that involve
the symbols ¬ and →. Prove that every formula φ which occurs on the left of
some sequent in Π is a subformula of some formula in A; and every formula
ψ which occurs on the right of some sequent in Π is a subformula of some
formula in B.

Problem 3B.3. Suppose Π is a Cut-free proof in G of a sequent ⇒ φ,
where φ is in prenex form and has n quantifiers; prove that every formula in
Π is prenex with at most n quantifiers.
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3C. Cut Elimination

We outline here (with few details) a proof of the following, fundamental
theorem of Gentzen, to the effect that up to alphabetic changes in bound
variables, every provable sequent has a Cut-free proof:

Theorem 3C.1 (Cut Elimination Theorem, Gentzen’s Hauptsatz).
From a proof in G or GI of a sequent α in which no variable occurs both free
and bound, we can construct a pure variable, Cut-free proof of α in the same
system.

Pure variable proofs will be defined below in Definition 3C.8.
This is the basic result of Proof Theory, and it has a host of important

consequences in all parts of logic (and some parts of classical mathematics as
well).

3C.2. The Mix rule. This is a strengthening of the Cut rule, which
allows us to Cut simultaneously all occurrences of the Cut formula:

A1 ⇒ B1 A2 ⇒ B2

A1, A2 \ {χ} ⇒ B1 \ {χ}, B2
assuming that χ ∈ A2 ∩B1.

For a multiset D, by D \ {χ} we mean the result of removing all occurrences
of χ from D.

By Gm and GIm we understand the systems in which the Cut Rule has
been replaced by the Mix Rule.

Lemma 3C.3. If we replace the Cut Rule by the Mix Rule, we get exactly
the same provable sequents, both for G and for GI.

In fact: every proof Π of G or GI can be converted into a proof Πm in Gm

or GIm respectively, in which exactly the same logical rules are used—i.e., by
replacing the Cuts by Mixes and (possibly) introducing some applications of
structural rules; and vice versa.

From now on by “proof” we will mean “proof in Gm or GIm”, unless oth-
erwise stated.

Definition 3C.4. To each (occurrence of a) sequent α in a proof Π, we
assign the part of the proof above α by the following recursion.

1. If α is the endsequent of a proof Π, then the part of Π above α is the
entire Π.

2. If Π = (Σ, β) is a proof and α occurs in Σ, then the part of Π above α
is the part of Σ above α. (Here Σ is a proof, by the Parsing Lemma for
proofs.)
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3. If Π = ((Σ1,Σ2), β) is a proof and α occurs in Σ1, then the part of Π
above α is the part of Σ1 above α; and if α occurs in Σ2, then the part
of Π above α is the part of Σ2 above α. (Again Σ1, Σ2 are proofs here.)

Lemma 3C.5. If α occurs in a proof Π, then the part of Π above α is a
proof with endsequent α.

The proof of Mix Elimination for propositional proofs is substantially easier
than the proof for the full systems, especially as all propositional proofs have
the pure variable property. We give this first.

Theorem 3C.6 (Main Propositional Lemma). Suppose we are given a propo-
sitional proof

Π1

A1 ⇒ B1

Π2

A2 ⇒ B2

A1, A2 \ {χ} ⇒ B1 \ {χ}, B2

in Gm or GIm which has exactly one Mix as its last inference; we can then
construct a Mix-free, propositional proof of the endsequent

A1, A2 \ {χ} ⇒ B1 \ {χ}, B2(67)

which uses the same logical rules.

Equivalently: given any propositional, Mix-free proofs of

A1 ⇒ B1 and A2 ⇒ B2

such that a formula χ occurs in both B1 and A2, we can construct a proposi-
tional, Mix-free proof of (68) which uses the same logical rules.

Outline of the proof. We define the left Mix rank to be the number of
consecutive sequents in the proof which ends with A1 ⇒ B1 starting from the
last one and going up, in which χ occurs on the right; so this is at least 1.
The right Mix rank is defined similarly, and the rank of the Mix is their sum.
The minimum Mix rank is 2. The grade of the Mix is the number of logical
symbols in the Mix formula χ.

The proof is by induction on the grade. Both in the basis (when χ is a prime
formula) and in the induction step, we will need an induction on the rank, so
that the proof really is by double induction.

Lemma 1. If the Mix formula χ occurs in A1 or in B2, then we can eliminate
the Mix using Thinnings and Contractions.

Lemma 2. If the left Mix rank is 1 and the last left inference is by a T or a
C, then the Mix can be eliminated; similarly if the right Mix rank is 1 and the
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last right inference is a C or a T. (Actually the last left inference cannot be a
C if the left Mix rank is 1.)

Main part of the proof. We now consider cases on what the last left inference
and the last right inference is, and we may assume that the Main Lemma holds
for all cases of smaller grade, and for all cases of the same grade but smaller
rank. The cases where one of the ranks is > 1 are treated first, and are messy
but fairly easy. The main part of the proof is in the consideration of the four
cases (one for each propositional connective) where the rank is exactly 2, so
that χ is introduced by the last inference on both sides: in these cases we
use the induction hypothesis on the grade, reducing the problem to cases of
smaller grade (but possibly larger rank). a

Proof of Theorem 3C.1 for propositional proofs is by induction on
the number of Mixes in the given proof, with the basis given by Lemma 3C.6;
in the Inductive Step, we simply apply the same Lemma to an uppermost Mix,
one such the part of the proof above its conclusion has no more Mixes. a

The proof of the Hauptsatz for the full (classical and intuitionistic) systems
is complicated by the extra hypothesis on free-and-bound occurrences of the
same variable, which is necessary because of the following example whose proof
we will leave for the problems:

Proposition 3C.7. The sequent ∀x∀yR(x, y)⇒ R(y, y) is provable in GI,
but it is not provable without a Cut (even in the stronger system G).

To deal with this problem, we need to introduce a “global” restriction on
proofs, as follows.

3C.8. Definition. A pure variable proof (in any of the four Gentzen
systems we have introduced) is a proof Π with the following two properties.

