MATH 33A Worksheet Week 3 Solutions

TA: Caleb Partin

July 11, 2024

Topic 1: Images, Kernels, Bases

Exercise 1.1. Let $A : \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & -2 & 6 \end{bmatrix}$. Find a basis for ker A. Find a basis for im A. Notice that dim ker A + dim im A = 4.

RREF:

$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so solutions to Ax = 0 are given by $x_1 = -2x_2 + x_3 - 3x_4$, x_2, x_3, x_4 free. So a basis for ker A is given by

$$\left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\0\\0\\1 \end{bmatrix} \right\}$$

Since only first column has a leading one in RREF, the first column $\begin{vmatrix} 1 \\ 2 \end{vmatrix}$ forms a basis for im A.

Exercise 1.2. Let $A : \mathbb{R}^8 \to \mathbb{R}^7$ be given by the following matrix:

Determine dim ker A (hint: use rank-nullity and find dim im A).

im A is two dimensional by observation or by noticing that the row reduced echelon form has exactly two leading ones. Therefore, since dim ker $A + \dim \operatorname{im} A = 8$ and dim im A = 2, dim ker A = 6.

Exercise 1.3. Find a basis for the following subspaces of \mathbb{R}^3 :

(a)
$$V = \operatorname{span}\left(\begin{bmatrix} 3\\-1\\2 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-4 \end{bmatrix} \right)$$

(b) $V = \left\{ \begin{bmatrix} v_1\\v_2\\v_3 \end{bmatrix} \mid v_1 - 3v_2 = 0 \right\}$

- (c) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ be any linear transformation such that dim ker A = 0. Find a basis for $V = \operatorname{im} A$.
- (a) $V = \operatorname{im} A$ for $A = \begin{bmatrix} 3 & 1 & 2 & 0 \\ -1 & 0 & -1 & 1 \\ 2 & 1 & 1 & -4 \end{bmatrix}$. RREF of A has leading ones in 1,2, and 4th column,

so the first, second, and fourth of these vectors form a basis for V.

(b) Notice that $V = \ker A$ for $A = \begin{bmatrix} 1 & -3 & 0 \end{bmatrix}$. A is already row reduced, so writing the solutions to $A\vec{x} = \vec{0}$, we find that $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ must satisfy $x_1 - 3x_2 = 0 \iff x_1 = 3x_2$

Since only the first column of (the row reduced echelon form) of A has a leading one, x_2, x_3 are free, so

$$\ker A = \left\{ \begin{bmatrix} 3x_2\\x_2\\x_3 \end{bmatrix} \mid x_2, x_3 \in \mathbb{R} \right\} = \left\{ x_2 \begin{bmatrix} 3\\1\\0 \end{bmatrix} + x_3 \begin{bmatrix} 0\\0\\1 \end{bmatrix} \mid x_2, x_3 \in \mathbb{R} \right\} = \operatorname{span} \left\langle \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\rangle$$
so a basis for ker A is $\left\{ \begin{bmatrix} 3\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

(c) Since dim ker A = 0, by rank nullity, dim im A = 3. Therefore, since dim im A = 3 and is a subspace of \mathbb{R}^3 , im $A = \mathbb{R}^3$. Thus, a basis for A is $\begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}$.

Topic 2: Orthogonality

Exercise 2.1. For what values of $\lambda \in \mathbb{R}$ are the following pairs of vectors orthogonal?

- (a) $\begin{bmatrix} \lambda \\ 3 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} \lambda \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ -1 \\ -\lambda \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ \lambda \end{bmatrix}, \begin{bmatrix} \lambda \\ 1 \end{bmatrix}$
- (a) Orthogonal if and only if $-2\lambda + 3 = 0$, so orthogonal when $\lambda = 3/2$ and not otherwise.
- (b) The dot product between these two vectors is 0, so orthogonal regardless of λ .
- (c) Orthogonal if and only if $\lambda + \lambda = 0$, so only orthogonal when $\lambda = 0$.

