PARTIAL CLASSICALITY OF HILBERT MODULAR FORMS

CHI-YUN HSU

Abstract. Let F be a totally real field and p a rational prime unramified in F. We prove a partial classicality theorem for overconvergent Hilbert modular forms: when the slope is small compared to certain but not all weights, an overconvergent form is partially classical. We use the method of analytic continuation.

Contents

1. Introduction 1
 Notations 2
2. Partially classical overconvergent forms 3
 2.1. Hilbert modular varieties 3
 2.2. Directional degrees 3
 2.3. Hilbert modular forms 5
 2.4. U_p-operators 5
3. Partial classicality 5
 3.1. Automatic analytic continuation 6
 3.2. Analytic continuation near vertices 7
 3.3. Norm estimates 9
 3.4. Finishing the proof of Theorem 3.1 11
References 11

1. Introduction

Coleman [Col96] proved that a p-adic overconvergent modular form of weight $k \in \mathbb{Z}$ must be classical if its slope, i.e., the p-adic valuation of the U_p-eigenvalue, is less than $k - 1$. His proof involves analyzing the rigid cohomology of modular curves. On the other hand, Buzzard [Buz03] and Kassaei [Kas06] developed the alternate method of analytic continuation to prove classicality theorems. The key is to understand the dynamic of the U_p Hecke operator.

Let F be a totally real field of degree g over \mathbb{Q}. In the situation of Hilbert modular forms associated to F, many results are known. Coleman’s cohomological method is developed by Tian–Xiao [TX16] to prove a classicality theorem, assuming p is unramified in F. The method of analytic continuation is worked out first in the case when p splits completely in F by Sasaki [Sas10], then in the case when p is unramified by Kassaei [Kas16] and Pilloni–Stroh [PS17], and finally when p is allowed to be ramified by Bijakowski [Bij16].

Let Σ be the set of archimedean embeddings of F, which we identify with the set of p-adic embeddings of F through some fixed isomorphism $\mathbb{C} \cong \mathbb{C}_p$. For each prime \mathfrak{p} of F above p, denote by $\Sigma_\mathfrak{p} \subseteq \Sigma$ the subset of p-adic embeddings inducing \mathfrak{p}. Let $e_\mathfrak{p}$ be the ramification index, and $f_\mathfrak{p}$ the residue degree of \mathfrak{p}. Then the classicality theorem for overconvergent Hilbert modular forms proved by analytic continuation is as follows.

Date: August 26, 2021.
Theorem 1 (Bijakowski). Let f be an overconvergent Hilbert modular form of weight $k \in \mathbb{Z}^2 \cong \mathbb{Z}^g$. Assume that for all $p \mid p$, $U_p(f) = a_p f$ such that

$$\text{val}_p(a_p) < \frac{1}{e_p} \inf \{k_\tau\} - f_p.$$

Then f is classical.

Remark 1.1. When p is unramified in F, using the cohomological method of Tian–Xiao, the slope assumption can be improved to an optimal bound: $\text{val}_p(a_p) < \inf_{\tau \in \Sigma_p}\{k_\tau\} - 1$

In this paper, we prove a “partial” classicality theorem for overconvergent Hilbert modular forms. Let I be a subset of Σ. Breuil defined the notion of I-classical overconvergent Hilbert modular forms ([?], p.3, Definition 2.4). When $I = \emptyset$, they are the usual overconvergent forms; when $I = \Sigma$, they are the classical forms.

Theorem 2 (Theorem 3.1). Assume p is unramified in F. Let f be an overconvergent Hilbert modular form of weight $k \in \mathbb{Z}^2$. Let $I \subseteq \Sigma$. Assume that for all $p \mid p$, $U_p(f) = a_p f$ such that

$$\text{val}_p(a_p) < \inf_{\tau \in I \cap \Sigma_p}\{k_\tau\} - f_p.$$

Then f is I-classical.

We use the method of analytic continuation to prove Theorem 2. In the situation when $I = \Sigma$, this recovers the classicality theorem proven by Kassaei, who assumed p is unramified. Although when $I = \Sigma$, Bijakowski proved a classicality theorem not assuming p is unramified, it is Kassaei’s approach that is more suitable for partial classicality. Indeed, when studying the dynamic of U_p operators, it is customary to use the degree function to parametrize regions on the Hilbert modular variety, and analyze how U_p operators influence degrees. Kassaei made efforts to analyze how U_p operators affect the more refined directional degrees, but only when p is unramified. On the other hand, Bijakowski was able to use only the degree function to prove a classicality theorem allowing p to be ramified. In the situation of partial classicality, the weight k_τ with $\tau \in \Sigma$ in the slope condition are independent of each other, while the U_p operator intertwines all directional degrees inducing p. As a result, we cannot avoid analyzing the directional degrees like Bijakowski did.

We mention some related work on partial classicality theorems. Yiwen Ding [Din17, Appendix A] studied partial classicality from the perspective of Galois representations. Namely, let $\rho_f: \text{Gal}_F \to \GL_2(L)$ be the Galois representation associated to an overconvergent Hilbert modular form f. If $\text{val}_p(a_p) < \inf_{\tau \in \Sigma_p}k_\tau - 1$, then $\rho_f|_{\text{Gal}_p}$ is $I \cap \Sigma_p$-de Rham. Barrera Salazar and Williams [?] took the perspective of overconvergent cohomology for a general quasi-split reductive group G over \mathbb{Q} with respect to a parabolic subgroup Q of $G = G/\mathbb{Q}_p$. Applying their work to the situation of Hilbert modular forms (i.e., $G = \text{Res}_{F/\mathbb{Q}}\GL_2$), we would recover the partial classicality theorem in the case of $I \subset \Sigma$ such that $I \cap \Sigma_p$ is either Σ_p or \emptyset for each $p \mid p$.

