Math 132, Spring 2021:
Complex Analysis for Applications

Mon, Wed, Fri 11-11:50am
on Zoom 996 9871 3734
Lectures and discussion sections are recorded.
Live attendance is not required but recommended.

Prerequisites
- You are expected to be familiar with complex numbers, including polar forms.
- You are expected to be familiar with single and multivariable calculus.

Learning Goals
- You will learn basic formula and calculation techniques with complex functions of one variable, eg. Cauchy–Riemann equations and Cauchy’s integral formula
- You will learn conformal mappings and their relation to complex functions.

Instructor
Chi-Yun Hsu
Contact: Use Piazza rather than email to contact me, see below.
Office Hour: Mondays 2-2:50pm

Teaching Assistants
Ben Johnsrude
Section: Thursdays 11-11:50am

Course website: https://ccle.ucla.edu/course/view/21S-MATH132-1

Textbook: Gamelin, *Complex Analysis*, Springer Verlag. The textbook is freely available for download through SpringerLink. (You need to access the website from within the campus network, or use the UCLA proxy server.)

We will be covering most of Chapter I–VII. See the tentative calendar at the end for more details.

Course Discussion Forum on Piazza: http://piazza.com/ucla/spring2021/math1321

Please use private post on Piazza, rather than emails, to contact me. Emails can easily get lost or go to my spam folder. You are also encouraged to use Piazza to have online discussion with classmates on course materials, homeworks, or any other questions.

Grade
I will assign letter grades based on individual performance relative to the course goal, rather than based on the class rank. Namely if your performance deserves an A, then you will receive an A even if 50% of the class perform better. In short, I do not grade on a curve.

I will compute a numerical score using the grading scheme:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homework</td>
<td>20%</td>
</tr>
<tr>
<td>Midterm 1</td>
<td>25%</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>25%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
</tbody>
</table>

According to the Departmental policy, your actual letter grade will NOT be below the one converted
from the numerical score. The standard conversion is A\geq 93\%, A\geq 90\%, B+ \geq 87\%, B\geq 83\%,
B\geq 80\%, C+ \geq 77\%, C\geq 73\%, C\geq 70\%, D+ \geq 67\%, D\geq 63\%, D\geq 60\%, F< 60\%.
The grade A+ is optional at the university level. It is given only when there is truly exceptional overall
performance, so the grade A+ will be scarce or non-existent.

Homework
I will assign homework problems on the course website on a weekly basis. The homework is due on Tuesday 11:59pm of the next week. It is better to do the homework problems after each
lecture, rather than rushing to finish at one time.

Please scan your homework and submit to Gradescope. You are responsible for the eligibility of
the scan. Even if the TA cannot read the scan, no resubmission will be accepted.

Late homework will NOT be accepted. To accommodate the strict policy, the lowest homework score will be dropped. On the other hand, if you are under emergency circumstances
such as accident or severe sickness happened well before the deadline so that you cannot possibly
have time to do the homework, you can let me know and ask for a deadline extension. However,
the deadline extension request is only accepted before the deadline, and will only be granted for
emergency circumstances.

I encourage you to discuss homework problems with other students, either form a study group
or use online discussion tools such as Piazza mentioned above. However, you must write up the
solutions on your own, as writing helps you deepen your understanding. Apart from help from me
or the TA, you must acknowledge any collaborators or references at the top of your assignment.

Exams
There will be NO make-ups for missed midterm. You must take the final exam in order to pass the
class. Make-ups for the final exam are permitted only under exceptional circumstances.

It is Departmental policy that the Midterms and the Final Exam are designed as 1 and 3 hour
exams, respectively, but are all given over a 24-hour period. You are allowed to use any non-human
resources including internet, calculators, textbook, notes, lecture videos, etc. You are NOT allowed
to seek help from other people, including posting exam questions on online forums.

