
MATH 33A (Extra) Final Practice

TA: Emil Geisler

June 9, 2024

Remember to fill out course evaluations on MyUCLA!
Disclaimer: These questions may not reflect what will appear on the final.
Exercise 1. Compute the characteristic polynomial for the following matrices:

(a)

[
2 −2
1 4

]

(b)

3 −2 4
0 1 −3
0 0 4


(c)

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
with coefficients of the characteristic polynomial in terms of sin(θ), cos(θ)

(d)


0 0 0 4
0 0 −2 0
0 1 0 0
0 0 0 0


(a) x2 − 6x+ 10.

(b) (x− 3)(x− 1)(x− 4) since the matrix is upper triangular detA−xIn is also upper triangular.

(c) x2 − 2 cos(θ)x+ 1 (using that cos(θ)2 + sin(θ)2 = 1.

(d)

det


−x 0 0 4
0 −x −2 0
0 1 −x 0
0 0 0 −x

 = −x det

−x −2 0
1 −x 0
0 0 −x

 = x2 det

[
−x −2
1 −x

]
= x2(x2 + 2)

Exercise 2. For what values of a ∈ R does the following matrix have an eigenvalue of 2?
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A =

4 0 2
2 a 3
0 a2 1


A has an eigenvalue of 2 if and only if kerA − 2I3 ̸= {⃗0}, which is true if and only if A − 2I3 is
invertible. Thus, A has an eigenvalue of 2 if and only if detA − 2I3 = 0. Thus let us compute
detA− 2I3 in terms of a.

detA− 2I3 = det

2 0 2
2 a− 2 3
0 a2 −1

 = 2det

[
a− 2 3
a2 −1

]
− 0 + 2 det

[
2 a− 2
0 a2

]

= (−2a+ 4− 6a2) + 4a2 = −2a2 − 2a+ 4

This polynomial has roots of 1 and −2 by factoring or the quadratic equation. so the only values
of a for which A has an eigenvalue of 2 are a = 1 and a = −2.

Exercise 3. Let A =

[
19 −12
30 −19

]
.

(a) What are the eigenvalues of A?

(b) Find bases for the eigenspaces of A.

(c) Using part (b), diagonalize A.

(d) Use diagonalization to find A100.

(a) We compute that the characteristic polynomial of A is

(λ− 19)(λ+ 19) + 12 ∗ 30 = λ2 − 361 + 360 = λ2 − 1 = (λ− 1)(λ+ 1)

Therefore, A has eigenvalues 1 and −1.

(b) Since A has eigenvalues 1 and −1, we must find bases for ker I2 − A and ker−I2 − A.

Eigenvalue of 1: ker I2 − A = ker

[
−18 12
−30 20

]
. Row reducing, we find that ker I2 − A =

span⟨
[
2
3

]
⟩. So v1 =

[
2
3

]
is a basis for the subspace of eigenvectors of A with eigenvalue 1.

Eigenvalue of 2: ker−I2 − A = ker

[
−20 12
−30 18

]
. Row reducing, we find that ker−I2 − A =

span⟨
[
3
5

]
⟩. So v2 =

[
3
5

]
is a basis for the subspace of eigenvectors of A with eigenvalue −1.

(c) Therefore, letting B =
[
v1 v2

]
=

[
2 3
3 5

]
and recalling that v1 has eigenvalue 1 and v2 has

eigenvalue −1, we have:

A = B

[
−1 0
0 1

]
B−1

2



We can explicitly compute B−1, and it’s not too bad since detB = 1:

A =

[
2 3
3 5

] [
−1 0
0 1

] [
5 −3
−3 2

]
(d) We have:

A100 = (BDB−1)100 =

100︷ ︸︸ ︷
(BDB−1)(BDB−1) . . . (BDB−1) = BD100B−1

We have

D100 =

[
−1 0
0 1

]100
=

[
−1100 0
0 1100

]
= I2

Therefore,

A100 = BD100B−1 = BI2B
−1 = BB−1 = I2 =

[
1 0
0 1

]

Exercise 4. True or false:

(a) If V and W are dimension m and k subspaces of Rn, then V ∩W is dimension m− k.

(b) If A is invertible, then det(A−1) = 1/(detA).

(c) If A is an m× n matrix with n > m, there is a non-zero vector v such that A · v = 0⃗.

(d) The matrix

 2 1 0
−1 4 0
0 0 2

 is invertible.

(e) If A is an m× n matrix with n < m, there is always a solution to Ax = b⃗ for any b⃗ ∈ Rn.

(f) The rank of a matrix A is the number of leading ones in RREF.

(g) The dimension of the kernel of a matrix A is the number of columns without a leading one in
RREF.

(h) If A ·B =

[
0 0
0 0

]
for 2 by 2 matrices A and B, then either A = 0 or B = 0.

(i) If three vectors v1, v2, v3 ∈ Rn are linearly independent, then dim span⟨v1, v2, v3⟩ = 3.

(j) There is an orthonormal basis of kerA, where A =

 3 0 1
−6 0 −2
0 0 0

.

