
MATH 33A Worksheet Week 5 Solutions

TA: Caleb Partin

July 25, 2024

Exercise 1. Find all the roots of the following polynomials: (Will need to possibly use factoring,
the quadratic formula, rational roots theorem, and/or polynomial long division):

(a) x2 − 2x+ 1

(b) x2 − x− 1

(c) x3 + 3x2 − x− 3

(d) x3 − 2x2 − 2x+ 4

(Bonus: For each polynomial p(x) above, can you construct a matrix A such that det(A− λI))

(a) x2 − 2x+ 1 = (x− 1)2, so x = 1 is the only root.

(b) x = 1±
√
6

2
by the quadratic formula

(c) By the rational root theorem, if this polynonial has a rational root, it will be ±3 or ±1.
Checking these values, we will see that x = −3 is a root, thus (x + 3) is a factor of this
polynomial. Then we can also see that 1 and −1 are both roots, so (x + 1) and (x − 1) are
also factors. Sine this is a degree 3 polynomial, it has at most 3 real roots, so we get that
−3,−1, 1 are all the roots.

(d) By the rational root theorem, the possible rational roots of this polynomial are ±1,±2 and
±4. Checking each of these values, we see that only x = 2 is a root and thus x− 2 is a factor
of this polynomial. We can then perform polynomial long division:

x2 − 2

x− 2
)

x3 − 2x2 − 2x + 4
− x3 + 2x2

− 2x + 4
2x− 4

0

And get a resulting quotient of x2 − 2. Then as a difference of two squares, we get ±
√
2 as

the two other roots.

The bonus can be answered by constructing a matrix whose diagonal entries are the roots of
each of these polynomials.
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Exercise 2. Compute the characteristic polynomial for the following matrices:

(a)

[
2 −2
1 4

]

(b)

3 −2 4
0 1 −3
0 0 4


(c)

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
with coefficients of the characteristic polynomial in terms of sin(θ), cos(θ)

(d)


0 0 0 4
0 0 −2 0
0 1 0 0
0 0 0 0



(a) x2 − 6x+ 10.

(b) (x− 3)(x− 1)(x− 4) since the matrix is upper triangular detA−xIn is also upper triangular.

(c) x2 − 2 cos(θ)x+ 1 (using that cos(θ)2 + sin(θ)2 = 1.

(d)

det


−x 0 0 4
0 −x −2 0
0 1 −x 0
0 0 0 −x

 = −x det

−x −2 0
1 −x 0
0 0 −x

 = x2 det

[
−x −2
1 −x

]
= x2(x2 + 2)

Exercise 3. For what values of a ∈ R does the following matrix have an eigenvalue of 2?

A =

4 0 2
2 a 3
0 a2 1


A has an eigenvalue of 2 if and only if kerA − 2I3 ̸= {⃗0}, which is true if and only if A − 2I3 is
invertible. Thus, A has an eigenvalue of 2 if and only if detA − 2I3 = 0. Thus let us compute
detA− 2I3 in terms of a.

detA− 2I3 = det

2 0 2
2 a− 2 3
0 a2 −1

 = 2det

[
a− 2 3
a2 −1

]
− 0 + 2 det

[
2 a− 2
0 a2

]
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= (−2a+ 4− 6a2) + 4a2 = −2a2 − 2a+ 4

This polynomial has roots of 1 and −2 by factoring or the quadratic formula. so the only values of
a for which A has an eigenvalue of 2 are a = 1 and a = −2.

Exercise 4. Let A =

[
19 −12
30 −19

]
.

(a) What are the eigenvalues of A?

(b) Find bases for the eigenspaces of A.

(c) Using part (b), diagonalize A.

(d) Use diagonalization to find A100.

(a) We compute that the characteristic polynomial of A is

(λ− 19)(λ+ 19) + 12 ∗ 30 = λ2 − 361 + 360 = λ2 − 1 = (λ− 1)(λ+ 1)

Therefore, A has eigenvalues 1 and −1.

(b) Since A has eigenvalues 1 and −1, we must find bases for ker I2 − A and ker−I2 − A.

Eigenvalue of 1: ker I2 − A = ker

[
−18 12
−30 20

]
. Row reducing, we find that ker I2 − A =

span⟨
[
2
3

]
⟩. So v1 =

[
2
3

]
is a basis for the subspace of eigenvectors of A with eigenvalue 1.

Eigenvalue of 2: ker−I2 − A = ker

[
−20 12
−30 18

]
. Row reducing, we find that ker−I2 − A =

span⟨
[
3
5

]
⟩. So v2 =

[
3
5

]
is a basis for the subspace of eigenvectors of A with eigenvalue −1.