In Section 2, we define the degree function and partially classical overconvergent forms. In Section 3, we prove Theorem 2.

Notations. Fix a totally real field F of degree g over \mathbb{Q}. Let Σ denote the set of archimedean places of F; in particular $\# \Sigma = g$. Fix a rational prime p which is unramified in F and $(p) = p_1 \cdots p_r$ in F. For each prime p of F above p, let f_p be the residue degree of p. Let L be a finite unramified extension of \mathbb{Q}_p containing F_p for all primes p of F above p. Fix an isomorphism $i_p: \mathbb{C} \cong \overline{\mathbb{Q}}_p$, so we will identify an archimedean embedding $\tau: F \to \mathbb{C}$ with a p-adic embedding $t_p \circ \tau: F \to \overline{\mathbb{Q}}_p$. For each prime p of F above p, let $\Sigma_p \subseteq \Sigma$ be the subset of p-adic embeddings inducing p. Hence $\# \Sigma_i = f_i$. Let δ_F be the different ideal of F. 2

2. Partially classical overconvergent forms

2.1. Hilbert modular varieties. Let $N \geq 4$ be an integer. Let c be a fractional ideal of F. Denote by $c^+ \subseteq c$ the cone of totally positive elements. Let $Y_c \to \Spec \mathcal{O}_L$ be the Hilbert modular scheme classifying $(A, H) = (A/S, i, \lambda, \alpha, H)$ where

- A is an abelian scheme of relative dimension g over a scheme S
- $i : \mathcal{O}_F \to \End_S(A)$ is a ring homomorphism, which provides a real multiplication on A
- $\lambda : \Hom_{\mathcal{O}_F}(A, A^\vee)^{\text{sym}} \to c$ is an \mathcal{O}_F-isomorphism identifying polarizations with c^+ and inducing an isomorphism $A \otimes_{\mathcal{O}_F} c \cong A^\vee$
- $\alpha : \mu_N \otimes \delta_F^{-1} \to A$ is a μ_N level structure
- $H \subseteq A[p]$ is a finite flat isotropic \mathcal{O}_F-subgroup scheme of rank p^g.

Let $Y = \coprod_{[\ell] \in \Cl(F)^+} Y_{\ell}$. Let \mathcal{Y} denote the rigid analytic space associated to Y.

2.2. Directional degrees. We first recall the definition of the degree for a finite flat group scheme. See [Far10] for more detailed studies of the concept.

Let K/\mathbb{Q}_p be a finite extension, and G a finite flat group scheme over \mathcal{O}_K. Let ω_G be the \mathcal{O}_K-module of invariant differentials on G. Then [Far10, Définition 4]

$$\deg G := \ell(\omega_G)/e_K,$$

where $\ell(\omega_G)$ is the length of the \mathcal{O}_K-module ω_G, and e_K is the ramification index of K.

Recall that the height $\text{ht} G$ of G is such that $|G| = p^{\text{ht} G}$. Hence G is étale if and only if $\deg G = 0$, and G is multiplicative if and only if $\deg G = \text{ht} G$.

We record some properties of \deg which we will constantly use for computation.

Lemma 2.1. [Far10, lemme 4] Let $0 \to G' \to G \to G'' \to 0$ be a short exact sequence of finite flat group schemes over \mathcal{O}_K. Then $\deg G = \deg G' + \deg G''$.

Lemma 2.2. [Far10, p.2] Let $\lambda : A \to B$ be an isogeny of p-power degree between abelian schemes over $S = \Spec \mathcal{O}_K$. Let $G := \ker \lambda$. Let $\omega_{A/S}$ and $\omega_{B/S}$ be the sheaves of invariant differentials of A and B, respectively. Let $\lambda^* : \omega_{B/S} \to \omega_{A/S}$ be the induced pullback map. Then

$$\deg G = \text{val}_p(\det \lambda^*).$$

In particular, if A is of dimension g, then $\deg A[p] = g$.

The degree of a finite flat group scheme can be used to define the degree function on \mathcal{Y}. Let $y = (A, H)$ be a rigid point of \mathcal{Y}. Let ω_H be the module of invariant differentials on H. Since ω_H is an \mathcal{O}_F-module, we have the decomposition

$$\omega_H = \bigoplus_{\tau \in \Sigma} \omega_{H, \tau},$$

where $\omega_{H, \tau}$ is an $\mathcal{O}_F \otimes_{\mathcal{O}_L} \mathcal{O}_L$-module. Define the directional degree

$$\deg_{\tau} y = \deg_{\tau} H = \deg \omega_{H, \tau}.$$

This gives a map from \mathcal{Y} to the g-dimensional hypercube in \mathbb{Q}^g

$$\deg : \mathcal{Y} \to ([0, 1] \cap \mathbb{Q})^\Sigma$$

which sends a point $y = (A, H)$ to $(\deg_{\tau} y)_{\tau \in \Sigma}$.