(a) False

(b) True, since det(A−1) det(A) = det(A−1A) = det(In) = 1.
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(c) True, the RREF has at least one column without a leading 1 or by rank nullity since dim ImA ≤
m, we have dimkerA = n− dim ImA > 0.

(d) True find the determinant

(e) No, zero matrix with any non-zero vector

(f) True

(g) True (also, (f) + (g) proves rank nullity!)

(h) No, A = B =

[
0 1
0 0

]
(i) True

(j) True. By Gram Schmidt, we can always find an orthonormal basis for any subspace of Rn.
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Exercise 4. Diagonalize the following matrices or show that they cannot be diagonalized by
showing that the geometric multiplicity of an eigenvalue is less than its algebraic multiplicity:

(a)

[
4 2
−1 1

]

(b)

[
−2 9
−1 4

]

(c)

[
a 1
0 b

]
for a ̸= b ∈ R.

(a) Characteristic polynomial is P (x) = x2 − 5x+ 6 = (x− 3)(x− 2).
Eigenvalue of 2:

A − 2I2 =

[
2 2
−1 −1

]
, which has RREF

[
1 1
0 0

]
and thus kernel of the form ker(A − 2I2) ={[

−x2

x2

]
x2 ∈ R

}
= span⟨

[
−1
1

]
⟩ so {

[
−1
1

]
} is a basis for the eigenspace of A with eigenvalue

2.
Eigenvalue of 3:

A − 3I2 =

[
1 2
−1 −2

]
which has RREF

[
1 2
0 0

]
and thus has basis of the kernel given by

{
[
2
−1

]
}.

Thus, we have A = SDS−1 for S =

[
2 −1
−1 1

]
and D =

[
3 0
0 2

]
. We can compute S−1 =[

1 1
1 2

]
.

(b) Characteristic polynomial is P (x) = x2 − 2x+ 1 = (x− 1)2.
Eigenvalue of 1:

A− I2 =

[
−3 9
−1 3

]
which has RREF

[
1 −3
0 0

]
and thus has basis of the kernel given by {

[
3
1

]
}.

Thus, the geometric multiplicity of (λ = 1) is 1 since the eigenspace has a basis with a
single vector and is thus one dimensional, but the algebraic multiplicity of (λ = 1) is 2 since
P (x) = (x− 1)2. Thus, A is not diagonlizable.

(c) (Note: if a = b, this matrix is not diagonalizable since the algebraic multiplicity of (λ = a = b)
is 2 but the geometric multiplicity is 1.
The characteristic polynomial is P (x) = (x− a)(x− b). Since a ̸= b, P has two eigenvalues.
Eigenvalue of λ = a:

A−aI2 =

[
0 1
0 b− a

]
which has RREF

[
0 1
0 0

]
. Thus, a basis for kerA−aI2 is given by {

[
1
0

]
}.

Eigenvalue of λ = b:

A − bI2 =

[
a− b 1
0 0

]
. Since a ̸= b, a − b ̸= 0, so this matrix has RREF

[
1 1

a−b

0 0

]
and thus

has basis for kerA− bI2 given by {
[

1
b− a

]
}.
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Thus, we have

S =

[
1 1
0 b− a

]
D =

[
a 0
0 b

]
and S−1 =

[
1 − 1

b−a

0 1
b−a

]
.

Exercise 5. Find a basis of the kernel and image of the matrix A =

 0 −2 1 4
1 0 1 3
−1 −4 1 5

.
Proof. Row reducing we have 1 0 1 3

0 1 −1/2 −2
0 0 0 0


Since only the first two columns have leading ones, the first two columns form a basis of A, so

{

 0
1
−1

 ,

−2
0
−4

} is a basis for ImA. Using RREF to express the solutions to Ax = 0, we find that

{


−1
1/2
1
0

 ,


−3
2
0
1

} form a basis for kerA.

Exercise 6. Find the QR factorization of the following invertible matrix:

A =

 2 2 2
0 1 −1
−2 0 2


Performing Gram Schmidt on the columns of A (in the order they appear), we have:

v⊥1 =

 2
0
−2



v⊥2 = v2 −
v2 · v⊥1
||v⊥1 ||2

v1 =

11
1


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v⊥3 = v3 −
v3 · v⊥1
||v⊥1 ||2

− v3 · v⊥2
||v⊥2 ||2

=

 1
−2
1


Normalizing, we have

u1 =

 1√
2

0
−1√
2

 u2 =


1√
3
1√
3
1√
3

 u3 =


1√
6

−2√
6
1√
6


Thus, we have

Q =
[
u1 u2 u3

]
=


1√
2

1√
3

1√
6

0 1√
3

−2√
6

−1√
2

1√
3

1√
6


We now want to find R such that A = QR. Since Q is orthogonal, QT = Q−1 and Q is invertible.
Therefore, R = Q−1A = QTA. Therefore,

R = QTA =


1√
2

0 −1√
2

1√
3

1√
3

1√
3

1√
6

−2√
6

1√
6


 2 2 2

0 1 −1
−2 0 2

 =

2√2
√
2 0

0
√
3

√
3

0 0
√
6


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