MATH 33A Worksheet Week 4

TA: Caleb Partin

July 18, 2024

Exercise 1. Compute the determinant of the following matrices:

(a)	$\begin{bmatrix} 1\\ 3 \end{bmatrix}$	$\begin{bmatrix} 2\\ 4 \end{bmatrix}$	
(b)	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\ 4 \end{bmatrix}$	
(c)	$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$\frac{1}{2}$
(d)	$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$	$\begin{array}{c} 1 \\ 2 \\ 3 \end{array}$	$1 \\ 3 \\ 6$

Exercise 2. One important application of determinants is that they help us determine invertibility of a matrix. Use the determinant to determine for which values λ the following matrices are invertible:

(a)
$$\begin{bmatrix} \lambda & 2 \\ 3 & 4 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 1 & \lambda \\ 1 & \lambda & \lambda \\ \lambda & \lambda & \lambda \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1-\lambda & 2 \\ 0 & 4-\lambda \end{bmatrix}$$

(d)
$$\begin{bmatrix} 3-\lambda & 5 & 6 \\ 0 & 4-\lambda & 1 \\ 0 & -1 & 6-\lambda \end{bmatrix}$$

Exercise 3. Solve the following linear systems using Cramer's rule:

(a)

$$3x + 4y = 11$$
$$4x + 11y = 3$$

(b)

$$2x + 3y = 8$$
$$4y + 5z = 3$$
$$6x + 7z = -1$$

Exercise 4. Determine whether the following are true or false:

- (a) det(A + B) = det(A) + det(B) for any two $n \times n$ matrices A and B.
- (b) If B is the rref of A, then det(B) = det(A).
- (c) There exists a 3×3 matrix A with real valued entries such that $A^2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.
- (d) If A is an orthogonal matrix, then $det(A) = \pm 1$.