Given $I \subseteq \Sigma$, we define

$$\mathcal{F}_I := \prod_{\tau \in I} \mathcal{F}_{I, \tau},$$

where $\mathcal{F}_{I, \tau} = \begin{cases} [0, 1], & \tau \in I \\ [1, 1], & \tau \notin I. \end{cases}$
Then \mathcal{F}_I is a closed $|I|$-dimensional hypercube in $([0,1] \cap \mathbb{Q})^{\Sigma} = \mathcal{F}_\Sigma$. We also define $x_I \in [0,1]^{\Sigma}$ to be the vertex

$$x_I,\tau = \begin{cases} 0, & \tau \in I \\ 1, & \tau \notin I. \end{cases}$$

Hence the vertices of \mathcal{F}_I are exactly the x_J's with $J \subseteq I$.

Let $\mathcal{F} \subseteq \mathcal{F}_\Sigma$ be a closed subset. Define $\mathcal{Y}\mathcal{F}$ to be the admissible open of \mathcal{Y} whose points satisfy $\text{deg} \in \mathcal{F}$.

Definition 2.3. Let $p|p$ be a prime of F. For $\tau \in \Sigma_p$, define the twisted directional degree

$$\tilde{\text{deg}}_{\tau} := \sum_{j=0}^{f_p-1} p^{f_p-1-j} \text{deg}_{\sigma^j \tau} = p^{f_p-1} \text{deg}_{\tau} + p^{f_p-2} \text{deg}_{\sigma \tau} + \cdots + p^{1} \text{deg}_{\sigma^{f_p-1} \tau}.$$

Here σ is the Frobenius automorphism of the unramified extension L over \mathbb{Q}_p, lifting $x \mapsto x^p$ modulo p.

We use the overhead tilde notation ($\tilde{\cdot}$) to denote the image under the linear transformation $\tilde{x}_\tau = \sum_{j=0}^{f_p-1} p^{f_p-1-j} x_{\sigma^j \tau}$ for $\tau \in \Sigma_p$. For example, \tilde{x}_I is the vertex of $\tilde{\mathcal{F}}_\Sigma$ given by

$$\tilde{x}_I,\tau = \sum_{j=0}^{f_p-1} p^{f_p-1-j} x_{I,\sigma^j \tau}$$

for $\tau \in \Sigma_p$.

4
2.3. Hilbert modular forms. Let \(\omega \) be the sheaf of relative differentials of the universal abelian scheme over \(\mathcal{Y} \). The \(\mathcal{O}_F \)-module structure on \(\omega \) provides the decomposition

\[
\omega = \bigoplus_{\tau \in \Sigma} \omega_{\tau}.
\]

Let \(k = (k_\tau)_{\tau \in \Sigma} \in \mathbb{Z}^\Sigma \). Define

\[
\omega^k = \bigotimes_{\tau \in \Sigma} \omega_{\tau}^k,
\]

which is a line bundle on \(\mathcal{Y} \).

Definition 2.4.

1. The space of Hilbert modular forms of level \(\Gamma_1(N) \cap \Gamma_0(p) \) and weight \(k \) is \(H^0(\mathcal{Y}, \omega^k) \).
2. Let \(I \subseteq \Sigma \). The space of \(I \)-classical overconvergent Hilbert modular forms of level \(\Gamma_1(N) \cap \Gamma_0(p) \) and weight \(k \) is

\[
H^{0,\dagger}(I, \omega^k) := \lim_{\mathcal{V} \to k} H^0(\mathcal{V}, \omega^k),
\]

where \(\mathcal{V} \) runs through strict neighborhoods of \(\mathcal{Y} \mathcal{F}_I \) in \(\mathcal{Y} \).

When \(I = \emptyset \), \(I \)-classical simply means overconvergent, and when \(I = \Sigma \), \(I \)-classical means classical. Whenever \(J \subseteq I \), we have a map

\[
H^{0,\dagger}(I, \omega^k) \to H^{0,\dagger}(J, \omega^k)
\]
given by restriction. This is an injective map.

2.4. \(U_p \)-operators. Let \(p | p \) be a prime of \(F \) above \(p \) and \(f_p \) the residue degree of \(p \). Let \(U_p : \mathcal{Y} \to \mathcal{Y} \) be the correspondence sending \((A, H) \) to \(\{A/D, A[p]/D : D \subseteq A[p]\} \) where \(D \) runs over all finite flat isotropic \(\mathcal{O}_F \)-subgroup scheme of \(A[p] \) of rank \(p^{\text{deg}} \) such that \(D \neq H[p] \).

For \(\mathcal{U}, \mathcal{V} \subseteq \mathcal{Y} \) such that \(U_p(\mathcal{V}) \subseteq \mathcal{U} \), we have \(U_p : \omega^k(\mathcal{U}) \to \omega^k(\mathcal{V}) \) defined by

\[
(U_p f)(A, H) = \frac{1}{p^{\text{deg}}} \sum_{\text{rank } D = p^{\text{deg}} \mathcal{V}} \text{pr}^* f(A/D, A[p]/D),
\]

where \(\text{pr} : A \to A/D \) is the natural projection.

Proposition 2.5 ([Kas16, Proposition 2.9.7]). Let \(y = (A, H) \in \mathcal{Y} \). Let \(p | p \) be a prime of \(F \) above \(p \). If \(y' = (A/D, A[p]/D) \in U_p(y) \), then \(\text{deg}_{\tau}(y') \geq \text{deg}_{\tau}(y) \) for all \(\tau \in \Sigma_p \).

3. Partial classicality

The content of this section is to prove the following partial classicality theorem.