1. No variable occurs both free and bound in Π.
2. If v is the active variable in an application of one of the two rules which

have a restriction,

A ⇒ B, φ(v)
A ⇒ B, ∀xφ(x)

or
A, φ(v) ⇒ B

A, ∃xφ(x) ⇒ B
,

then v occurs only in the part of the proof above the premise of this
application.

Lemma 3C.9. In a pure variable proof, a variable v can be used at most
once in an application of the ⇒ ∀ or the ∃ ⇒ rules.
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Proposition 3C.10 (Pure Variable Lemma). If α is a sequent in which no
variable occurs both free and bound, then from every proof of α we can construct
a pure variable proof of α, employing only replacement of some variables by
fresh variables.

With this result at hand, we can establish an appropriate version of Lemma 3C.6
which applies to the full systems:

Theorem 3C.11 (Main Lemma). Suppose we are given a pure variable proof

Π1

A1 ⇒ B1

Π2

A2 ⇒ B2

A1, A2 \ {χ} ⇒ B1 \ {χ}, B2

in Gm or GIm which has exactly one Mix as its last inference; we can then
construct a Mix-free, pure variable proof of the endsequent

A1, A2 \ {χ} ⇒ B1 \ {χ}, B2(68)

which uses the same logical rules.

Equivalently: from any given, pure variable, Mix-free proofs of

A1 ⇒ B1 and A2 ⇒ B2

such that a formula χ occurs in both B1 and A2 and no free variable of one
of them occurs bound in the other, we can construct a pure variable, Mix-free
proof of (69) which uses the same logical rules.

The proof of this is an extension of the proof of Lemma 3C.6 which requires
the consideration of two, additional cases in the induction step with rank 2—
quite simple, as it happens, because the quantifier rules have only one premise.

Outline of proof of Theorem 3C.1. It is enough to prove the theorem
for pure variable proofs in the system with Mix instead of Cut; and we do this
by induction on the number of Mixes in the given, pure variable proof, using
the Main Lemma 3C.11. a

Problems for Section 3C

Problem 3C.1. Construct a Cut-free GI proof of

(φ→ ψ)→ ((φ→ ¬ψ)→ ¬φ)

Problem 3C.2. Construct a Cut-free GI proof of

(φ→ χ)→ ((ψ → χ)→ ((φ ∨ ψ)→ χ))
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Problem 3C.3. Construct a Cut-free G proof of Peirce’s Law,

(((p→ q)→ p)→ p)

Problem 3C.4. Construct a proof in GI of the sequent

∀x∀y)R(x, y) ⇒ R(y, y).

3D. The Extended Hauptsatz

For sequents of formulas in prenex form, the Gentzen Hauptsatz provides a
particularly simple and useful form.

3D.1. Normal proofs. A proof Π in G is normal if it is a pure variable,
Cut-free proof and a midsequent A∗ ⇒ B∗ occurs in it with the following
properties.

1. Every formula which occurs above the midsequent A∗ ⇒ B∗ is quantifier
free.

2. The only rules applied below the midsequent are quantifier rules or Con-
tractions.

Notice that by the first of these properties, no quantifier rules are applied in
a normal proof above the midsequent—only propositional and structural rule
applications. So a normal proof looks like

Π
A∗ ⇒ B∗

...
A ⇒ B

where Π is a propositional proof and in the “linear trunk” which follows the
provable, quantifier-free sequent only one-premise Contractions and quantifier
inferences occur.

Theorem 3D.2 (The Extended Hauptsatz). If A ⇒ B is a sequent of
prenex formulas in which no variable occurs both free and bound, and if A ⇒
B is provable in G, then there exists a normal proof of A ⇒ B.

Outline of proof. This is a constructive argument, which produces the
desired normal proof of A ⇒ B from any given proof of it.

Step 1. By the Cut Elimination Theorem we get a new proof, which is
Cut-free and pure variable.
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Step 2. We replace all Axioms and all Thinnings by Axioms and Thinnings
on prime (and hence quantifier free) formulas (without destroying the Cut-free,
pure variable property).

The order of a quantifier rule application in the proof is the number of
Thinnings and propositional inferences below it, down to the endsequent, and
the order of the proof is the sum of the orders of all quantifier rule applications
in the proof. If the order of the proof is 0, then there is no quantifier rule
application above a Thinning or a propositional rule application, and then the
proof (easily) is normal.

Proof is by induction on the order of the given proof. We begin by noticing
that if the order is > 0, then there must exist some quantifier rule application
immediately above a Thinning or a propositional rule application; we choose
one such, and alter the proof to one with a smaller order and the same end-
sequent. The heart of the proof is the consideration of cases on what these
two inferences immediately above each other are, the top one a quantifier rule
application and the bottom one a propositional rule application or a T . It is
crucial to use the fact that all the formulas in the endsequent are prenex, and
hence (by the subformula property) all the formulas which occur in the proof
are prenex; this eliminates a great number of inference pairs. a

This proof of the Extended Hauptsatz uses the permutability of inferences
property of the Gentzen systems, which has many other applications.

Theorem 3D.3 (Herbrand’s Theorem). If a prenex formula

θ ≡ (Q1x1) · · · (Qnxn)φ(x1, . . . , xn)

is provable in FOL without the Axioms of Identity (15) – (17) , then there
exists a quantifier free tautology of the form

φ∗ ≡ φ1 ∨ · · · ∨ φn
such that:
(1) Each φi is a substitution instance of the matrix φ(x1, . . . , xn) of θ, and
(2) θ can be proved from φ∗ by the use of the following four Herbrand rules

of inferences which apply to disjunctions of formulas:
ψ1(t) ∨ · · · ∨ ψn

∃xψ(x) ∨ · · ·χ · · · ∨ ψn
(∃) ψ1 ∨ · · ·χ1 ∨ χ2 · · · ∨ ψn

ψ ∨ · · ·χ2 ∨ χ1 · · · ∨ ψn
(I)

ψ1 ∨ · · ·χ ∨ χ ∨ ψn
ψ1 ∨ · · ·χ · · · ∨ ψn

(C)
ψ1(v) ∨ · · · ∨ ψn
∀xψ(x) ∨ · · · ∨ ψn

(∀) (Restr)

(Restr): The variable v does not occur free in the conclusion.
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3D.4. Remarks. The Herbrand rules obviously correspond to the Gentzen
quantifier rules and Contraction, together with the Interchange rule which we
do not need for multiset sequents; and the restriction on the ∀-rule is the same,
the variable v must not be free in the conclusion. A provable disjunction which
satisfies the conclusion of the theorem is called a Herbrand expansion of θ; by
extension, we often refer to the midsequent of a Gentzen normal proof as a
Herbrand expansion of the endsequent.