Tentative exam dates are:

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
<th>Start Time</th>
<th>End Time</th>
<th>Lecture Range</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>Apr. 23 (Fri.)</td>
<td>8am</td>
<td>Apr. 24 (Sat.)</td>
<td>8am</td>
<td>Lec 1-10 Material</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>May 14 (Fri.)</td>
<td>8am</td>
<td>May 15 (Sat.)</td>
<td>8am</td>
<td>Lec 11-19 Material</td>
</tr>
<tr>
<td>Final Exam</td>
<td>June 6 (Sun.)</td>
<td>8am</td>
<td>June 7 (Mon.)</td>
<td>8am</td>
<td>Lec 1-29 Material</td>
</tr>
</tbody>
</table>

Learning Resources

- Your fellow students: You are encouraged to form study groups with your classmates.
- Office hours: You do not need to make an appointment; just show up to ask any questions.

You are encouraged to make good use of these resources. At the same time, don’t be too quick to
run for help. Learning is challenging and takes time. You should not expect to solve every problem
immediately. Try a couple of different approaches before asking for help. Often you learn the most
from things you try that don’t work!

Disabilities Requiring Accommodation
If you are already registered with the Center for Accessible Education (CAE), please request your
Letter of Accommodation on the Student Portal. If you are seeking registration with the CAE,
please submit your request for accommodations via the CAE website. Please note that the CAE
does not send accommodations letters to instructors – you must request that I view the letter in
the online Faculty Portal. Once you have requested your accommodations via the Student Portal,
please notify me immediately so I can view your letter.

Students with disabilities requiring academic accommodations should submit their request for ac-
commodations as soon as possible, as it may take up to two weeks to review the request. For more
information, please visit the CAE.

Center for Accessible Education (CAE)
A255 Murphy Hall
www.cae.ucla.edu
(310) 825-1501

Statement on Sexual Misconduct
Title IX prohibits gender discrimination, including sexual harassment, domestic and dating violence,
sexual assault, and stalking. If you have experienced sexual harassment or sexual violence, you can
receive confidential support and advocacy at

CARE Advocacy Office for Sexual and Gender-Based Violence
1st Floor Wooden Center West
CAREadvocate@careprogram.ucla.edu
(310) 206-2465

In addition, Counseling and Psychological Services (CAPS) provides confidential counseling to all
students and can be reached 24/7 at (310) 825-0768. You can also report sexual violence or sexual
harassment directly to

University’s Title IX Coordinator
2241 Murphy Hall
titleix@conet.ucla.edu
(310) 206-3417

Reports to law enforcement can be made to UCPD at (310) 825-1491.

Faculty and TAs are required under the UC Policy on Sexual Violence and Sexual Harassment
to inform the Title IX Coordinator should they become aware that you or any other student has
experienced sexual violence or sexual harassment.
Tentative Calendar

<table>
<thead>
<tr>
<th>Week 1 (3/29-4/2)</th>
<th>Monday</th>
<th>Wednesday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 2 (4/5-4/9)</td>
<td>4. Logarithmic and Power functions (I.6, I.7)</td>
<td>5. Trig and Hyperbolic functions (I.8)</td>
<td>6. Complex derivatives (II.1, II.2)</td>
</tr>
<tr>
<td>Week 3 (4/12-4/16)</td>
<td>7. Cauchy–Riemann equations (II.3)</td>
<td>8. Inverse functions & Harmonic functions (II.4, II.5)</td>
<td>9. Conformal Mappings (II.6)</td>
</tr>
<tr>
<td>Week 6 (5/3-5/7)</td>
<td>16. Liouville’s Theorem & Morera’s Theorem (IV.5, IV.6)</td>
<td>17. Review of Power series (V.1-3)</td>
<td>18. Power series expansion of analytic functions (V.4, V.5)</td>
</tr>
<tr>
<td>Week 9 (5/24-5/28)</td>
<td>25. Integrals of rational functions (VII.2)</td>
<td>26. Integrals of trig functions (VII.3)</td>
<td>27. Branch points (VII.4)</td>
</tr>
<tr>
<td>Week 10 (5/31-6/4)</td>
<td>No class (Memorial Day)</td>
<td>28. The argument Principle (VIII.1)</td>
<td>29. Review</td>
</tr>
</tbody>
</table>