How to give a good talk?

Content Level, Organization and Boardwork

Chi-Yun Hsu

Pedagogy Fellow
Department of Mathematics
Harvard University

May 3, 2019
Before we start ...

Goals

- Raise consciousness of importance of giving a good talk
- Initiate discussions on how to give good talks
- Share some perspective and techniques of giving talks
Before we start ...

Goals
- Raise consciousness of importance of giving a good talk
- Initiate discussions on how to give good talks
- Share some perspective and techniques of giving talks

Applicable Scenarios
- Learning Seminars
- Research Seminars
- Colloquiums
- Lectures in Teaching
Talk preparation

Step 1: Know your audience

Step 2: Prepare for notes

Step 3: Practice

How much do you think about your audience when preparing talks?

Chi-Yun Hsu

How to give a good talk?

May 3, 2019
Talk preparation

Step 1: Know your audience

Step 2: Prepare for notes

Step 3: Practice

How much do you think about your audience when preparing talks?
Know your audience

- Professor
- Postdocs
- Graduate students
Know your audience

Many Talks :(

level of understanding

Professor

Postdocs

Graduate students
Know your audience

How to give a good talk?

Chi-Yun Hsu

May 3, 2019
Know your audience — Example

At the beginning of a colloquium about elliptic curves ...
Know your audience — Example

At the beginning of a colloquium about elliptic curves ...

\[S: \text{ scheme} \]

\[\text{Def. An elliptic curve } E/S \]

\[\text{is a proper smooth group scheme with fibers being geom. connected of dim 1.} \]
Know your audience — Example

At the beginning of a colloquium about elliptic curves ...

Def. An elliptic curve E/S is a proper smooth group scheme with fibers being geometrically connected of dim 1.

Over \mathbb{C}

elliptic curve = complex torus + a point
At the beginning of a colloquium about elliptic curves ...

Def. An elliptic curve E/S is a proper smooth group scheme with fibers being geometrically connected of dim 1.

Over \mathbb{C}

elliptic curve = complex torus + a point

Elliptic curves

$E : y^2 = x^3 + ax + b$

with $4a^3 + 27b^2 \neq 0$
What characteristics make a good talk?
What characteristics make a good talk?

When preparing for talks, what do you do to make your talk better?
What characteristics make a good talk?
When preparing for talks, what do you do to make your talk better?

Will focus on
- Organization
- Boardwork
Principle 1

Write on the notes exactly what you want to write on the board.
Principle 1

Write on the notes exactly what you want to write on the board.

- **Length**: How many pages of notes give an one-hour talk?
Principle 1

Write on the notes exactly what you want to write on the board.

- **Length**: How many pages of note give an one-hour talk?
- **Contents**: Motivation, Background, Examples, Theorems, and Proofs.
Principle 1

Write on the notes exactly what you want to write on the board.

- **Length**: How many pages of note give an one-hour talk?
- **Contents**: Motivation, Background, Examples, Theorems, and Proofs.
- **Flow**: State the main theorem or goal as early as possible.
 - Theorem -> Ingredients of the proof -> Proof
 eg. Fermat’s last theorem
 - Motivation -> Background -> Theorem -> Proof ideas
 eg. Technical theorems
Principle 2

Audience should be able to understand the structure of the talk from the board.
Principle 2

Audience should be able to understand the structure of the talk from the board.

- **Environment:** Cut sections and paragraphs clearly
 - Write down “Section”, “Definition”, “Theorem”, “Proof”, etc.
 - To mark the end, draw a horizontal line or start a new board
Principle 2

Audience should be able to understand the structure of the talk from the board.

- **Environment**: Cut sections and paragraphs clearly
 - Write down “Section”, “Definition”, “Theorem”, “Proof”, etc.
 - To mark the end, draw a horizontal line or start a new board

- **Line Control**: Always start a new sentence in a new line
Organization — Prepare for notes

Principle 2

Audience should be able to understand the structure of the talk from the board.