There is an obvious version of the theorem for implications of the form

θ1 → θ2

with both θ1, θ2 prenex.

Problems for Section 3D

Problem 3D.1. Suppose Π is a Cut-free proof in G with endsequent A ⇒
B, in which there are no applications of the (four) logical rules that involve
the symbols ¬ and →. Prove that every formula φ which occurs on the left of
some sequent in Π is a subformula of some formula in A; and every formula
ψ which occurs on the right of some sequent in Π is a subformula of some
formula in B.

3E. The propositional Gentzen systems

The Semantic Completeness Theorem 3A.10 combined with the Hauptsatz
imply easily the following result, where propositional tautologies were defined
in the brief Section 1K.1.

Theorem 3E.1 (Completeness of Gprop). A propositional formula φ is a
tautology if and only if there is a Cut-free proof in Gprop of the sequent ⇒ φ.

This, however, is an unnecessarily complex proof: we should not need either
the Completeness Theorem for FOL or the full Hauptsatz to establish a basi-
cally simple fact. We outline here a more direct proof of this result, and we
incidentally collect some basic facts about the Propositional Calculus which
we have (somehow) avoided to discuss before now.

3E.2. Truth tables. Suppose φ is a propositional formula with n distinct
propositional variables. There are 2n n-tuples of 0’s and 1’s, and so the truth
values of φ under all possible assignments of truth values to its variables can be
pictured in a table with n columns and 2n lines (rows), one for each assignment
of truth values to the variables. For example, in the case of the formula φ ≡
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¬p & q which has two variables (and including a column for the subformula
¬p which is used in the computation):

p q ¬p ¬p & q
0 0 1 0
0 1 1 1
1 0 0 0
1 1 0 0

Consider also the following truth table, which specifies succinctly the truth-
value (or bit) function which is defined by the primitive, propositional con-
nectives:

p q ¬p p & q p ∨ q p→ q
0 0 1 0 0 1
0 1 1 0 1 1
1 0 0 0 1 0
1 1 0 1 1 1

A propositional formula φ is a tautology if it only has 1s in the column of
its truth table which catalogues its value.

Outline of Kalmar’s proof of Theorem 3E.1. Fix a list of distinct
propositional variables p1, . . . , pn, and for each assignment π, let

πpi ≡

{
pi, if π(pi) = 1,
¬pi, if π(pi) = 0.

Set

Lineπ(~p) = Lineπ ≡ πp1, πp1, . . . , πpn.(69)

As a multiset, Lineπ expresses formally the hypotheses on the propositional
variables in the line corresponding to π in the truth table of any formula in
which only the letters p1, . . . , pn occur.

Step 1. If only the letters p1, . . . , pn occur in φ, then for every π,

if value(φ, π) = 1, then Gprop ` Lineπ ⇒ φ,

if value(φ, π) = 0, then Gprop ` Lineπ ⇒ ¬φ.
This is proved by an induction on φ which is routine, but necessarily messy,

since it must use every inference rule of Gprop.
For each assignment π to p1, . . . , pn and each i ≤ n, let

Li(π) = πpi+1, πpi+2, . . . , πpn,
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so that

L0(π) ≡ Line(π), Ln(π) = ∅,
and for every i < n,Li(π) ≡ πpi, Li+1(π).

Step 2. If only the letters p1, . . . , pn occur in φ and φ is a propositional
tautology, then for every i ≤ n and for every assignment π,

Li(π) ⇒ φ

is provable in Gprop.

This is proved by induction on i ≤ n, simultaneously for all assignments,
and the Basis Case is Step 1, while the last Case i = n gives the required
result. For the inductive step, the Induction Hypothesis applied to the two
assignments

π{pi := 1}, π{pi := 0}
gives us proofs of

pi, Li+1(π) ⇒ φ and ¬pi, Li+1(π) ⇒ φ,

since φ is a tautology; and from these two proofs we easily get a proof of
Li+1(π) ⇒ φ in Gprop, which uses a Cut. The proof is completed by appealing
to the propositional case of the Hauptsatz 3C.1. a

Proposition 3E.3. For every valid, quantifier-free τ -formula φ with n, dis-
tinct prime subformulas φ1, . . . , φn and no occurrence of the identity symbol
=, there is a propositional tautology ψ with n distinct propositional variables
such that

φ ≡ ψ{p1 :≡ φ1, . . . , pn :≡ φn}.

Problems for Section 3E

Problem 3E.1. Prove each of the following sequents in G, if possible in
GI.

1. ¬(φ & ψ) ⇒ ¬φ ∨ ¬ψ.
2. ¬φ ∨ ¬ψ ⇒ ¬(φ & ψ).
3. ⇒ φ ∨ ¬φ.
4. ¬¬¬φ ⇒ ¬φ.

Problem 3E.2. Prove each of the following sequents in G, if possible in
GI.

1. ∃xR(x) ⇒ ¬∀x¬R(x).
2. ¬∀x¬R(x) ⇒ ∃xR(x).
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3. ¬∃x∀y)R(x, y) ⇒ ∀x∃y¬R(x, y).
4. ¬∃x∀y)R(x, y) ⇒ ∀x¬∀y)R(x, y).

Problem 3E.3. Assume the Cut Elimination Theorem for gentzeni and
prove that

if GI `⇒ φ ∨ ψ, then GI `⇒ φ or GI `⇒ ψ.

Problem 3E.4. Prove that the sequent in Problem 3C.4 does not have a
Cut-free proof in G.

Problem 3E.5. Assume the Cut Elimination Theorem for GI and prove
that the sequent

¬¬R(x) ⇒ R(x)

in not provable in the intuitionistic system GI.

Problem 3E.6. Assume the Cut Elimination Theorem for GI and prove
all the assertions of unprovability in GI that you made in Problems 3E.1 and
3E.2.