Theorem 3.1. Let \(f \) be an overconvergent Hilbert modular form of weight \(k \). Let \(I \subseteq \Sigma \). Assume that for all \(p | p \), \(U_p(f) = a_p f \) such that

\[
(1) \quad \text{val}_p(a_p) < \inf_{\tau \in I \cap \Sigma_p} \{k_\tau\} - f_p.
\]

Then \(f \) is \(I \)-classical.

Remark 3.2. In the case of \(I = \Sigma \), this is a theorem of Kassaei [Kas16]. Although when \(I = \Sigma \), Bijakowski [Bij16] proved a classicality theorem not assuming \(p \) is unramified, it is Kassaei’s approach that is more suitable for partial classicality. Both use the idea of analytic continuation. Kassaei made efforts to analyze how \(U_p \) operators affect \(\text{deg}_{\tau} \) for all \(\tau \in \Sigma_p \), but only when \(p \) is unramified. On the other hand, Bijakowski was able to use only \(\text{deg } H[p] \) to prove the classicality even when \(p \) is ramified. In the situation of partial classicality, the weight \(k_\tau \) with \(\tau \in \Sigma \) in the slope
condition are independent of each other, while the U_p operator intertwines all directional degrees inducing p, so we do need to understand the directional degrees.

Throughout the section, we assume that p is inert in F. For general unramified p, we can apply the argument to each prime $p | p$ to prove Theorem 3.1. We will prove that f is J-classical for all $J \subseteq I$, by induction on $|J|$. For $|J| = 0$, it simply means that f is overconvergent. Assume that f is J-classical for all $J \subset I$, say f is defined on a strict neighborhood of $\mathcal{Y} F_J$. In particular, f is defined on a strict neighborhood of $\deg^{-1} x_J$ for all $J \subset I$.

3.1. Automatic analytic continuation. In the subsection, with the assumption that the slope of f is finite (but not necessarily small), we can already show that f can be analytically continued to a large region in $\mathcal{Y} F_I$.

Let f be an overconvergent Hilbert modular form of weight k. Assume that $U_p(f) = a_p f$ with $\text{val}_p(a_p) < \infty$.

Lemma 3.3. Let $I \subseteq \Sigma$. Suppose that f is defined on a strict neighborhood of $\deg^{-1} x_J = \tilde{\deg}^{-1} \tilde{x}_J$ for all $J \subset I$. Then f can be extended to

$$U_f(\epsilon) = \{ y \in \mathcal{Y} : \sum_{\tau \in I} \deg_{\tau} y \geq \sum_{\tau \in I} \tilde{x}_{I,\tau} + \epsilon, \tilde{\deg}_{\tau} y \geq p^{g-2} + \cdots + 1 + \epsilon, \forall \tau \notin I \}.$$

for any rational number $\epsilon > 0$. Note that whenever $\epsilon' < \epsilon$, we have $U_f(\epsilon') \supseteq U_f(\epsilon)$.

Proof. We first note that $U_f(\epsilon)$ is U_p-stable because U_p increases twisted directional degrees (Proposition 2.5).

If $\deg y = x_J$ is a tuple of integers, then for $\tau \in J$, $\tilde{\deg}_{\tau} y \leq p^{g-2} + \cdots + 1$. Hence the second condition of $U_f(\epsilon)$

$$\tilde{\deg}_{\tau} y \geq p^{g-2} + \cdots + 1 + \epsilon, \forall \tau \notin I$$

says that if $y \in U_f(\epsilon)$ is such that $\deg y = x_J$, then $\tau \notin I$ implies $\tau \notin J$, i.e., $J \subseteq I$. The first condition of $U_f(\epsilon)$

$$\sum_{\tau \in I} \tilde{\deg}_{\tau} y \geq \sum_{\tau \in I} \tilde{x}_{I,\tau} + \epsilon$$

Lemma 5.1.5. For the proof of Lemma 3.3. Further applying a power of U that is a quasi-compact open disjoint from all $\tilde{\deg}^{-1}x_J$'s. By Proposition 2.5, U_p increases the twisted directional degrees strictly when the degrees are not all integers, for example on V. Using the Maximum Modulus Principle, the quasi-compactness of V implies that there is a positive lower bound for the increase of $\tilde{\deg}$ under U_p on V. Because $U_f(\epsilon)$ is U_p-stable, there exists $M > 0$ such that $U_p^M V \subseteq \bigcup_{J \subseteq I} V_J$. We can then extend f to $U_f(\epsilon)$ by $\left(\frac{U_p}{\epsilon}\right)^M f$.

3.2. Analytic continuation near vertices. In this subsection, we will make use of the small slope assumption (1) to extend f to a strict neighborhood of $\deg^{-1}x_J$.

By (1), fix a rational number $\epsilon > 0$ such that

$$\text{val}(a_p) \leq \inf_{\tau \in I} k_{\tau} - g - \epsilon \sum_{\tau \in I} k_{\tau}.$$ We will choose a rational number $\delta > 0$ based on ϵ, and define a sequence of strict neighborhoods

$$S_{f,0}(\delta) \supseteq S_{f,1}(\delta) \supseteq \cdots$$

deg^{-1}x_J. When $\delta' < \delta$ we will show that $S_{f,m}(\delta') \subseteq S_{f,m}(\delta)$. We have extended f to $U_f(\delta)$ by Lemma 3.3. Further applying a power of U_p, we can extend f to $S_{f,0}(\delta) \setminus S_{f,m}(\delta')$, named f_m. We will also define F_m on $S_{f,m}(\delta)$. With the help of the estimates in Section 3.3, we can show that when $m \rightarrow \infty$, f_m and F_m glue to define an extension of f on $S_{f,0}(\delta)$.

