


APPENDIX 1

APPENDIX: SOME BASIC FACTS

This is a dynamic Appendix: it will be updated periodically, as we need more
basic facts from mathematics which are known to most of the students in the
class and are not properly part of logic.

Notations. The (cartesian) product of two sets A,B is the set of all ordered
pairs from A and B,

A×B = {(x, y) | x ∈ A & y ∈ B};

for products of more than two factors, similarly,

A1 × · · · ×An = {(x1, . . . , xn) | x1 ∈ A1, . . . , xn ∈ An}.

We write Wn for A1 × · · · × An with A1 = A2 = · · · = An = W , and W ∗ for
the set of all finite sequences (words) from W .

We write f : A→W to indicate that f is a function on A to W , i.e.,

f ⊆ A×W & (∀x ∈ A)(∃!w ∈W )[(x,w) ∈ f ].

We also write f : A � W to indicate that f is an injection (one-to-one);
f : A→→W to indicate that f is a surjection (onto W ); and finally, we write
f : A �→W to indicate that f is a bijection, i.e., a one-to-one correspondence
of A with W . If f : A→W , X ⊆ A and Y ⊆W , we let

f [X] = {f(x) | x ∈ X} (the image of X by f)
f−1[Y ] = {x ∈ A | f(x) ∈ Y }(the inverse image of Y by f.

Problem s1 (Definition by recursion). For any two sets W,Y and any two
functions g : Y → W , h : W × Y × N → W , there is exactly one function
f : N× Y → W which satisfies the following two equations, for all n ∈ N and
y ∈ Y :

f(0, y) = g(y),
f(n+ 1, y) = h(f(n, y), y, n)(162)
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Hint: To prove that such a function exists, define the relation

P (n, y, w) ⇐⇒ (there exists a sequence w0w1 · · ·wn ∈W ∗)

such that
[
w0 = g(y)

& (for all i < n)[wi+1 = h(wi, y, i)]]

& wn = w
]
,

and prove by induction on n that for all y ∈ Y , there is exactly one w ∈ W
such that P (n, y, w). We can then set

f(n, y) = the unique w such that P (n, y, w).

To prove uniqueness, we assume that f1, f2 : N×Y →W both satisfy (162)
and we show by induction that for all n, for all y, f1(n, y) = f2(n, y).

Problem s2 (Definition by complete recursion). For any set W , any point
w0 ∈ W and any function h : W ∗ × N → W , there is exactly one function
f : N→W such that for all n,

f(0) = w0, f(n+ 1) = h(f(0)f(1) · · · f(n), n).

Suppose F : Um → U is an m-ary function on a set U and X ⊆ U ; we say
that X is closed under F if

x1, . . . , xm ∈ X =⇒F (x1, . . . , xm) ∈ X.

Problem s3 (Functional closure). For any set U , any collection of func-
tions F on U , of any arity, and any A ⊆ U , let

A(0) = A, A(n+1) = A(n) ∪ {F (w1, . . . , wm) | w1, . . . , wm ∈ A(n),

F ∈ F , arity(F ) = m},

A
F =

∞⋃
n=0

A(n).

Prove that AF is the least subset of U which contains A and is closed under
all the functions in F , i.e.,

(1) A ⊆ AF ;
(2) AF is closed under every F ∈ F ;
(3) if X ⊆ U , A ⊆ X and X is closed under every F ∈ F , then A

F ⊆ X.



Appendix: Some basic facts 3

Note. We call AF the set generated by A and F . For a standard example,
take U to be the set of all strings of symbols of FOL(τ) for some signature
τ ; let A be the set of all the variables and the constants (viewed as strings of
length 1); for any m-ary function symbol f in τ let

Ff (α1, . . . , αm) ≡ f(α1, . . . , αm);

and take F to be the collection of all Ff , one for each function symbol f of τ .
The set AF is then the set of terms of FOL(τ).

