MATH 33A Worksheet Week 3

TA: Caleb Partin

July 11, 2024

Topic 1: Images, Kernels, Bases

Exercise 1.1. Let $A : \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation given by the matrix $\begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & -2 & 6 \end{bmatrix}$. Find a basis for ker A. Find a basis for im A. Notice that dim ker A + dim im A = 4.

Exercise 1.2. Let $A : \mathbb{R}^8 \to \mathbb{R}^7$ be given by the following matrix:

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	1	0	0	3	0	2
2	3	0	-1	0	0	4	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Determine dim ker A (hint: use rank-nullity and find dim im A).

Exercise 1.3. Find a basis for the following subspaces of \mathbb{R}^3 :

(a)
$$V = \operatorname{span}\left(\begin{bmatrix}3\\-1\\2\end{bmatrix}, \begin{bmatrix}1\\0\\1\end{bmatrix}, \begin{bmatrix}2\\-1\\1\end{bmatrix}, \begin{bmatrix}0\\1\\-4\end{bmatrix}\right)$$

(b) $V = \left\{\begin{bmatrix}v_1\\v_2\\v_3\end{bmatrix} \mid v_1 - 3v_2 = 0\right\}$

(c) Let $A : \mathbb{R}^3 \to \mathbb{R}^3$ be any linear transformation such that dim ker A = 0. Find a basis for $V = \operatorname{im} A$.

Topic 2: Orthogonality

Exercise 2.1. For what values of $\lambda \in \mathbb{R}$ are the following pairs of vectors orthogonal?

Exercise 2.2. Determine whether the following sets of vectors are *orthonormal* (orthogonal and unit length):

(a) $\begin{bmatrix} 3/5\\4/5 \end{bmatrix}$, $\begin{bmatrix} -4/5\\3/5 \end{bmatrix}$. (b) $\begin{bmatrix} 1\\-1 \end{bmatrix}$, $\begin{bmatrix} 1\\1 \end{bmatrix}$. (c) $\begin{bmatrix} 2/3\\-1/3\\2/3 \end{bmatrix}$, $\begin{bmatrix} -1/3\\2/3\\2/3 \end{bmatrix}$, $\begin{bmatrix} 2/3\\2/3\\-1/3 \end{bmatrix}$ **Exercise 2.3.** Find the orthogonal projection of $\begin{bmatrix} 5\\5\\5 \end{bmatrix}$ onto the subspace $V = \operatorname{span} \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} -2\\1\\1 \end{bmatrix} \right\}$

Exercise 2.4. Find a basis for W^{\perp} , where

$$W = \operatorname{span}\left\{ \begin{bmatrix} 1\\2\\3\\4 \end{bmatrix}, \begin{bmatrix} 5\\6\\7\\8 \end{bmatrix} \right\}$$

(Hint: How can we relate W^{\perp} to subspaces where we know how to find a basis?)

Exercise 2.5. For each of the following vectors \vec{v} , find the decomposition $v^{||} + v^{\perp}$ with respect to the subspace

$$V = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-1\\1 \end{bmatrix} \right\}$$

Exercise 2.6. Let $V = \text{span}\{\vec{v}_1, \ldots, \vec{v}_k\}$ be a subspace of \mathbb{R}^n where the vectors $\vec{v}_1, \ldots, \vec{v}_k$ give an orthonormal basis for V.

- (a) If $\vec{w} \in V$, show that $\operatorname{proj}_V(\vec{w}) = \vec{w}$.
- (b) If $\vec{w} \in V^{\perp}$, show that $\operatorname{proj}_{V^{\perp}}(\vec{w}) = 0$.

Exercise 2.7. Let

$$A = \begin{bmatrix} 2 & 3 & -1 & 0 \\ 2 & 1 & 1 & -4 \end{bmatrix}$$

Find an orthonormal basis $\mathcal{B} = \{u_1, u_2\}$ for ker A.

Exercise 2.8. Find the QR decomposition of the matrix

$$A = \begin{bmatrix} 1 & -1 & 1 \\ -1 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix}$$

True or False

Exercise TF. True or false: Explain your reasoning or find an example or counterexample.

- (a) If V is a subspace of \mathbb{R}^3 that does not contain any of the elementary column vectors e_1, e_2, e_3 , then $V = \{\vec{0}\}$.
- (b) If v_1, v_2, v_3, v_4 are linearly independent vectors, then v_1, v_2, v_3 are linearly independent.
- (c) If v_1, v_2, v_3 are linearly independent vectors, then v_1, v_2, v_3, v_4 are linearly independent.
- (d) It is possible for a 4 × 4 matrix A to have ker $A = \operatorname{span} \left\langle \begin{array}{c} 1 \\ 0 \\ 0 \\ 1 \end{array} \right\rangle, \begin{array}{c} 2 \\ 3 \\ 0 \\ 0 \\ 1 \end{array} \right\rangle$ and

$$\operatorname{im} A = \operatorname{span} \left\langle \begin{bmatrix} 1\\0\\0\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\4\\2 \end{bmatrix}, \begin{bmatrix} 0\\2\\3\\-1 \end{bmatrix} \right\rangle$$

- (e) There exists a 4×4 matrix A with ker $A = \operatorname{span}\langle e_1, e_2, e_3 \rangle$ and im $A = \operatorname{span}\langle e_3 + e_4 \rangle$
- (f) There exists a 5×5 matrix A with ker A = im A.
- (g) There exists a 4×4 matrix A with ker $A = \operatorname{im} A$.
- (h) If A is orthogonal then it is invertible.
- (i) If A is symmetric $(A = A^T)$ it is invertible.
- (j) Let V be a subspace of \mathbb{R}^n with orthonormal basis $\{u_1, \ldots, u_m\}$, and let $\{v_1, \ldots, v_{n-m}\}$ be an orthonormal basis for V^{\perp} . Then $\{u_1, \ldots, u_m, v_1, \ldots, v_{n-m}\}$ is an orthonormal basis for \mathbb{R}^n .
- (k) The entries of an orthogonal matrix are all less than or equal to 1 in absolute value.
- (1) Let V be a subspace of \mathbb{R}^n and B the matrix for orthogonal projection onto V. Then $B^2 = B$.

(m) Let
$$\mathcal{B} = \{v_1, v_2, v_3\} = \left\{ \begin{bmatrix} 2\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\3\\-1 \end{bmatrix} \right\}$$
 be an ordered basis for \mathbb{R}^3 . Then $\begin{bmatrix} 1\\-8\\3 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2\\1\\-2 \end{bmatrix}$.

- (n) If v_1, \ldots, v_m is a basis of unit length vectors for a subspace V, there is an orthonormal basis of V containing the vectors v_1 and v_2 .
- (o) For all $v, w \in \mathbb{R}^n$, $\langle v, w \rangle^2 \leq ||v||^2 ||w||^2$ with equality if and only if v, w are perpendicular. Notation: $\langle v, w \rangle$ refers to the dot product $v \cdot w$.