Exercise 2.2. Determine whether the following sets of vectors are *orthonormal* (orthogonal and unit length):

(a)
$$\begin{bmatrix} 3/5\\4/5 \end{bmatrix}, \begin{bmatrix} -4/5\\3/5 \end{bmatrix}.$$

(b) $\begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}.$
(c) $\begin{bmatrix} 2/3\\-1/3\\2/3 \end{bmatrix}, \begin{bmatrix} -1/3\\2/3\\2/3 \end{bmatrix}, \begin{bmatrix} 2/3\\2/3\\-1/3 \end{bmatrix}$

- (a) Dot product is zero, and $(3/5)^2 + (4/5)^2 = 1$, so yes.
- (b) No, since $\begin{vmatrix} 1 \\ -1 \end{vmatrix} = 2 \neq 1$.
- (c) Yes, dot product between any pair is zero, and $\begin{vmatrix} 2/3 \\ 2/3 \\ -1/3 \end{vmatrix} = 4/9 + 4/9 + 1/9 = 1$ (and similarly for the other two).

Exercise 2.3. Find the orthogonal projection of $\begin{bmatrix} 5\\5\\5 \end{bmatrix}$ onto the subspace $V = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$

CORRECTION: We need for our basis for V to be an orthonormal basis to apply the projection formula, which it is currently not! So to correct for this, we can do Gram-Schmidt!

$$v_{1}^{\perp} = \begin{bmatrix} 1\\ 2\\ 1\\ 1 \end{bmatrix}$$
$$v_{2}^{\perp} = \begin{bmatrix} -2\\ 1\\ 1\\ 1 \end{bmatrix} - \frac{\begin{bmatrix} -2\\ 1\\ 1\\ 1\\ \end{bmatrix} \cdot \begin{bmatrix} 1\\ 2\\ 1\\ 1\\ \end{bmatrix}}{\begin{bmatrix} 1\\ 2\\ 1\\ 1\\ \end{bmatrix}} \begin{bmatrix} 1\\ 2\\ 1\\ \end{bmatrix} = \begin{bmatrix} -2\\ 1\\ 1\\ 1\\ \end{bmatrix} - \frac{1}{6}\begin{bmatrix} 1\\ 2\\ 1\\ \end{bmatrix} = \frac{1}{6}\begin{bmatrix} -13\\ 4\\ 5\end{bmatrix}$$

Now we can normalize our vectors:

$$\left\| \begin{bmatrix} 1\\2\\1 \end{bmatrix} \right\| = \sqrt{1 + 2^2 + 1} = \sqrt{6}$$
$$\left\| \frac{1}{6} \begin{bmatrix} -13\\4\\5 \end{bmatrix} \right\| = \frac{\sqrt{(-13)^2 + 4^2 + 5^2}}{6} = \frac{\sqrt{210}}{6}$$
$$V = \operatorname{span} \left\{ \frac{1}{\sqrt{6}} \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \frac{1}{\sqrt{210}} \begin{bmatrix} -13\\4\\5 \end{bmatrix} \right\}$$

Then the projection formula tells us:

$$\operatorname{proj}_{V}\left(\begin{bmatrix}5\\5\\5\end{bmatrix}\right) = \left(\begin{bmatrix}5\\5\\5\end{bmatrix} \cdot \frac{1}{\sqrt{6}}\begin{bmatrix}1\\2\\1\end{bmatrix}\right) \frac{1}{\sqrt{6}}\begin{bmatrix}1\\2\\1\end{bmatrix} + \left(\begin{bmatrix}5\\5\\5\end{bmatrix} \cdot \frac{1}{\sqrt{210}}\begin{bmatrix}-13\\4\\5\end{bmatrix}\right) \frac{1}{\sqrt{210}}\begin{bmatrix}-13\\4\\5\end{bmatrix}$$
$$= \left(\frac{20}{\sqrt{6}}\right) \frac{1}{\sqrt{6}}\begin{bmatrix}1\\2\\1\end{bmatrix} + \left(\frac{-20}{\sqrt{210}}\right) \frac{1}{\sqrt{210}}\begin{bmatrix}-13\\4\\5\end{bmatrix} = \frac{10}{3}\begin{bmatrix}1\\2\\1\end{bmatrix} - \frac{2}{21}\begin{bmatrix}-13\\4\\5\end{bmatrix}$$
$$= \frac{1}{21}\begin{bmatrix}96\\132\\60\end{bmatrix}$$