Problem 3E.7. Prove Proposition 3E.3—that every valid, quantifier-free
formula can be obtained by replacing each propositional variable in some tau-
tology by a quantifier-free formula.

Problem 3E.8. Suppose R(i, j) is a relation defined for i, j ≤ n, choose a
double sequence of propositional variables {pij}i,j≤n, and consider the assign-
ment

π(pij) =

{
1, if R(i, j),
0, otherwise.

The variables {pij} can be used to express various properties about the relation
R, for example

R is symmetric ⇐⇒ π |=
∧∧

i,j≤n[pij ↔ pji].

Find similar formulas which express the following properties of R:

(a) R is the graph of a function.
(b) R is the graph of a one-to-one function.
(c) R is the graph of a surjection—a function from {0, . . . , n} onto {0, . . . , n}.
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3F. Craig Interpolation and Beth definability (via proofs)

The midsequent of a normal proof in G is a valid, quantifier-free formula,
and so (by Proposition 3E.3), it can be obtained from a propositional tautology
by replacing the propositional variables by prime formulas. This fact can be
used to derive several interesting results about FOL from their propositional
versions, which are generally much easier to establish. We illustrate the process
here with two, basic results about first order definability.

Theorem 3F.1 (The Propositional Interpolation Theorem). Suppose

φ(~p, ~q)→ ψ(~p, ~r)

is a propositional tautology, where we have indicated all the (distinct) letters
which may occur in the formulas, and there is at least one pi; then there exists
a formula χ(~p) in which none of the q’s or r’s occur, such that

φ(~p, ~q)→ χ(~p), χ(~p)→ ψ(~p, ~r)

are both tautologies.

For an example: if the given tautology is

p & q → p ∨ r,

we can take χ ≡ p, with which both p & q → p and p→ p∨ r are tautologies.
In fact this is the interpolant which will come out of the general proof in this
case.

Outline of proof. If no assignment π satisfies φ, we can then take

χ(~p) ≡ pi & ¬pi
with the assumed pi which occurs in both φ and ψ. So we may assume that
at least one assignment satisfies φ.

Generalizing the definition of lines in (70) and making explicit the implied
conjunction, we set for each assignment π,

L(π, ~p) ≡
∧∧

Lineπ(~p) ≡ πp1 & πp2 & · · · & πpn.

Notice that, immediately from the definition,

value(L(π, ~p), π) = 1.

We now take χ(~p) to be the disjunction of these conjunctions over all assign-
ments π which satisfy φ:

χ(~p) ≡
∨∨
{L(π, ~p) | value(φ, π) = 1}.
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Clearly, φ → χ(~p) is a tautology, because if value(π, φ) = 1, then L(π, ~p) is
one of the disjuncts of χ(~p) and π satisfies it. For the second claim, suppose
towards a contradiction that there is a π such that

value(χ(~p), π) = 1, and value(ψ, π) = 0;

now the definition of χ(~p) implies that value(φ, π) = 1, and so value(ψ, π) = 1
by the hypothesis, which is a contradiction. a

Theorem 3F.2 (The Craig Interpolation Theorem). Suppose

φ( ~Q)→ ψ(~R)(70)

is valid, where the formulas φ( ~Q) and ψ(~R) may have symbols from some
signature τ in addition to the (fresh, distinct) symbols exhibited. From a proof
of (71), we can construct a formula χ in FOL(τ) and proofs of the implications

φ( ~Q)→ χ, χ→ ψ(~R).

Outline of the proof. The argument involves some unavoidable detail,
primarily to deal with the identity symbol = about which the Gentzen system
knows nothing.

We start with the construction of prenex formulas φ′( ~Q) and ψ′(~R) such
that the equivalences

φ( ~Q)↔ φ′( ~Q), ψ(~R)↔ ψ′(~R)

are valid and no variable occurs both free and bound in the (assumed valid)
implication

φ′( ~Q)→ ψ′(~R).

By Theorem 3A.10 (the Semantic Completeness of G),

G ` IA(τ), IA( ~Q), IA(~R) ⇒ φ′( ~Q)→ ψ′(~R),

where IA(τ), IA( ~Q), IA(~R) are the identity axioms for the relation and function
symbols which occur in τ , φ′( ~Q) and ψ′(~R) (in prenex form); and then, easily,

G ` IA(τ), IA( ~Q), φ′( ~Q) ⇒ (IA(~R)→ ψ′(~R)).(71)

We now replace the identity symbol = by a fresh, binary relation symbol E,
i.e., we replace each prime formula of the form t = s by E(t, s), to obtain
formulas

IA(E, τ), IA(E, ~Q), φ′(E, ~Q), IA(E, ~R), ψ′(E, ~R);
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and since the proof in G which establishes (72) does not use any special
properties of the identity symbol, if we replace = by E in it, we get

G ` IA(E, τ), IA(E, ~Q), φ′(E, ~Q) ⇒ (IA(E, ~R)→ ψ′(E, ~R)).

We now apply the Extended Hauptsatz to get a normal proof Π of this sequent.
The midsequent

A∗ ⇒ B∗

of Π is a valid, quantifier-free sequent with no occurrence of =, and so (easily,
by Proposition 3E.3), there is a valid propositional sequent

A∗∗ ⇒ B∗∗

from which A∗ ⇒ B∗ can be obtained by replacing its propositional variables
with prime formulas. Moreover, prime formulas which involve symbols in ~Q

occur only in A∗∗, and prime formulas which involve symbols in ~Q occur only
in B∗∗, and so by the Propositional Interpolation Theorem 3F.1, there is a
(τ, E)-formula χ∗∗ such that

G ` A∗∗ ⇒ χ∗∗; G ` χ∗∗ ⇒ B∗∗.