(c) Therefore, letting B =
[
v1 v2

]
=

[
2 3
3 5

]
and recalling that v1 has eigenvalue 1 and v2 has

eigenvalue −1, we have:

A = B

[
1 0
0 −1

]
B−1

We can explicitly compute B−1, and it’s not too bad since detB = 1:

A =

[
2 3
3 5

] [
−1 0
0 1

] [
5 −3
−3 2

]
(d) We have:

A100 = (BDB−1)100 =

100︷ ︸︸ ︷
(BDB−1)(BDB−1) . . . (BDB−1) = BD100B−1
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We have

D100 =

[
−1 0
0 1

]100
=

[
−1100 0
0 1100

]
= I2

Therefore,

A100 = BD100B−1 = BI2B
−1 = BB−1 = I2 =

[
1 0
0 1

]

Exercise 5. Diagonalize the following matrices or show that they cannot be diagonalized by
showing that the geometric multiplicity of an eigenvalue is less than its algebraic multiplicity:

(a)

[
4 2
−1 1

]

(b)

[
−2 9
−1 4

]

(c)

[
a 1
0 b

]
for a ̸= b ∈ R.

(d)

[
1 −1
1 1

]

(e)

4
5

−3
5

0
3
5

4
5

0
1 2 2



(a) Characteristic polynomial is P (x) = x2 − 5x+ 6 = (x− 3)(x− 2).
Eigenvalue of 2:

A − 2I2 =

[
2 2
−1 −1

]
, which has RREF

[
1 1
0 0

]
and thus kernel of the form ker(A − 2I2) ={[

−x2

x2

]
x2 ∈ R

}
= span⟨

[
−1
1

]
⟩ so {

[
−1
1

]
} is a basis for the eigenspace of A with eigenvalue

2.
Eigenvalue of 3:

A − 3I2 =

[
1 2
−1 −2

]
which has RREF

[
1 2
0 0

]
and thus has basis of the kernel given by

{
[
2
−1

]
}.

Thus, we have A = SDS−1 for S =

[
2 −1
−1 1

]
and D =

[
3 0
0 2

]
. We can compute S−1 =[

1 1
1 2

]
.

(b) Characteristic polynomial is P (x) = x2 − 2x+ 1 = (x− 1)2.
Eigenvalue of 1:
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A− I2 =

[
−3 9
−1 3

]
which has RREF

[
1 −3
0 0

]
and thus has basis of the kernel given by {

[
3
1

]
}.

Thus, the geometric multiplicity of (λ = 1) is 1 since the eigenspace has a basis with a
single vector and is thus one dimensional, but the algebraic multiplicity of (λ = 1) is 2 since
P (x) = (x− 1)2. Thus, A is not diagonlizable.

(c) (Note: if a = b, this matrix is not diagonalizable since the algebraic multiplicity of (λ = a = b)
is 2 but the geometric multiplicity is 1.
The characteristic polynomial is P (x) = (x− a)(x− b). Since a ̸= b, P has two eigenvalues.
Eigenvalue of λ = a:

A−aI2 =

[
0 1
0 b− a

]
which has RREF

[
0 1
0 0

]
. Thus, a basis for kerA−aI2 is given by {

[
1
0

]
}.

Eigenvalue of λ = b:

A − bI2 =

[
a− b 1
0 0

]
. Since a ̸= b, a − b ̸= 0, so this matrix has RREF

[
1 1

a−b

0 0

]
and thus

has basis for kerA− bI2 given by {
[

1
b− a

]
}.

Thus, we have

S =

[
1 1
0 b− a

]
D =

[
a 0
0 b

]
and S−1 =

[
1 − 1

b−a

0 1
b−a

]
.

(d)

Exercise 6. True or false:

(a) If 0 is an eigenvalue of a matrix A, then det(A) = 0.

(b) If a matrix only has an eigenvalue of 1, then it is the identity matrix.

(c) All diagonalizable matrices are invertible

(d) All invertible matrices are diagonalizable

(a) True, if 0 is an eigenvalue, then A has a non-zero kernel and thus is not invertible, so it has
determinant 0.

(b) False, consider the matrix

[
1 1
0 1

]
, or any triangular matrix with all 1’s on the diagonal.

(c) False, diagonalizability only depends on the geometric multiplicities of the eigenvalues, not

what the eigenvalues are. A counter-example to this statement is

[
1 0
0 0

]
.

(d) False, matrices can be invertible and not diagonalizable! Consider

[
1 1
0 1

]
.
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