We first prove the following lemma, which will be used to decompose U_p into the special part U_p^{sp} and non-special part U_p^{nsp}.

Lemma 3.4. Let $y = (A, H) \in V$. Let $y_1 = (A/H_1, A[p]/H_1)$ and $y_2 = (A/H_2, A[p]/H_2)$ be in $U_p(y)$ and $y_1 \neq y_2$.

i. If $y, y_1 \in \tilde{\deg}^{-1}x_I$ for some $I \subseteq \Sigma$, then

$$\tilde{\deg}_I H_2 = \inf(\tilde{\deg}_I H, \tilde{\deg}_I H_1), \text{ for all } \tau \in \Sigma.$$

ii. There exists arbitrarily small positive rational number ϵ so that if $|\tilde{\deg}_{\tau}(y) - \tilde{x}_{I,\tau}| \leq \epsilon$ and $|\tilde{\deg}_{\tau}(y_1) - \tilde{x}_{I,\tau}| \leq \epsilon$ for some $I \subseteq \Sigma$, then

$$\tilde{\deg}_{\tau} H_2 = \inf(\tilde{\deg}_{\tau} H, \tilde{\deg}_{\tau} H_1), \text{ for all } \tau \in \Sigma.$$

In particular, $y_2 \in U_f(\epsilon)$.

Proof. For the proof of i., see [Kas16, Lemma 5.1.5 1.] The first statement of ii. follows from [Kas16, Lemma 5.1.5 2(a)].

The only statement remained to be proved is the one after “In particular”. By assumption,

$$\tilde{\deg}_I H_2 = \inf(\tilde{\deg}_I H, \tilde{\deg}_I H_1) = \begin{cases} \tilde{\deg}_I H & \text{if } \tau \in I \\ \tilde{\deg}_I H_1 & \text{if } \tau \notin I \end{cases}$$

and

$$\tilde{\deg}_{\tau} y_2 = (p^{g-1} + \cdots + 1) - \tilde{\deg}_{\tau} H_2 = \begin{cases} (p^{g-1} + \cdots + 1) - \tilde{\deg}_I H & \tau \in I \\ (p^{g-1} + \cdots + 1) - \tilde{\deg}_I H_1 & \tau \notin I \end{cases} \geq \begin{cases} (p^{g-1} + \cdots + 1) - \tilde{x}_{I,\tau} - \epsilon & \tau \in I \\ \tilde{x}_{I,\tau} - \epsilon & \tau \notin I \end{cases} \geq p^{g-1} - \epsilon.$$
If we further require that \(\epsilon < \frac{1}{2}(p^g - 1) \), then \(\deg_{\tau} y_2 \geq p^g + 1 + \epsilon \), i.e., \(y_2 \in U_\omega(\epsilon) \).

\[
\text{Remark 3.5. By comparing the twisted directional degree of } y_1 \text{ and } y_2, \text{ Lemma 3.4 implicitly says that if } I \neq \emptyset, \text{ then such } y_1 \in U_p(y), \text{ if exists, is unique.}
\]

For any rational \(\delta > 0 \), consider the strict neighborhood of \(\deg^{-1} x_I \):

\[
S_{I,0}(\delta) := \left\{ y \in \mathcal{Y} : \sum_{\tau \in I} \tilde{\deg}_\tau y \leq \sum_{\tau \in \mathcal{I}} \tilde{x}_{I,\tau} + \delta, \tilde{\deg}_\tau y \geq \tilde{x}_{I,\tau} - \delta, \forall \tau \notin I \right\}.
\]

Let \(S_{I,1}(\delta) \) be the special locus of order 1 in \(S_{I,0}(\delta) \), namely

\[
S_{I,1}(\delta) := \{ y \in S_{I,0}(\delta) : \exists y_1 \in U_p(y) \text{ also in } S_{I,0}(\delta) \}.
\]

We can then define

\[
U_p^{sp} : S_{I,1}(\delta) \to S_{I,0}(\delta)
\]

by \(y \mapsto y_1 \).

We also define \(U_p^{nsp} = U_p \setminus U_p^{sp} \). Note that the \(S_{I,0}(\delta) \)'s contain a fundamental system of strict neighborhoods of \(\deg^{-1} x_I \).

Then \(S_{I,0}(\delta) \cup V_I(\delta) \) is \(U_p \)-stable because \(U_p \) increases twisted directional degrees. Hence we also have

\[
U_p : S_{I,0}(\delta) \setminus S_{I,1}(\delta) \to V_I(\delta).
\]

Note that \(V_I(\delta) \subset U_I(\delta) \).

\[
\text{Lemma 3.6. Let } \delta' < \delta \text{ be two positive rational numbers. Then } S_{I,1}(\delta) \text{ is a strict neighborhood of } S_{I,1}(\delta').
\]

\[
\text{Proof. The proof has the same idea as [BPS16, Proposition 4.3.10]. By definition,}
\]

\[
S_{I,1}(\delta) = \{ y \in S_{I,0}(\delta) : \exists y_1 \in U_p(y), \sum_{\tau \in I} \tilde{\deg}_\tau y_1 \leq \sum_{\tau \in I} \tilde{x}_{I,\tau} + \delta, \tilde{\deg}_\tau y_1 \geq \tilde{x}_{I,\tau} - \delta, \forall \tau \notin I \}.
\]

Let \(Y(p) \) be the moduli space parametrizing \((A,H,H_1)\), where \(H \) and \(H_1 \) are distinct subgroups of \(A[p] \) of order \(p \). We have a finite étale morphism \(\mathcal{Y}(p) \to \mathcal{Y} \) given by forgetting \(H_1 \).