If we now replace back E by =, we get a τ -formula χ∗ such that

G ` A∗ ⇒ χ∗, G ` χ∗ ⇒ B∗.(72)

This completes the preparation or the proof. In the main argument, we
apply to each of these two sequents (essentially) the same sequence of quantifier
rule applications and contractions which are used to get IA(E, ~Q), φ′(E, ~Q) ⇒
(IA(E, ~R)→ ψ′(E, ~R)) from A∗ ⇒ B∗, to obtain in the end a new τ -formula
χ and and proofs of the required

G ` IA(τ), IA( ~Q) & φ( ~Q) ⇒ χ, G ` χ ⇒ (IA(~R)→ ψ(~R)). a

Theorem 3F.3 (The Beth Definability Theorem). Suppose φ(R) is a sen-
tence in FOL(τ ∪ {R}), where the n-ary relation symbol R is not in the sig-
nature τ , and the sentence

φ(R) & φ(S)→ (∀~x)[R(~x)↔ S(~x)]

is provable (or equivalently valid). From any proof of it we can construct a
χ(~x) in FOL(τ) such that

φ(R)→ (∀~x)[R(~x)↔ χ(~x)]

is provable.
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The Beth Theorem says that implicit first order definability coincides with
explicit first order definability. In addition to their obvious foundational sig-
nificance, both of these results are among the most basic of Model Theory,
with many applications.

3G. The Hilbert program

The discovery of paradoxes in set theory (especially the Russell Paradox)
in the beginning of the 20th century created a “foundational crisis” in mathe-
matics which was not completely resolved until the middle 1930s. There were
essentially three main responses to it:

(1) Axiomatic set theory. Introduced by Zermelo in 1908 in direct response
to the paradoxes, this led rapidly to substantial mathematical developments,
and eventually to a new notion of grounded set which replaced Cantor’s intu-
itive approach and, in a sense, “justified the axioms”: in any case, no contra-
dictions have been discovered in Zermelo-Fraenkel set theory since its formal-
ization was complete in the 1930s. Working “within ZFC” is now the standard,
“mathematical” approach to the foundations of mathematics.

(2) Constructive mathematics (intuitionism), advocated primarily by Brou-
wer. This rejected set theory and classical logic as “meaningless”, and at-
tempted to reconstruct a new kind of mathematics on constructive principles.
It did not succeed in replacing classical mathematics as the language of science,
but it has influenced deeply the philosophy of mathematics.

(3) Formalism, introduced by Hilbert, who formulated the Hilbert program,
a sequence of mathematical conjectures whose proof would solve the problem
posed by the paradoxes. The basic elements of the Hilbert Program (vastly
oversimplified) are as follows:

Step 1. Formulate mathematics (or a substantial part of it) as a formal,
axiomatic theory T , so it can be studied as a mathematical object using stan-
dard, combinatorial techniques.

Our modern conception of formal, first-order logic, with its precisely defined
terms, formulas, proofs, etc., was developed as part of this first step of the
Hilbert Program—it had never been so rigorously formulated before.

Step 2. Prove that T is complete: i.e., for each sentence θ of T ,

either T ` θ or T ` ¬θ.
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Step 3. Prove that T is consistent, i.e., there is not sentence θ such that

T ` θ and T ` ¬θ.

Basic methodological principle: the proofs in the last two steps must be fini-
tistic, i.e., (roughly) constructive, utterly convincing combinatorial arguments
about finite objects, such as natural numbers, symbols, strings of symbols and
the like. There is no attempt to define rigorously the pre-mathematical notion
of finitistic proof : it is assumed that we can recognize a finitistic argument—
and be convinced by it—when we see it.

The basic idea is that if Steps 1 – 3 can be achieved, then truth can be
replaced in mathematics by proof, so that metaphysical questions (like what
is a set) are simply by-passed.

Hilbert and his school worked on this program as mathematicians do, trying
first to complete it for weak theories T and hoping to develop methods of
proof which would eventually apply to number theory, analysis and even set
theory. They had some success, and we will examine two representative results
in Sections 3H and 3J. But Gödel’s fundamental discoveries in the 1930s
established conclusively that the Hilbert Program cannot go too far. They
will be our main concern.

It should be emphasized that the notions and methods introduced as part of
the Hilbert Program have had an extremely important role in the development
of modern, mathematical logic, and even Gödel’s work depends on them: in
fact, Gödel proved his fundamental results in response to questions which arose
(explicitly or implicitly) in the Hilbert Program.

3H. The finitistic consistency of Robinson’s Q

Robinson’s Q was defined in 2G.1. We introduce its Skolemized version Qs,
which has an additional (unary) function symbol Pd and for axioms (in full)
the universal closures of the following formulas:

1. ¬[S(x) = 0].
2. S(x) = S(y)→ x = y.
3. x+ 0 = x, x+ S(y) = S(x+ y).
4. x · 0 = 0, x · (Sy) = x · y + x.
5. Pd(0) = 0.
6. Pd(S(x)) = x.
7. x = 0 ∨ x = S(Pd(x)).
8. x = x & (x = y → y = x) & [(x = y & y = z)→ x = z].
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9. x = y → [S(x) = S(y) & Pd(x) = Pd(y)].
10. (x = y & u = v)→ [x+ u = y + v & x · u = y · v.
Aside from the explicit inclusion of the relevant Axioms of Identity, the

basic difference between Q and Qs is that all the axioms of Qs are universal
sentences, while the characteristic axiom

∀x[x = 0 ∨ (∃y)[x = S(y)]]

of Q has an existential quantifier in it. Axiom 7 of Qs is the “Skolemized
version” of the Robinson axiom; in this case we can obviously see that the
“Skolem function” Pd(x) is the predecessor function

Pd(x) =

{
0, if x = 0,
x− 1, otherwise.

(73)

However, this Skolemization which eliminates existential quantifiers by intro-
ducing new function symbols can be done in arbitrary sentences, and in each
case we can prove the analog of the following, simple fact:

Lemma 3H.1. We can prove in G the sequent

∀x[x = 0 ∨ x = S(Pd((x)))] ⇒ ∀x[x = 0 ∨ (∃y)[x = S(y)]],

and so for any sentence θ,

if G ` Q ⇒ θ, then G ` Qs ⇒ θ.

It follows that if Qs is consistent, then so is Q.

Theorem 3H.2. Robinson’s theory Q is (finitistically) consistent.