Problem s4 (Structural recursion). Let A,U,F be as in Problem s3 and
assume in addition:

1. Each F : Um � U is one-to-one and never takes on a value in A, i.e.,
F [Um] ∩A = ∅.

2. The functions in F have disjoint images, i.e., if F1, F2 ∈ F , arity(F1) = m,
arity(F2) = n and F1 6= F2, then for all u1, . . . , um, v1 . . . , vn ∈ U ,

F1(u1, . . . , um) 6= F2(v1, . . . , vn).

SupposeW is any set, G : W →W , and for eachm-ary F ∈ F , HF : Wm →W
is an m-ary function on W . Prove that there is a unique function

φ : AF →W

such that

if x ∈ A, then φ(x) = G(x),

and

if x1, . . . , xm ∈ AF and F is m-ary in F ,
then φ(F (x1, . . . , xm)) = HF (φ(x1), . . . , φ(xm)).

Problem s5. Let U be the set of symbols of FOL(τ), and specify A ⊆ U
and F so that the conditions in Problem s4 are satisfied and AF is the set of
formulas of FOL(τ). Indicate how the definition of FO(χ) in Definition 1B.6
is justified by Problem s4.

A set A is countable if either A is empty, or A is the image of some function
f : N→→A, i.e.,

A = {a0, a1, . . . } with ai = f(i).

Problem s6 (Cantor). IfA0, A1, A2, . . . is a sequence of countable sets, then
the union ⋃∞

i=0Ai = A0 ∪A1 ∪ · · ·
is also countable. It follows that:
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1. The union A∪B and the product A×B of two countable sets are count-
able.

2. If A is countable, then so is each finite power An.
3. If A is countable, then so is the set of all words A∗.
Hint: Assume (without loss of generality) that no Ai is empty; suppose for

each i ∈ N, fi : N→→Ai enumerates Ai; choose some fixed a0 ∈ A0; and define
f : N→

⋃∞
i=0Ai by

f(n) =

{
fi(j), if n = 2i3j , for some (necessarily) unique i, j,
a0, otherwise;

now prove that f is onto
⋃∞

i=0Ai.
The Corollary for the product A×B follows by noticing that

A×B =
⋃∞

i=0{(ai, x) | x ∈ B},

with A = {a0, a1, . . . }.

Problem 1.5∗ (Cantor). Prove that if A = (A,≤A) and B = (B,≤B) are
both countable, dense in themselves linear orderings with no first or last ele-
ment, then A and B are isomorphic. Hint: Let

A = {a0, a1, . . . }, B = {b0, b1, . . . },

(with no repetitions) and construct by recursion a sequence of bijective map-
pings ρn : An �→ Bn such that:
(1) An, Bn are finite sets, An ⊆ A,Bn ⊆ B.
(2) a0, . . . , an ∈ An, b0, . . . , bn ∈ Bn.
(3) ρ0 ⊆ ρ1 ⊆ · · · .
(4) If a, a′ ∈ An, then a ≤A a′ ⇐⇒ ρn(a) ≤B ρ(a′).

The required isomorphism is ρ =
⋃

n ρn.

Problem s8. A binary relation ∼ on a set C is an equivalence relation if
and only if there exists a surjection

ρ : C→→C(163)

of C onto a set C, such that

x ∼ y ⇐⇒ ρ(x) = ρ(y) (x, y ∈ C).(164)

When (163) and (164) hold we call C a quotient of C by ∼ and ρ a deter-
mining homomorphism of ∼.
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Hint: For the non-trivial direction, define the equivalence class of each
x ∈ C by

x = {y ∈ C | y ∼ x} ⊆ Powerset(C),

let C = {x | x ∈ C} and let ρ(x) = x.

A wellordering or well ordered set is a linear ordering (A,≤) in which
every non-empty subset X of A has a least element.

Problem s9. A linear ordering (A,≤) is a wellordering if and only if there
is no infinite descending chain x0 > x1 > · · · . Hint: This requires a mild form
of the Axiom of Choice, the so-called Axiom of Dependent Choices. Use the
fact that the image {x0, x1, . . . } of an infinite descending chain is a non-empty
set with no minimum.