Let \(\omega_A \) be the sheaf of relative differentials of the universal abelian scheme over \(Y(p) \). Note that \(\omega_A \) is the pullback of \(\omega_A \sigma \) along \(Y(p) \to Y \). On \(Y(p) \), we have the line bundles \(L_\tau := \omega_A/_{\tau} \otimes \omega_{A/H_{\tau}}^{-1} \) and \(\mathcal{L}_{1,\tau} := \omega_A/_{\tau} \otimes \omega_{A/H_{1,\tau}}^{-1} \) for each \(\tau \in \Sigma \), and the natural pullback morphisms \(\omega_{A/H} \to \omega_A \) and \(\omega_{A/H_1} \to \omega_A \) gives a section \(\delta_\tau \) and \(\delta_{1,\tau} \) of \(L_\tau \) and \(\mathcal{L}_{1,\tau} \), respectively. Now \(|\delta_\tau(A,H,H_1)| = p^{-deg_\tau H} \) and \(|\delta_{1,\tau}(A,H,H_1)| = p^{-deg_\tau H_1} \). We also have \(\bar{\delta}_\tau := \prod_{j=0}^{g-1} \delta_{p^{g-1-j}} \) and \(\bar{\delta}_{1,\tau} := \prod_{j=0}^{g-1} \delta_{p^{g-1-j}} \), which are sections of \(\bar{\mathcal{L}}_\tau = \bigotimes_{j=0}^{g-1} \mathcal{L}_{p^{g-1-j}}^{-1} \) and \(\bar{\mathcal{L}}_{1,\tau} = \bigotimes_{j=0}^{g-1} \mathcal{L}_{1,\tau}^{p^{g-1-j}} \), respectively.

Since \(S_{I,1}(\delta) \) is the pushforward by the finite étale morphism \(\mathcal{Y}(p) \to \mathcal{Y} \) of the region cut out by \(\prod_{\tau \in I} |\delta_\tau| \geq p^{-\sum_{\tau \in I} \tilde{x}_{I,\tau} - \delta}, |\tilde{\delta}_\tau| \leq p^{-\tilde{x}_{I,\tau} - \delta}, \prod_{\tau \in I} |\delta_{1,\tau}| \geq p^{-\sum_{\tau \in I} \tilde{x}_{1,\tau} - \delta}, \text{ and } |\tilde{\delta}_{1,\tau}| \leq p^{-\tilde{x}_{1,\tau} - \delta} \), we conclude that \(S_{I,1}(\delta) \) is a strict neighborhood of \(S_{I,1}(\delta') \) whenever \(\delta' < \delta \). \qed
Lemma 3.6 shows that if $\delta' < \delta$ are two positive rational numbers, then $S_{I,1}(\delta)$ and $S_{I,0}(\delta) \setminus S_{I,1}(\delta')$ form an admissible covering of $S_{I,0}(\delta)$. Define

$$S_{I,m}(\delta) = (U_p^{sp})^{-m}S_{I,0}(\delta).$$

Then $S_{I,m}(\delta)$ and $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$ also form an admissible covering of $S_{I,0}(\delta)$.

By definition, $S_{I,m-1}(\delta) \supseteq S_{I,m}(\delta)$. In addition, $U_p^m : S_{I,0}(\delta) \setminus S_{I,m}(\delta) \to \mathcal{V}_I(\delta)$. By Lemma 3.3, we can extend f to $\mathcal{V}_I(\delta) \subseteq U_I(\delta)$. Then we can further extend f by $(U_p^{-m})\mathcal{V}_I(\delta) \supseteq S_{I,0}(\delta) \setminus S_{I,m}(\delta)$. Similarly, for any other rational number $\delta' < \delta$, we can extend f by $(U_p^{-m})\mathcal{V}_I(\delta') \supseteq S_{I,0}(\delta) \setminus S_{I,m}(\delta')$. Because $S_{I,0}(\delta) \setminus S_{I,m}(\delta)$ and $S_{I,0}(\delta') \setminus S_{I,m}(\delta')$ form an admissible covering of $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$, we can actually extend f to $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$.

We denote by f_m the extension of f to $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$.

On the other hand, by Lemma 3.3, we can extend f to $U_\mathcal{V}(\epsilon)$. Then

$$F_m := \sum_{j=0}^{m-1} \left(\frac{1}{a_p}\right)^j U_p^{nsp}(U_p^{sp})^j f$$

can be defined on $(U_p^{sp})^{-(m-1)}(U_p^{nsp})^-(U_\mathcal{V}(\epsilon)) \supseteq S_{I,m}(\delta)$.

Assume the norm estimates in Proposition 3.7 in the next subsection. By (2), we can choose a subsequence so that F_m and f_m mod p^m glue as h_m (only defined modulo p^m) under the admissible covering $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$ and $S_{I,m}(\delta)$ of $S_{I,0}(\delta)$. We have $h_m \equiv f \mod p^m$ on $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$. By (3), we can further choose a subsequence so that h_{m+1} mod p^m agrees with h_m mod p^m on $S_{I,m+1}(\delta)$. Hence $h = \lim_{m \to \infty} h_m$ is defined on $S_{I,0}(\delta)$, and $h = f$ on $S_{I,0}(\delta) \setminus \bigcap_m S_{I,m}(\delta')$. Hence h is the desired extension of f to $S_{I,0}(\delta)$.