Outline of proof. We assume, towards a contradiction that (with 1 =
S(0)), Qs ` 0 = 1, so that there is a proof in G of the sequent

Qs ⇒ 0 = 1;

and since all the axioms on Qs are prenex, by the Extended Hauptsatz, there
is a normal proof of this sequent. Consider the midsequent of such a normal
proof: it is of the form

θ1, . . . , θn ⇒ 0 = 1

where each θi is a substitution instance of the matrix of one of the axioms of
Qs, something like

Sx+ S(u · Sx) = S(Sx+ (u · Sx))
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in the case of Axiom 3. Now replace by 0 all the (free) variables which occur
in the part of the proof above the midsequent, so that in the example the
midsequent becomes the equation

S0 + S(0 · S0) = S(S0 + (0 · S0)).

The (propositional) proof above the midsequent remains a proof, and it estab-
lishes the sequent

θ∗1, . . . , θ
∗
n ⇒ 0 = 1

where each θ∗i is a numerical identity. But these numerical identities are all
true with the standard interpretation of the symbols 0, S,+,Pd, ·; and so we
cannot have a proof by logic alone which leads from them to the obviously
false identity 0 = 1. a

Discussion: In some sense, all we have done is to say that we have a model
of Qs, and hence the theory must be consistent. The “finitistic” justification
for the proof is that (1), the model is constructive—its universe is the set N
of natural numbers, we can compute all the values of the functions S,Pd,+, ·
involved, and we can verify numerical equations among them; and (2), we only
need to understand and accept finitely many numerical instances of universal
sentences, which we can verify “by hand”. In other words, all we need to be-
lieve about the natural numbers is that we can define Sx,Pd(x), x+y and x ·y
on some initial segment of N (comprising the specific numbers which occur in
the assumed contradictory midsequent) so that their basic, numerically verifi-
able identities are true. The Extended Hauptsatz is used precisely to replace a
general understanding of “truth in (N, 0, S,+, ·)” for arbitrary sentences with
quantifiers by this limited understanding of “numerical truth”.

3I. Primitive recursive functions

We introduce here and establish the basic properties of the primitive recur-
sive functions and relations on N, which have numerous applications in many
parts of logic.

3I.1. We will use the following specific functions on N:
1. The successor, S(x) = x+ 1.
2. The n-ary constants, Cnq (~x) = q.

3. The projections, Pni (x1, . . . , xn) = xi, (1 ≤ i ≤ n). Notice that P 1
1 (x) =

id(x) is the identity.
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Definition 3I.2. A function f : Nn → N is defined by composition from
given functions h, g1, . . . , gm, if for all ~x ∈ Nn,

f(~x) = h(g1(~x), . . . , gm(~x)).

Here f and all the gi are n-ary and h is m-ary. Example:

f(x) = x+ x = +(id(x), id(x)) = 2x

is a composition of addition with the identity (taken twice). The function

S2
1(x, y) = S(P 2

1 (x, y)) = x+ 1

is the binary function which adds 1 to its first argument.
A function f is defined by primitive recursion from h, g, if for all y, ~x ∈

Nn,

f(0, ~x) = g(~x),
f(y + 1, ~x) = h(f(y, ~x), y, ~x).

Here f is n+1-ary, g is n-ary and h is n+2-ary. We also include (by convention)
the degenerate case where g is just a number and a unary function is being
defined:

f(0) = q,

f(y + 1) = h(f(y), y).

Examples: if

f(0, x) = id(x) = x, f(y + 1, x) = S2
1(f(y, x), y),

then (by an easy induction on y),

f(y, x) = y + x.

Definition 3I.3. The class of primitive recursive functions is the small-
est set of functions (of all arities) on N which contains the successor S, the
constants Cnq , and the projections Pni , and which is closed under composition
and primitive recursion.

A relation R ⊆ Nk is primitive recursive if its characteristic function is,
where

χR(~x) =
{

1, if R(~x),
0, otherwise.

Proposition 3I.4. (1) If A = (N, f0, . . . , fk) where f0, . . . , fk are primitive
recursive and f is A-explicit, then f is primitive recursive.

(2) Primitive recursive functions and relations are arithmetical.
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Proof is easy, using Theorems 1D.2 (the closure properties of E(A)) and 1E.2.
a

3I.5. A primitive recursive derivation is a sequence of functions

f0, f1, . . . , fk,

where each fi is S, a constant Cnq or a projection Pni , or is defined by compo-
sition or primitive recursion from functions before it in the sequence.

Lemma 3I.6. A function is primitive recursive if and only of it occurs in
some primitive recursive derivation.

Lemma 3I.7. The following functions are primitive recursive.

1. x+ y.
2. x · y.
3. x! = 1 · 2 · 3 · · ·x, with 0! = 1.
4. pd(x) = x− 1, with pd(0) = 0.
5. x−· y = max(0, x− y).
6. min(x, y).
7. min(x1, . . . , xn).
8. max(x, y).
9. max(x1, . . . , xn).

10. max(x1, . . . , xn).

11. bit(x) =
{

0, if x = 0,
1, if x > 0.

12. bit(x) = 1−· bit(x).

Lemma 3I.8. If h is primitive recursive, then so are f and g where:

(1) f(x, ~y) =
∑

i<x h(i, ~y), (= 0 when x = 0).

(2) g(x, ~y) =
∏
i<x h(i, ~y), (= 1 when x = 0).

Proof is left for Problem 4A.1. a

Lemma 3I.9 (Closure properties of primitive recursive relations). (1) The
identity relation x = y is primitive recursive.

(2) The negation of a primitive recursive relation is primitive recursive; and
the conjunction of primitive recursive relations is primitive recursive. (So the
class of primitive recursive relations is closed under all propositional logic
operations.)
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(3) If P (i, ~y) is primitive recursive, then so are the relations defined from it
by bounded quantification:

Q(x, ~y) ⇐⇒df (∃i < x)P (i, ~y),
R(x, ~y) ⇐⇒df (∀i < x)P (i, ~y).

(4) If P and f1, . . . , fk are primitive recursive, then so is the relation

R(~x) ⇐⇒df P (f1(~x), . . . , fk(~x)).

(5) If R is primitive recursive, then so is the function

f(x, ~y) = (µi < x)R(i, ~y);

here µi is read “the least i”, and if there is no i < x which satisfies R(i, ~y),
then f(x, ~y) = x.

