MATH 33A Worksheet Week 5

TA: Caleb Partin

July 25, 2024

Exercise 1. Find all the roots of the following polynomials: (Will need to possibly use factoring, the quadratic formula, rational roots theorem, and/or polynomial long division):

- (a) $x^2 2x + 1$
- (b) $x^2 x 1$
- (c) $x^3 + 3x^2 x 3$
- (d) $x^3 2x^2 2x + 4$

(Bonus: For each polynomial p(x) above, can you construct a matrix A such that $det(A - \lambda I)$)

Exercise 2. Compute the characteristic polynomial for the following matrices:

(a)
$$\begin{bmatrix} 2 & -2 \\ 1 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 3 & -2 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$$

(c)
$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$
 with coefficients of the characteristic polynomial in terms of $\sin(\theta), \cos(\theta)$
(d)
$$\begin{bmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Exercise 3.	For what values	s of $a \in \mathbb{R}$ does	the following matrix h	nave an eigenvalue of 2?
$\begin{bmatrix} 4 & 0 & 2 \end{bmatrix}$				
$A = \begin{bmatrix} 2 & a & 3 \end{bmatrix}$				
$A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & a & 3 \\ 0 & a^2 & 1 \end{bmatrix}$				

Exercise 4. Let
$$A = \begin{bmatrix} 19 & -12 \\ 30 & -19 \end{bmatrix}$$
.

- (a) What are the eigenvalues of A?
- (b) Find bases for the eigenspaces of A.
- (c) Using part (b), diagonalize A.
- (d) Use diagonalization to find A^{100} .

Exercise 5. Diagonalize the following matrices or show that they cannot be diagonalized by showing that the geometric multiplicity of an eigenvalue is less than its algebraic multiplicity:

(a)
$$\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$

(b) $\begin{bmatrix} -2 & 9 \\ -1 & 4 \end{bmatrix}$
(c) $\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ for $a \neq b \in \mathbb{R}$.
(d) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$
(e) $\begin{bmatrix} \frac{4}{5} & -\frac{3}{5} & 0 \\ \frac{3}{5} & \frac{4}{5} & 0 \\ 1 & 2 & 2 \end{bmatrix}$

Exercise 6. True or false:

- (a) If 0 is an eigenvalue of a matrix A, then det(A) = 0.
- (b) If a matrix only has an eigenvalue of 1, then it is he identity matrix.
- (c) All diagonalizable matrices are invertible
- (d) All invertible matrices are diagonalizable