Exercise 2.4. Find a basis for W^{\perp} , where

$$W = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \right\}$$

(Hint: How can we relate W^{\perp} to subspaces where we know how to find a basis?)

A vector v is in W^{\perp} if and only if $v \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix} = 0$ and $v \cdot \begin{bmatrix} 5 \\ 6 \\ 7 \\ 8 \end{bmatrix} = 0$ (to check if a vector is orthogonal to

a subspace, we only need to check that it is orthogonal to the basis vectors). However, notice that if we let A be the matrix with the basis vectors as rows:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

that this is the same as asking that v is in ker A. Thus, we need to find a basis for kernel of A:

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & -4 & -8 & -12 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

So letting $x_3 = t$, $x_4 = s$ for $t, s \in \mathbb{R}$, we see that $x_1 = x_3 + 2x_4 = t + 2s$ and $x_2 = -2x_3 - 3x_4 = t$ -2t - 3s, giving a general solution

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} t+2s \\ -2t-3s \\ t \\ s \end{bmatrix} = t \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + s \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix}$$

And so we can see:

$$W^{\perp} = \ker(A) = \operatorname{span} \left\{ \begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ -3\\ 0\\ 1 \end{bmatrix} \right\}$$

Exercise 2.5. For each of the following vectors \vec{v} , find the decomposition $v^{||} + v^{\perp}$ with respect to the subspace

$$V = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \right\}$$

First we normalize all of our basis vectors to get

$$V = \operatorname{span} \left\{ \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}, \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \\ -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \right\}$$

(a)

(b)

$$v^{||} = \operatorname{proj}_{V} \left(\begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} \right) = 2 \begin{bmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix} + 0 \begin{bmatrix} \frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2} \end{bmatrix} + 0 \begin{bmatrix} \frac{1}{2}\\-\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$$
$$v^{\perp} = v - v^{||} = \vec{0}$$

$$v^{||} = \operatorname{proj}_{V} \left(\begin{bmatrix} 0\\0\\0\\0\\0 \end{bmatrix} \right) = 0 \begin{bmatrix} \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} + 0 \begin{bmatrix} \frac{1}{2}\\ -\frac{1}{2}\\ -\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} + 0 \begin{bmatrix} \frac{1}{2}\\ -\frac{1}{2}\\ \frac{1}{2}\\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$
$$v^{\perp} = v - v^{||} = \vec{0}$$

Exercise 2.6. Let $V = \text{span}\{\vec{v}_1, \ldots, \vec{v}_k\}$ be a subspace of \mathbb{R}^n where the vectors $\vec{v}_1, \ldots, \vec{v}_k$ give an orthonormal basis for V.

- (a) If $\vec{w} \in V$, show that $\operatorname{proj}_V(\vec{w}) = \vec{w}$.
- (b) If $\vec{w} \in V^{\perp}$, show that $\operatorname{proj}_{V^{\perp}}(\vec{w}) = 0$.