Lemma 3I.10. The following functions and relations are primitive recur-
sive.
(1) quot(x, y) = the (integer) quotient of x by y, set = 0 if y = 0.
(2) rem(x, y) = the remainder of the division of x by y, set = x if y = 0.
(3) Prime(x) ⇐⇒ x > 1 & x has no divisors other than 1 and itself.
(4) p(i) = pi = the i’th prime number.

For y > 0, the integer quotient q = quot(x, y) and remainder r = rem(x, y)
are the unique natural numbers which satisfy

x = yq + r, 0 ≤ r < y.

Next we introduce a coding of tuples from N which is more convenient than
the one we defined using the β-function in Section 1E.

3I.11. Definition. A coding of a set X in the set C is any injective
(one-to-one) function π : X � C.

With each coding 〈 〉 : N∗ � N of the finite sequences of numbers into the
numbers, we associate the following functions and relations:

1. 〈x1, . . . , xn〉n = 〈x1, . . . , xn〉, the n-ary function (for each fixed n) which
codes n-tuples, for very n including n = 0: so 〈ε〉 is some fixed number,
the code of the empty tuple. (In using this notation, we never write the
n.)

2. Seq(w) ⇐⇒df (∃x0, . . . , xn−1)[w = 〈x0, . . . , xn−1〉], the sequence coding
relation.

3. lh(w) = n, if w = 〈x0, . . . , xn−1〉, the length function (=0 if w is not a
sequence number).

4. proj(w, i) = (w)i = xi, if w = 〈x0, . . . , xn−1〉 and i < n, the projection
function (=0 if w is not a sequence number or i ≥ lh(w)).
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5. append(u, t) = 〈x0, . . . , xn−1, t〉 if u = 〈x0, . . . , xn−1〉, = 0 otherwise.
A sequence coding on the set N of numbers is primitive recursive if these
associated functions and relations are all primitive recursive.

The restriction of a sequence code u to its first i elements is defined by the
primitive recursion

u�0 = 〈ε〉, u�(i+ 1) = append(u�i, (u)i),(74)

so that

〈u0, . . . , un−1〉�i = 〈uo, . . . , ui−1〉 (i < n).

Using the appending function, we can also define by primitive recursion the
concatenation of codes of sequences, setting

f(0, u, v) = u,

f(i+ 1, u, v) = append(f(i, u, v), (v)i),
u ∗ v = f(lh(v), u, v).(75)

It follows easily that when u, v are sequence codes, then u ∗ v codes their
concatenation.

Lemma 3I.12. The following function on N∗ is a primitive recursive cod-
ing:

〈ε〉 = 1 (the code of the empty tuple is 1)

〈x0, . . . , xn〉 = px0+1
0 · px1+1

1 · · · pxn+1
n (n ≥ 0).

It satisfies the following additional properties for all x0, . . . , xn−1 and all se-
quence codes u, v, w:

xi < 〈x0, . . . , xn−1〉, (i < n),
if v, u ∗ w 6= 1, then v < u ∗ v ∗ w.

This is the standard or prime power coding of tuples from N.

Lemma 3I.13 (Complete Primitive Recursion). Suppose g is primitive re-
cursive, 〈 〉 is a primitive recursive coding of tuples and the function f satisfies
the identity

f(x) = g(x, 〈f(0), . . . , f(x− 1)〉);
it follows that f is primitive recursive.

Similarly with parameters, when

f(x, ~y) = g(x, ~y, 〈f(0, ~y), . . . , f(x− 1, ~y)〉).
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Proof. The function

f(x) = 〈f(0), . . . , f(x− 1)〉

satisfies the identities

f(0) = 〈ε〉,
f(x+ 1) = f(x) ∗ 〈g(x, f(x))〉,

so that it is primitive recursive; and then

f(x) = (f(x+ 1))x. a

Lemma 3I.14. If 〈 〉1 and 〈 〉2 are primitive recursive number codings of
tuples, then there exists a primitive recursive function π : N→ N which com-
putes one coding from the other, i.e. for all sequences,

π(〈x0, . . . , xn−1〉1) = 〈x0, . . . , xn−1〉2.

This result often allows us to establish results about the simple, standard,
power coding of Lemma 3I.12 and then infer that they hold for all primitive
recursive codings. The standard coding is very inefficient, and much better
primitive recursive codings exist, cf. Problems 4A.6 – 4A.9; but we are not
concerned with efficiency here, and so, to simplify matters, we adopt the
standard power coding of tuples for these notes, so that we may use
without mention its special properties listed in Lemma 3I.12.

3J. Further consistency proofs

We outline here the proof of (basically) the strongest consistency result
which can be shown finitistically.

Definition 3J.1 (Primitive Recursive Arithmetic, I). For each primitive re-
cursive derivation

~f = (f0, . . . , fk),

we define a formal axiomatic system PRA(~f) as follows.

(1) The signature of PRA(~f) has the constant 0, the successor symbol S,
the predecessor symbol Pd, function symbols for f1, . . . , fk and the identity
symbol =. (This is an FOL theory.) We assume the identity axioms for the
function symbols in the signature, the two axioms for the successor,

S(x) 6= 0, S(x) = S(y)→ x = y,
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and the three axioms for the predecessor:

Pd(0) = 0, Pd(S(x)) = x, x 6= 0 ∨ x = S(Pd(x)).

(2) For each fi we have its defining equations which come from the deriva-
tion as axioms. For example, if f3 = C3

2 , then the corresponding axiom is

f3(x, y, z) = S(S(0)).

If fi is defined by primitive recursion from preceding functions fl, fm, we have
the corresponding axioms

fi(0, ~x) = fl(~x),
fi(S(y), ~x) = fm(fi(y, ~x), y, ~x).

(3) Quantifier free induction scheme. For each quantifier free formula
φ(y, ~z) we take as axiom the universal closure of the formula

φ(0, ~z) & (∀y)[φ(y, ~z)→ φ(S(y), ~z)] → ∀xφ(x, ~z).

Notice that from the axiom

x = 0 ∨ x = S(Pd(x))

relating the successor and the predecessor functions, we can get immediately
(by ∃-elimination) the Robinson axiom

x = 0 ∨ (∃y)[x = S(y)],

so that all the axioms of the Robinson system Q defined in 3.10 are provable
in PRA(~f), once the primitive recursive derivation ~f includes the defining
equations for addition and multiplication.

