MATH 33A Worksheet Week 2

TA: Caleb Partin

July 3, 2024

Topic 1: Invertibility

Exercise 1.1. Determine whether the following matrices are invertible, and if they are, find the inverse.

(a)	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1 1]	
(b)	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 2\\1 \end{bmatrix}$	
(c)	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	1 3 6

Exercise 1.2. Let $A = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$.

(a) Compute A^{-1} .

(b) Use the inverse to find all solutions to
$$A\vec{x} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$$
, and all solutions to $A\vec{x} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$.

Exercise 1.3. Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation of projection onto the line y = x. Is T invertible? Argue both (1) geometrically, and (2) by finding the matrix representation for T and computing its determinant.

Exercise 1.4. Find the inverse of the following matrix (in terms of $c \in \mathbb{R}$. Verify your answer with matrix multiplication: $A = \begin{bmatrix} 1 & c & c^3 \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix}$.

Exercise 1.5. True or False?

- (a) There exists an invertible $n \times n$ matrix with two identical rows.
- (b) There exists an invertible 2×2 matrix A such that $A^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$

Topic 2: Subspaces and Linear Independence

Exercise 2.1. Show that the following subsets are *not* subspaces of \mathbb{R}^2 :

(a) $V = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix} \right\}$ (b) $V = \left\{ \begin{bmatrix} 3s+1 \\ 2-s \end{bmatrix} \mid s \in \mathbb{R} \right\}$

Show that the following subsets *are* subspaces of \mathbb{R}^2 :

(c)
$$V = \left\{ \begin{bmatrix} t \\ 3s \end{bmatrix} \mid s, t \in \mathbb{R} \right\}.$$

(d) $V = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$

Exercise 2.2. Determine whether the following sets of vectors are linearly independent or linearly dependent:

(a)
$$\begin{bmatrix} 3\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\4\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\5 \end{bmatrix}$$

Topic 3: Image and Kernel

Exercise 3.1. Find a linear transformation $A : \mathbb{R}^3 \to \mathbb{R}^3$ which satisfies each of the following conditions, or explain why such a linear transformation doesn't exist:

(a) ker
$$A = \{\vec{0}\}$$
, im $A = \{\vec{0}\}$.
(b) ker $A = \operatorname{span}\left\{ \begin{bmatrix} 1\\3\\-3 \end{bmatrix} \right\}$ and A is not invertible.
(c) ker $A = \operatorname{span}\left\{ \begin{bmatrix} 1\\3\\-3 \end{bmatrix} \right\}$ and A is invertible.
(d) ker $A = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$, im $A = \operatorname{span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$.

Exercise 3.2. Find the kernel of the following matrices:

- (a) $\begin{bmatrix} 3 & 2 & 1 \\ -1 & 0 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & -1 \\ 0 & 1 \\ 2 & 1 \end{bmatrix}$
- (c) A for $A : \mathbb{R}^n \to \mathbb{R}^n$ invertible.
- (d) A with row reduced echelon form $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix}$.

Exercise 3.3.

Let A be any matrix, and B be the RREF for A.

- (a) Is ker $A = \ker B$?
- (b) Is $\operatorname{im} A = \operatorname{im} B$?