3.3. Norm estimates. Assume that $\operatorname{val}_p a_p \leq \inf_{\tau \in I} k_\tau - g - \epsilon \sum_{\tau \in I} k_\tau$. Choose a rational number $\delta > 0$ so that $S_{I,0}(\delta) \subseteq \{ y \in \mathcal{Y} : \deg y - x_{I,\tau} < \epsilon \}$ and $S_{I,0}(\delta) \subseteq \{ y \in \mathcal{Y} : \deg y - x_{I,\tau} < \epsilon \}$. Also let $\delta' < \delta$ be another positive rational number.

Let f_m defined on $S_{I,0}(\delta)$ and F_m defined on $S_{I,0}(\delta) \setminus S_{I,m}(\delta')$ as in the previous section. The following proposition records the norm estimates used to glue f_m and F_m in the previous section.

Proposition 3.7.

(1) $|F_m|_{S_{I,m}(\delta)}$ and $|f_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')}$ are bounded.

(2) $|F_m - F_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')} \to 0$.

(3) $|F_{m+1} - F_m|_{S_{I,m+1}(\delta)} \to 0$.

We need the following two lemmas to prove Proposition 3.7.

Lemma 3.8. Let $\mathcal{V} \subseteq S_{I,1}(\delta)$ and $h \in \omega^{\mathcal{V}}(U_p^{sp}(\mathcal{V}))$. Then

$$|U_p^{sp}(h)|_{\mathcal{V}} \leq p^\mu - \sum_{\tau \in I} k_\tau (1 - \epsilon)|h|_{U_p^{sp}(\mathcal{V})}.$$

In particular, if $\operatorname{val}_p a_p < \inf_{\tau \in I} k_\tau - g - \epsilon \sum_{\tau \in I} k_\tau$, then

$$|U_p^{sp}(h)|_{\mathcal{V}} \leq p^{-\mu}|h|_{U_p^{sp}(\mathcal{V})}$$

for some small enough $\mu > 0$.

Proof. Recall that U_p is defined by

$$H^0(U_p(\mathcal{V}), \omega^{\mathcal{V}}) \to H^0(p_1^{-1}(\mathcal{V}), p_2^0 \omega^{\mathcal{V}}) \xrightarrow{\pi^*} H^0((p_1^{-1}(\mathcal{V})), p_1^0 \omega^{\mathcal{V}}) \xrightarrow{\frac{1}{p^0} \operatorname{Tr}_p} H^0(\mathcal{V}, \omega^{\mathcal{V}}).$$
Let \(y \in \mathcal{V} \) and \(y_1 \in U_p^{sp}(y) \). Then
\[
| (U_p^{sp} h)(y) | = \left| \frac{1}{p^g}(\pi^* h)(y_1) \right| = p^{g-\sum_{\tau \in \Sigma} k_{\tau} \deg_{\tau} H_1} | h(y_1) |.
\]
By assumption, \(y_1 \in \mathcal{V} \subseteq S_{I,0}(\delta) \), i.e., \(\sum_{\tau \in I} \deg_{\tau} y_1 \leq \sum_{\tau \in I} \bar{x}_I + \delta, \deg_{\tau} y_1 \geq \bar{x}_I - \delta \). Hence by our choice of \(\delta \), we have
\[
| \deg_{\tau} y_1 - x_{I,\tau} | < \epsilon,
\]
namely
\[
| \deg_{\tau} H_1 - x_{I,\tau} | < \epsilon.
\]
Then
\[
g - \sum_{\tau \in \Sigma} k_{\tau} \deg_{\tau} H_1 \leq g - \sum_{\tau \in I} (1 - \epsilon).
\]

Lemma 3.9. For \(1 \leq j \leq m \), \(f_m - (U_p^{sp}/a_p) f_m = F_j \) on \(S_{I,j}(\delta) \setminus S_{I,m}(\delta') \).

Proof. Recall that we have fixed \(\delta' < \delta \), and \(f_m \) is defined on \(S_{I,0}(\delta) \setminus S_{I,m}(\delta') \). In particular, \((U_p^{sp}/a_p)^j f_m \) is defined on \((U_p^{sp})^{-j} S_{I,0}(\delta) \setminus S_{I,m}(\delta') = S_{I,j}(\delta) \setminus S_{I,j+m}(\delta') \).

By definition, \(F_j = \sum_{\ell=0}^{j-1}(\frac{1}{a_p})^{\ell+1} U_p^{sp}(U_p^{sp})^{\ell} f \) on \(S_{I,j}(\delta) \). Hence \(F_j + (U_p^{sp}/a_p)^j f_m \) is defined on \(S_{I,j}(\delta) \setminus S_{I,m}(\delta') \). A simple calculation using the fact that \(U_p = U_p^{sp} + U_p^{reg} \) yields the claimed equality \(F_j + (U_p^{sp}/a_p)^j f_m = f_m \). \(\Box \)

Proof of Proposition 3.7.

