Linear functions have constant changes.

 Exponential functions have constant percentage changes!1. Chi-Yun decides to open a bank account with an opening deposit of $\$ 1000$, and an annual interest rate of 6%.

- Suppose that the account compounds annually.
(a) How much money does the account have t years after it is opened?

Solution: At the end of each year, she earns 6% interest, which has the effect of multiplying her balance by $1+0.06$. Therefore, after t years, Chi-Yun has $\$ 1000(1+0.06)^{t}$.
(b) How many years does it take for Chi-Yun to have her money doubled?

Solution: We need to solve $1000 \cdot 1.06^{t}=2000$ or $1.06^{t}=2$. Hence $t=\log _{1.06} 2=\frac{\ln 2}{\ln 1.06} \sim 11.9$. Namely it takes about 12 years for the money to double.
(c) If Chi-Yun wants to have $\$ 1500$ after 5 years, how much money should she have deposited at the beginning?

Solution: We need to solve $P_{0} \cdot 1.06^{5}=1500$. Hence $P_{0}=1500 / 1.06^{5} \sim$ 1120.9. Namely Chi-Yun should have deposited $\$ 1120.9$ to have a total of $\$ 1500$ after 5 years.

- Suppose that the account compounds every 4 months.
(a) How much money does the account have t years after it is opened?

Solution: Every 4 months, the account is compounded with an interest rate of $6 / 3 \%=2 \%$. Since there are three 4 -month period in a year, after t years, Chi-Yun has $\$ 1000(1+0.02)^{3 t}$.

- Suppose that the account compounds continuously.
(a) How much money does the account have t years after it is opened?

Solution: After t years, Chi-Yun has $\$ 1000 e^{0.06 t}$.
2. The population in a certain area of the country is increasing. In 1995 the population was 100,000 , and by 2015 it was 200,000 . If the population has been increasing exponentially and continues to do so, what do you expect the population to be t years after 2015?

Solution: The population is $200000 \cdot 2^{t / 20}, t$ years after 2015.