(a) Since $\vec{w} \in V$, we know that $\vec{w} = c_1 \vec{v_1} + \cdots + c_k \vec{v_k}$ for some scalars c_1, \ldots, c_k . Moreover, note that since $\vec{v_1}, \ldots, \vec{v_k}$ form an orthonormal basis, we know that $\vec{v_i} \cdot \vec{v_j} = 0$ for $i \neq j$ and $\vec{v_i} \cdot \vec{v_j} = 1$ when i = j. Using this and the fact that the dot product distributes over sums, we can compute the projection:

$$proj_V(\vec{w}) = (\vec{w} \cdot \vec{v_1})\vec{v_1} + \dots + (\vec{w} \cdot \vec{v_k})\vec{v_k} = ((c_1\vec{v_1} + \dots + c_k\vec{v_k}) \cdot \vec{v_1})\vec{v_1} + \dots + ((c_1\vec{v_1} + \dots + c_k\vec{v_k}) \cdot \vec{v_k})\vec{v_k}$$

$$= (c_1\vec{v_1} \cdot \vec{v_1} + \dots + c_k\vec{v_k} \cdot \vec{v_1})\vec{v_1} + \dots + ((c_1\vec{v_1} \cdot \vec{v_k} + \dots + c_k\vec{v_k} \cdot \vec{v_k})\vec{v_k}$$

$$= c_1\vec{v_1} + \dots + c_k\vec{v_k} = \vec{w}$$

(b) If $\vec{w} \in V^{\perp}$, then \vec{w} must be orthogonal to every basis vector for W:

$$\operatorname{proj}_{V^{\perp}}(\vec{w}) = (\vec{w} \cdot \vec{v_1})\vec{v_1} + \dots + (\vec{w} \cdot \vec{v_k})\vec{v_k} = 0\vec{v_1} + \dots + 0\vec{v_k} = \vec{0}$$

Exercise 2.7. Let

$$A = \begin{bmatrix} 2 & 3 & -1 & 0 \\ 2 & 1 & 1 & -4 \end{bmatrix}$$

Find an orthonormal basis $\mathcal{B} = \{u_1, u_2\}$ for ker A.

$$\begin{aligned} \text{RREF:} & \begin{bmatrix} 1 & 0 & 1 & -3 \\ 0 & 1 & -1 & 2 \end{bmatrix}, \text{ which results in } \left\{ \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\} \text{ being a basis for ker } A. \end{aligned}$$
Performing Gram-Schmidt with $v_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \\ 0 \end{bmatrix} \text{ and } v_2 = \begin{bmatrix} 3 \\ -2 \\ 0 \\ 1 \end{bmatrix}, \text{ we have } v_1^{\perp} = v_1 \text{ and}$
$$v_2^{\perp} = v_2 - \frac{(v_1^{\perp} \cdot v_2)}{||v_1^{\perp}||^2} v_1^{\perp} = v_2 + \frac{5}{3} v_1^{\perp} = \begin{bmatrix} 4/3 \\ -1/3 \\ 5/3 \\ 1 \end{bmatrix} \end{aligned}$$

Thus, we get

$$u_1 = v_1^{\perp} / ||v_1^{\perp}|| = \begin{bmatrix} \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ 0 \end{bmatrix}, u_2 = v_2^{\perp} / ||v_2^{\perp}|| = \begin{bmatrix} 4/\sqrt{51} \\ -1/\sqrt{51} \\ 5/\sqrt{51} \\ 3/\sqrt{51} \end{bmatrix}$$

Exercise 2.8. Find the QR decomposition of the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

First we perform Gram Schmidt on the columns resulting in the vectors

$$u_{1} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{bmatrix}, u_{2} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, u_{3} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{bmatrix}$$

Thus, $Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix}$. Notice that R is a matrix which satisfies A = QR, so $Q^{-1}A = R$. Since Q is orthogonal we have $Q^{-1} = Q^T$, so $R = Q^T A$. Thus, we have

$$R = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} & 0\\ 0 & 0 & 1\\ 1/\sqrt{2} & 1/\sqrt{2} & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1\\ -1 & 1 & 2\\ 0 & 2 & 1 \end{bmatrix} = \begin{bmatrix} \sqrt{2} & -\sqrt{2} & -\frac{1}{\sqrt{2}}\\ 0 & 2 & 1\\ 0 & 0 & \frac{3}{\sqrt{2}} \end{bmatrix}$$

True or False

Exercise TF. True or false: Explain your reasoning or find an example or counterexample.