(1) Because \(f \) is defined on the quasi-compact open \(\mathcal{V}(\delta) \), \(|f|_{\mathcal{V}(\delta)} \) is bounded. Since \(U_p \) is a compact operator, \(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta)} \leq \frac{U_p}{a_p} f \) is also bounded. Similarly, \(|f_1|_{S_{I,0}(\delta') \setminus S_{I,1}(\delta')} \) is bounded, and hence \(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')} \) is bounded.

We will show that \(|f_m|_{S_{I,0}(\delta) \setminus S_{I,m}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)')} \) for all \(m \geq 1 \). Because \(f_m \)'s are compatible, it suffices to show that
\[
|f_m|_{S_{I,m}(\delta) \setminus S_{I,m}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)}), |F_1|_{S_{I,m}(\delta)}
\]
for all \(m \geq 1 \). We do this by induction on \(m \). By Lemma 3.9, \(f_m - U_p^{sp}/a_p f_m = F_1 \) on \(S_{I,1}(\delta) \setminus S_{I,m}(\delta') \). Then it suffices to show that
\[
|U_p^{sp}/a_p f_m|_{S_{I,m}(\delta) \setminus S_{I,m+1}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)}).
\]
By Lemma 3.8,
\[
|U_p^{sp}/a_p f_m|_{S_{I,m}(\delta) \setminus S_{I,m+1}(\delta')} \leq |f_m|_{S_{I,m}(\delta) \setminus S_{I,m+1}(\delta')}
\]
Hence
\[
|U_p^{sp}/a_p f_m|_{S_{I,m}(\delta) \setminus S_{I,m+1}(\delta')} \leq \sup(|f_1|_{S_{I,0}(\delta) \setminus S_{I,1}(\delta')}, |F_1|_{S_{I,m}(\delta)}).
\]

by induction hypothesis.
As for $|F_m|_{S_{I,m}(\delta)}$, by Lemma 3.8,

$$|F_m|_{S_{I,m}(\delta)} \leq \sup_{0 \leq j \leq m-1} \left| \left(\frac{1}{a_p} \right)^{j+1} U_p^{nsp} \left(U_p^{sp} \right)^j f \right|_{S_{I,m}(\delta)}$$

$$= \sup_{0 \leq j \leq m-1} \left| \left(\frac{U_p^{sp}}{a_p} \right)^j F_1 \right|_{S_{I,m}(\delta)}$$

$$\leq \sup_{0 \leq j \leq m-1} |F_1|_{S_{I,m-j}(\delta)}$$

$$= |F_1|_{S_{I,1}(\delta)}.$$

(2) By Lemma 3.9 and Lemma 3.8,

$$|F_m - f_m|_{S_{I,m}(\delta) \setminus S_{I,m}(\delta')} = \left| \left(\frac{U_p^{sp}}{a_p} \right)^m f_m \right|_{S_{I,m}(\delta) \setminus S_{I,m}(\delta')}$$

$$\leq p^{-m\mu} |f_m|_{S_{I,0}(\delta) \setminus S_{I,0}(\delta')}$$

$$= p^{-m\mu} |f_0|_{S_{I,0}(\delta) \setminus S_{I,0}(\delta')}$$

$$\to 0 \text{ as } m \to \infty.$$

(3) By Lemma 3.8,

$$|F_{m+1} - F_m|_{S_{I,m+1}(\delta)} = \left| \left(\frac{1}{a_p} \right)^{m+1} U_p^{nsp} \left(U_p^{sp} \right)^m f \right|_{S_{I,m+1}(\delta)}$$

$$= \left| \left(\frac{U_p^{sp}}{a_p} \right)^m F_1 \right|_{S_{I,m+1}(\delta)}$$

$$\leq p^{-m\mu} |F_1|_{S_{I,1}(\delta)}$$

$$\to 0 \text{ as } m \to \infty.$$

3.4. **Finishing the proof of Theorem 3.1.** Assuming that the overconvergent form f is defined on a strict neighborhood of $\deg^{-1} x_J$ for all $J \subseteq I$ and that f satisfies the small slope condition (1), in Section 3.2 we have extended f to a strict neighborhood $S_{I,0}(\delta)$ of $\deg^{-1} x_I$ for any small enough $\delta > 0$.

Note that the vertices in F_I are exactly the x_J’s with $J \subseteq I$. We can then extend f to a strict neighborhood of $\mathcal{Y} F_I$ again arguing by the fact that U_p increases twisted directional degrees strictly when the deg is not one of the vertices.

Let U be a strict neighborhood of $\mathcal{Y} F_I$ which is stable under U_p. Write $U = S_{I,0}(\delta) \cup \bigcup_{J \subseteq I} V_J \cup \mathcal{V}$, where \mathcal{V}_J is a strict neighborhood of $\deg^{-1} x_J$ on which f is defined, and \mathcal{V} is a quasi-compact open disjoint from all $\deg^{-1} x_J$’s with $J \subseteq I$. By Proposition 2.5, U_p increases the twisted directional degrees strictly when the degrees are not all integers, for example on \mathcal{V}. Using the Maximum Modulus Principle, the quasi-compactness of \mathcal{V} implies that there is a positive lower bound for the increase of \deg_{τ} under U_p on \mathcal{V}. Because we chose U to be U_p-stable, there exists $M > 0$ such that $U_p^M \mathcal{V} \subseteq S_{I,0}(\delta) \cup \bigcup_{J \subseteq I} V_J$. We can then extend f to U by $(\frac{U_p}{a_p})^M f$.

References

Department of Mathematics, University of California, Los Angeles, Los Angeles, CA 90095, USA

Email address: cyhsu@math.ucla.edu