- **Environment:** Cut sections and paragraphs clearly
 - Write down “Section”, “Definition”, “Theorem”, “Proof”, etc.
 - To mark the end, draw a horizontal line or start a new board

- **Line Control:** Always start a new sentence in a new line

- **Transition:** Make clear the transition between sections or paragraphs
Organization — Prepare for notes

Principle 2

Audience should be able to understand the structure of the talk from the board.

- **Environment:** Cut sections and paragraphs clearly
 - Write down “Section”, “Definition”, “Theorem”, “Proof”, etc.
 - To mark the end, draw a horizontal line or start a new board
- **Line Control:** Always start a new sentence in a new line
- **Transition:** Make clear the transition between sections or paragraphs
- **Example:** Example -> General Theory or General Theory -> Example
Let E/\mathbb{C} be an elliptic curve. We say E has CM if

$$\text{End}_\mathbb{Q}(E) \neq \mathbb{Q},$$

where $\text{End}_\mathbb{Q}(E) = \text{End}(E) \otimes \mathbb{Q}$.

E: \hspace{1cm} $y^2 = x^3 - x$

Prop. $\text{End}_\mathbb{Q}(E)$ is imag. quad.

$$E \cong \mathbb{C}/\mathbb{Z}\omega_1 \oplus \mathbb{Z}\omega_2$$

$Z := \frac{\omega_1}{\omega_2}$
Let E/\mathbb{Q} be an elliptic curve.
Let $\text{End}(E)$ be the endomorphism ring of E.

Def. E has complex multiplication (CM) if $\text{End}(E) \otimes \mathbb{R} \neq \mathbb{R}$

eq. $E: y^2 = x^3 - x$ has CM.

Prop. If E has CM, then $\text{End}(E) \otimes \mathbb{R}$ is imaginary quadratic.

(pf.) Write $E \cong \mathbb{C}/\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2$

\[\mathbb{C}/\mathbb{Z} \omega_1 + \mathbb{Z} \omega_2 \]
Let E/\mathbb{Q} be an elliptic curve. We say E has CM if

$$\text{End}_\mathbb{Q}(E) \neq \mathbb{Q},$$

where $\text{End}_\mathbb{Q}(E) = \text{End}(E) \otimes \mathbb{Q}$.

E: $y^2 = x^3 - x$

Prop. $\text{End}_\mathbb{Q}(E)$ is imaginary quadratic.

$E \cong \mathbb{C}/\mathbb{Z}w_1 + \mathbb{Z}w_2$

$z := \frac{w_1}{w_2}$

Let E/\mathbb{Q} be an elliptic curve. Let $\text{End}(E)$ be the endomorphism ring of E.

Def. E has complex multiplication (CM) if $\text{End}(E) \otimes \mathbb{Q} \neq \mathbb{Q}$

eg. E: $y^2 = x^3 - x$ has CM.

Prop. If E has CM, then $\text{End}(E) \otimes \mathbb{Q}$ is imaginary quadratic.

(pf.) Write $E \cong \mathbb{C}/\mathbb{Z}w_1 + \mathbb{Z}w_2$

$z := \frac{w_1}{w_2}$
“Key words” are easier to read than “full sentence”.
Avoid heavy notations
Introduce notations one by one
Use abbreviations only if it is well-known or after it is introduced
“Arrows” are easier to follow than “where”
Boardwork

Having prepared the notes, you know what exactly to write on the board!
Boardwork

Having prepared the notes, you know what exactly to write on the board!

- Clear Writing
 - Erase the board completely
 - Write large enough
 - Separate characters, especially names
 - Color chalks: “yellow, orange” are clearer than “red, blue”.
 (The latter can be used for circling or drawing a curve.)
Having prepared the notes, you know what exactly to write on the board!

- **Clear Writing**
 - Erase the board completely
 - Write large enough
 - Separate characters, especially names
 - Color chalks: “yellow, orange” are clearer than “red, blue”.
 (The latter can be used for circling or drawing a curve.)

- **Use Board space linearly**
 - Draw vertical lines to divide the board into suitable widths
 - Write from up to down, left to right
 - Align text to the left
 - Measure the board and decide where to write what beforehand
 (for extremely important talks)
Practice and Seek for feedback!