MATH 33A Worksheet Week 1

TA: Caleb Partin*

June 27, 2024

Topic 1: Solving Systems of Linear Equations

Exercise 1.1. Describe all solutions to the following linear systems.

(a)

$$x + 3y - 2z = 4$$

 $2x - y + 3z = 15$
 $x - z = 3$
(b)
 $x + y - 2z = 1$
 $2x - 3y + z = 1$
 $x - z = 2$
(c)
 $x - 2y = 2$
 $2y + 3z = 4$

*Worksheet based on previous worksheets made with Emil Geisler

Exercise 1.2. Write down what it means for a matrix to be in row reduced echelon form (RREF). Which of the following matrices are in RREF? For each matrix, write its rank.

(a)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	0 0		0 1 0	$\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$
(b)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$2 \\ 0 \\ 0$	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$		
(c)	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	1 0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$		
(d)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$2 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	3 1 1	
(e)	$\begin{bmatrix} 1\\ 0\\ 0 \end{bmatrix}$	$2 \\ 0 \\ 0$	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	0 0 1	

Exercise 1.3. Find values a and b so that the ellipse $ax^2 + by^2 = 1$ goes through the points (3, 2) and (17, 12).

Topic 2: Matrix Algebra

Exercise 2.1. Compute the following in the order of the parentheses, and observe they are the same. This is an example of the rule $A \cdot (\vec{v} + \vec{w}) = A \cdot \vec{v} + A \cdot \vec{w}$ for any $m \times n$ matrix A and $\vec{v}, \vec{w} \in \mathbb{R}^n$, i.e., A is a linear transformation.

(a)
$$\begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \right)$$

(b) $\begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$

Exercise 2.2.

Compute the following in the order of the parentheses, and observe they are the same. This is an example of the rule $B \cdot (A \cdot \vec{v}) = (B \cdot A) \cdot \vec{v}$ for any $m \times n$ matrix B, $n \times q$ matrix A, and \vec{v} a vector in \mathbb{R}^{q} .

(a)
$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \left(\begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right)$$

(b)
$$\left(\begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 0 \end{bmatrix} \right) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

Exercise 2.3. Compute the following or state that it is not defined.

(a)
$$\begin{bmatrix} 4 & 2 & 0 \\ 1 & -1 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 4 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 & 2 \\ 0 & 1 \\ -1 & -1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 4 & 2 & 3 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 3 \end{bmatrix}$$

Topic 3: Linear Transformations

Exercise 3.1. For each of the following linear transformations $T : \mathbb{R}^2 \to \mathbb{R}^2$, find the corresponding matrix that represents T:

- (a) Rotate any vector \vec{v} counter-clockwise by an angle of $\frac{\pi}{2}$ radians
- (b) Projection onto the x-axis
- (c) Projection onto the y-axis

Exercise 3.2. Let $\vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \vec{e_n} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$ be the standard basis vectors of \mathbb{R}^n . Show that if A is an $m \times n$ matrix such that $A\vec{e_1} = A\vec{e_2} = \dots = A\vec{e_n} = 0$, then A is the zero matrix.

Exercise 3.3. Compute the following for all $\theta \in \mathbb{R}$:

$$\begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

What linear transformation do each of these matrices represent? What is the geometric interpretation of the matrix you get as their product?