- (a) If V is a subspace of \mathbb{R}^3 that does not contain any of the elementary column vectors e_1, e_2, e_3 , then $V = \{\vec{0}\}$.
- (b) If v_1, v_2, v_3, v_4 are linearly independent vectors, then v_1, v_2, v_3 are linearly independent.
- (c) If v_1, v_2, v_3 are linearly independent vectors, then v_1, v_2, v_3, v_4 are linearly independent.

(d) It is possible for a 4 × 4 matrix A to have ker $A = \operatorname{span} \left\langle \begin{bmatrix} 1\\0\\0\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3\\0\\0 \end{bmatrix} \right\rangle$ and

$$\operatorname{im} A = \operatorname{span} \left\langle \begin{array}{c} 1\\0\\0\\3 \end{bmatrix}, \begin{array}{c} 0\\0\\4\\2 \end{bmatrix}, \begin{array}{c} 0\\0\\4\\2 \end{bmatrix}, \begin{array}{c} 0\\2\\3\\-1 \end{bmatrix} \right\rangle$$

- (e) There exists a 4×4 matrix A with ker $A = \operatorname{span}\langle e_1, e_2, e_3 \rangle$ and im $A = \operatorname{span}\langle e_3 + e_4 \rangle$
- (f) There exists a 5×5 matrix A with ker A = im A.
- (g) There exists a 4×4 matrix A with ker $A = \operatorname{im} A$.
- (h) If A is orthogonal then it is invertible.
- (i) If A is symmetric $(A = A^T)$ it is invertible.
- (j) Let V be a subspace of \mathbb{R}^n with orthonormal basis $\{u_1, \ldots, u_m\}$, and let $\{v_1, \ldots, v_{n-m}\}$ be an orthonormal basis for V^{\perp} . Then $\{u_1, \ldots, u_m, v_1, \ldots, v_{n-m}\}$ is an orthonormal basis for \mathbb{R}^n .
- (k) The entries of an orthogonal matrix are all less than or equal to 1 in absolute value.
- (l) Let V be a subspace of \mathbb{R}^n and B the matrix for orthogonal projection onto V. Then $B^2 = B$.

(m) Let
$$\mathcal{B} = \{v_1, v_2, v_3\} = \left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3\\-1 \end{bmatrix} \right\}$$
 be an ordered basis for \mathbb{R}^3 . Then $\begin{bmatrix} 1\\-8\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$.

- (n) If v_1, \ldots, v_m is a basis of unit length vectors for a subspace V, there is an orthonormal basis of V containing the vectors v_1 and v_2 .
- (o) For all $v, w \in \mathbb{R}^n$, $\langle v, w \rangle^2 \leq ||v||^2 ||w||^2$ with equality if and only if v, w are perpendicular. Notation: $\langle v, w \rangle$ refers to the dot product $v \cdot w$.

(a) This is false. For instance, $V = \operatorname{span} \left\langle \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\rangle$ is not the zero subspace but doesn't contain any of e_1, e_2, e_3 .

- (b) This is true. Since v_1, v_2, v_3, v_4 are linearly independent, the only solution (x_1, x_2, x_3, x_4) to $x_1v_1+x_2v_2+x_3v_3+x_4v_4 = \vec{0}$ is (0, 0, 0, 0). Therefore, the only solution to $x_1v_1+x_2v_2+x_3v_3 = \vec{0}$ is (0, 0, 0), so v_1, v_2, v_3 are linearly independent.
- (c) This is false. For instance, let $v_1 = e_1, v_2 = e_2, v_3 = e_3$ in \mathbb{R}^3 , and let v_4 be any vector in \mathbb{R}^3 .
- (d) False. Suppose A was a matrix satisfying the conditions. Notice that the two vectors spanning ker A are linearly independent, so dim ker A = 2. Similarly, we show by RREF or inspection that the three vectors spanning im A are linearly independent, so dim im A = 3. So dim ker $A + \dim \operatorname{im} A = 5$, but this contradicts the rank-nullity theorem, so no such matrix A exists.
- (e) Yes. Notice that in this case dim ker $A + \dim \operatorname{im} A = 3 + 1 = 4$, so there is no issue from rank nullity. Since $e_1, e_2, e_3 \in \ker A$, the first three columns of A must be zero, and so we find the following example:

[0	0	0	0
0	0	0	0
0	0	0	1
0	0	0	1

- (f) False. A 5×5 matrix must have dim ker $A + \dim \operatorname{im} A = 5$ by rank-nullity, and since 5 is not an even number, we cannot have dim ker $A = \dim \operatorname{im} A$.
- (g) True. Notice that by rank nullity, we must have dim ker $A = \dim \operatorname{im} A = 2$, so suppose A is a 4×4 matrix with ker $A = \operatorname{span}\langle e_1, e_2 \rangle$. This implies its first two columns are the zero vector. In order for the image of A to also be $\operatorname{span}\langle e_1, e_2 \rangle$, the last two columns must span $\operatorname{span}\langle e_1, e_2 \rangle$, so the following matrix works:

$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

- (h) True. Since A is orthogonal, A^{-1} exists and is equal to A^{T} .
- (i) False. $A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ is symmetric but not invertible.
- (j) True. Each of $u_1, \ldots, u_m, v_1, \ldots, v_{n-m}$ is unit length, and $u_i \cdot u_j = 0$ for $i \neq j$, $v_i \cdot v_j = 0$ for $i \neq j$, and $u_i \cdot v_j = 0$ for all i, j since $u_i \in V$ and v_j is in the perpendicular subspace V^{\perp} . Thus, the $u_1, \ldots, u_m, v_1, \ldots, v_{n-m}$ are orthogonal
- (k) True. Let $A = \begin{bmatrix} u_1 & \dots & u_n \end{bmatrix}$ be orthogonal, so $\{u_1, \dots, u_n\}$ are orthonormal. Therefore for each of the u_i with entries $\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, we have $1 = ||u_i|| = \sqrt{x_1^2 + \dots + x_n^2}$, so $x_j^2 \le 1$ for all j, so

all the elements of A are bounded by 1 in absolute value.

(1) True. For any $v \in \mathbb{R}^n$, $B^2v = B(Bv)$. Since im B = V and B fixes V since B is orthogonal projection on to V, B(Bv) = Bv. Therefore, since $B^2v = Bv$ for all $v \in \mathbb{R}^n$, $B^2 = B$.

(m) No, since
$$\begin{bmatrix} 1\\-8\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} a\\b\\c \end{bmatrix}$$
 satisfies $av_1 + bv_2 + cv_3 = \begin{bmatrix} 1\\-8\\3 \end{bmatrix}$, but
$$2v_1 + v_2 - 2v_3 = \begin{bmatrix} 2\\-5\\5 \end{bmatrix} \neq \begin{bmatrix} 1\\-8\\3 \end{bmatrix}$$

(n) False. Consider

$$v_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, v_2 = \begin{bmatrix} 1/\sqrt{2}\\1/\sqrt{2}\\0 \end{bmatrix}$$

which are unit length and form a basis for $\begin{pmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \rangle$. Since $v_1 \cdot v_2 \neq 0$, we cannot form an orthonormal basis with v_1, v_2 .

(o) False. If "perpendicular" was replaced with "parallel", this is true and is the Cauchy Schwarz inequality. But if v, w are perpendicular, then $v \cdot w = 0$ and thus $v \cdot w \neq ||v||^2 ||w||^2$ for any non-zero perpendicular v, w.