Mathematics 220B

Winter 2010

FINAL EXAMINATION

Due Friday, March 19.

1. The functions f_0 , f_1 are defined by simultaneous primitive recursion from w_0 , w_1 , h_0 and h_1 if they satisfy the identities:

$$\begin{array}{rcl} f_0(0) &=& w_0, & f_1(0) &=& w_1, \\ f_0(x+1) &=& h_0(f_0(x), f_1(x), x), & f_1(x+1) &=& h_1(f_0(x), f_1(x), x). \end{array}$$

Prove that if h_0, h_1 are primitive recursive, then so are f_0 and f_1 .

2. A sentence in the language of **PA** is Π_1 if it is of the form

$$\phi \equiv (\forall x_1) \cdots (\forall x_n) \theta$$

where θ has only bounded quantifiers of the form

$$(\exists x \le y), \qquad (\forall x \le y).$$

Prove that for every Π_1 sentence ϕ ,

PA,
$$\operatorname{Con}_P(\ulcorner \phi \urcorner) \vdash \phi$$
,

where $\operatorname{Con}_P(\ulcorner \phi \urcorner)$ expresses in a natural way the consistency of ϕ with Peano arithmetic, in other words it is the sentence $\neg(\exists y)\operatorname{Proof}(\ulcorner \neg \phi \urcorner, y)$.

3. Let A be the set of all $\#\phi$ such that ϕ is a sentence of the language of **PA** and **PA** $\vdash \phi$. Let B be the set of all $\#\phi$ for ϕ such that ϕ is a sentence of the same language and **PA** $\vdash \neg \phi$. Prove that A and B are recursively inseparable, i.e., that they are disjoint and there is no recursive C such that $A \subseteq C$ and $B \cap C = \emptyset$.

4. Suppose $A \subseteq \mathbb{N}$, $x \preceq y$ is a wellordering of A,

$$F: (\mathbb{N} \to \mathbb{N}) \times \mathbb{N} \to \mathbb{N}$$

is a function(al) defined on partial functions on \mathbb{N} , and $g: A \to \mathbb{N}$ is defined by the transfinite recursion

$$g(x) = F(g \upharpoonright \{ y \in A \mid y \prec x \}, x).$$

Suppose in addition, that there is a recursive partial function $\psi(e, x)$ satisfying the following, for every e, every x, and every partial function p:

if
$$(\forall y \prec x)[p(y) = \varphi_e(y)]$$
, then $F(p, x) = \psi(e, x)$.

Prove that there is a recursive partial function g^* such that for all $x \in A$, $g(x) = g^*(x)$.

Note: It is not assumed that A is a recursive set, or that $x \leq y$ is a recursive relation; the result holds for completely arbitrary A and $x \leq y$.

5. Prove that $\{e \mid W_e \text{ has a finite complement}\}$ is Σ_3^0 complete.

6. Let A be a recursively enumerable set such that A^c is infinite. Let $f: \mathbb{N} \to A^c$ be one-one onto and order preserving. Assume that f eventually dominates every recursive partial function, i.e., that, for every recursive partial g,

$$(\exists m)(\forall n \ge m)(g(n) \text{ is defined} \Rightarrow g(n) \le f(n)).$$

Prove that $\deg(A) = \deg(K)$.

7. Let a be a degree of unsolvability. Prove that there is a degree $d \neq 0$ such that $a \leq d$.

Hint. Let $g : \mathbb{N} \to \mathbb{N}$ with $\deg(g) = a$. Define $\emptyset = s_0 \subsetneq s_1 \subsetneq s_2 \subsetneq \ldots$ and set $f = \bigcup_{e \in \mathbb{N}} s_e$. In defining s_{e+1} from s_e , make sure that $f \neq \{e\}$ and also make sure that $g \neq \{e\}^f$.