The term primitive recursive arithmetic is used loosely for the “union”
of all such PRA(~f). More precisely, we say that a proposition can be expressed
and proved in primitive recursive arithmetic, if it can be formalized and proved
in some PRA(~f).

Definition 3J.2 (Primitive Recursive Arithmetic, II). For each primitive
recursive derivation ~f , let PRA∗(~f) be the axiomatic system with the same
signature as PRA(~f) and with axioms (1) and (2) above, together with

(3)∗ For each of the function symbols h in the signature,

{h(0, ~z) = 0 & (∀y)[h(S(y), ~z) = S(h(y, ~z))]} → (∀x)[h(x, ~z) = x].(76)

Theorem 3J.3 (Key Lemma). For each primitive recursive derivation ~f ,
the system PRA∗(~f) is (finitistically) consistent.
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Proof. First we replace the new axiom (77), for each function symbol h by
its “Skolemized form”

(77) (∀x)
[
{h(0, ~z) = 0 & [h(S(gh(x, ~z)), ~z) = S(h(gh(x, ~z), ~z)]}

→ h(x, ~z) = x
]
,

where gh is a new function symbol. This axiom easily implies (77), by ∃-
elimination: so it is enough to show that this system PRA∗∗(~f) is consistent.

If the system PRA∗∗(~f) is inconsistent, then it proves 0 = 1, so by the
Extended Hauptsatz we have a normal proof with endsequent

φ1, . . . , φn ⇒ 0 = 1,

where each φi is either one of the basic axioms about the successor S and
the predecessor Pd, a (universally quantified) defining equation for one of the
primitive recursive functions in ~f , or (78) for some h = fi. The midsequent of
this proof is of the form

ψ1, . . . , ψm ⇒ 0 = 1,

where now each ψi is a (quantifier free) substitution instance of the matrix of
some φj . We now replace all variables above the midsequent by 0; what we get
is a propositional proof whose conclusion

ψ∗1, . . . , ψ
∗
m ⇒ 0 = 1

has on the left a sequence of closed, quantifier free sentences, each of them
making a numerical assertion about S, Pd, the primitive recursive functions
fi and the (still unspecified) functions gh. If we define

gh(x, ~z) = max{y ≤ x | h(y, ~z) = y},

then we can recognize immediately that for any x,

h(x, ~z) 6= x=⇒h(gh(x, ~z)) 6= gh(x, ~z),

and from this it is immediate that all these numerical assertions in the mid-
sequent are true: for example, a typical sentence in the left of the midsequent
might be

f2(f5(S(0)), S(0) = f1(S(0), 0),

which can be verified by computing the numerical values of the functions
involved from their (primitive recursive) definitions and then just checking.
On the other hand, the right of the midsequent has the single false assertion
0 = 1, which is absurd. a
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Remark: In effect all we have done is to say that we have a model for
PRA∗∗(~f), and hence the theory must be consistent. The “finitistic” justifi-
cation for the proof is that (1), the model is constructive—we can compute
all the values of the functions involved, and we can verify numerical equations
among them; and (2), we only need understand the truth of closed (numer-
ical) quantifier free sentences about the model, not arbitrary sentences with
quantifiers. The Extended Hauptsatz is used precisely to allow us to deal with
quantifier free sentences rather than arbitrary ones.

Lemma 3J.4. For each primitive recursive derivation ~f and each quantifier
free formula φ(x, ~z) in its language, we can find a longer derivation ~f, h,~g

such that the theory T = PRA∗(~f, h,~g) proves the instance of quantifier free
induction

φ(0, ~z) & (∀y)[φ(y, ~z)→ φ(S(y), ~z)]→ (∀x)φ(x, ~z).

Outline of proof. We skip the parameters ~z.
Consider again the Skolemized version of the given instance of quantifier

free induction

φ(0) & [φ(h(x))→ φ(S(h(x)))]→ φ(x)(78)

which implies easily the non-Skolemized form; so it suffices to find a primitive
recursive derivation with a letter h in it so that the theory T proves (79). The
idea is to take the function h defined by the following primitive recursion.

h(0) = 0,

h(S(y)) =

 S(h(y)), if φ(h(y)) & φ(S(h(y))),
h(y), if φ(h(y)) & ¬φ(S(h(y))),
0, if ¬φ(h(y)).

We omit the details of the proof that this h is primitive recursive, and that in
the theory T which includes its primitive recursive derivation we can establish
the following theorems, which express the cases in its definition.

φ(h(y)) & φ(S(h(y)))→ h(S(y)) = S(h(y)),(79)
φ(h(y)) & ¬φ(S(h(y)))→ S(h(y)) = h(y),(80)

¬φ(h(y))→ h(S(y)) = 0.(81)

Once we have these theorems from T , we assume the hypothesis

φ(0), φ(h(x))→ φ(S(h(x)))(82)

of the implication to prove and we argue as follows, within T .
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(1) (∀x)φ(h(x)). By Robinson’s property, either x = 0, and then h(0) = 0
and φ(0) give the result, of x = S(y) for some y, and then we can verify the
conclusion taking cases in the hypothesis of (80) - (82).

(2) (∀y)[h(S(y)) = S(h(y))]. This follows now from (80)− (82), since (82)
cannot occur by (1) and (81) cannot occur by the hypothesis (83).

(3) (∀x)[h(x) = x], by h(0) = 0 and (2), together with the last axiom of
T .

From (1) and (3) now we get the required (∀x)φ(x). a
Remark: It is important, of course, that no induction is used in this proof,

only the consideration of cases.

Theorem 3J.5 (Main Consistency Result). For each primitive recursive deriva-
tion ~f , the system PRA(~f) is (finitistically) consistent.

Primitive recursive arithmetic is much more powerful than it might appear.
As an example, here is one of its theorems.

Proposition 3J.6. In the system PRA(+) (with the defining axioms for
addition) we can prove that + is associative and commutative,

x+ (y + z) = (x+ y) + z, x+ y = y + x.

This cannot be proved in Robinson’s Q.


