MATH 33A (Extra) Final Practice

TA: Emil Geisler

June 9, 2024

Remember to fill out course evaluations on MyUCLA!

Disclaimer: These questions may not reflect what will appear on the final. Exercise 1. Compute the characteristic polynomial for the following matrices:

- (a) $\begin{bmatrix} 2 & -2 \\ 1 & 4 \end{bmatrix}$
- (b) $\begin{bmatrix} 3 & -2 & 4 \\ 0 & 1 & -3 \\ 0 & 0 & 4 \end{bmatrix}$
- (c) $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ with coefficients of the characteristic polynomial in terms of $\sin(\theta), \cos(\theta)$ (d) $\begin{bmatrix} 0 & 0 & 0 & 4 \\ 0 & 0 & -2 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
- (a) x² 6x + 10.
 (b) (x 3)(x 1)(x 4) since the matrix is upper triangular det A − xI_n is also upper triangular.
 (c) x² 2cos(θ)x + 1 (using that cos(θ)² + sin(θ)² = 1.
 (d)

$$\det \begin{bmatrix} -x & 0 & 0 & 4\\ 0 & -x & -2 & 0\\ 0 & 1 & -x & 0\\ 0 & 0 & 0 & -x \end{bmatrix} = -x \det \begin{bmatrix} -x & -2 & 0\\ 1 & -x & 0\\ 0 & 0 & -x \end{bmatrix} = x^2 \det \begin{bmatrix} -x & -2\\ 1 & -x \end{bmatrix} = x^2(x^2 + 2)$$

Exercise 2. For what values of $a \in \mathbb{R}$ does the following matrix have an eigenvalue of 2?

$$A = \begin{bmatrix} 4 & 0 & 2 \\ 2 & a & 3 \\ 0 & a^2 & 1 \end{bmatrix}$$

A has an eigenvalue of 2 if and only if ker $A - 2I_3 \neq \{\vec{0}\}$, which is true if and only if $A - 2I_3$ is invertible. Thus, A has an eigenvalue of 2 if and only if det $A - 2I_3 = 0$. Thus let us compute det $A - 2I_3$ in terms of a.

$$\det A - 2I_3 = \det \begin{bmatrix} 2 & 0 & 2\\ 2 & a - 2 & 3\\ 0 & a^2 & -1 \end{bmatrix} = 2 \det \begin{bmatrix} a - 2 & 3\\ a^2 & -1 \end{bmatrix} - 0 + 2 \det \begin{bmatrix} 2 & a - 2\\ 0 & a^2 \end{bmatrix}$$
$$= (-2a + 4 - 6a^2) + 4a^2 = -2a^2 - 2a + 4$$

This polynomial has roots of 1 and -2 by factoring or the quadratic equation. so the only values of a for which A has an eigenvalue of 2 are a = 1 and a = -2.

Exercise 3. Let $A = \begin{bmatrix} 19 & -12 \\ 30 & -19 \end{bmatrix}$.

- (a) What are the eigenvalues of A?
- (b) Find bases for the eigenspaces of A.
- (c) Using part (b), diagonalize A.
- (d) Use diagonalization to find A^{100} .
- (a) We compute that the characteristic polynomial of A is

$$(\lambda - 19)(\lambda + 19) + 12 * 30 = \lambda^2 - 361 + 360 = \lambda^2 - 1 = (\lambda - 1)(\lambda + 1)$$

Therefore, A has eigenvalues 1 and -1.

(b) Since A has eigenvalues 1 and -1, we must find bases for ker $I_2 - A$ and ker $-I_2 - A$. **Eigenvalue of 1:** ker $I_2 - A = \text{ker} \begin{bmatrix} -18 & 12 \\ -30 & 20 \end{bmatrix}$. Row reducing, we find that ker $I_2 - A = \text{span} \langle \begin{bmatrix} 2 \\ 3 \end{bmatrix} \rangle$. So $v_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is a basis for the subspace of eigenvectors of A with eigenvalue 1. **Eigenvalue of 2:** ker $-I_2 - A = \text{ker} \begin{bmatrix} -20 & 12 \\ -30 & 18 \end{bmatrix}$. Row reducing, we find that ker $-I_2 - A = \text{span} \langle \begin{bmatrix} 3 \\ 5 \end{bmatrix} \rangle$. So $v_2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ is a basis for the subspace of eigenvectors of A with eigenvalue -1.

(c) Therefore, letting $B = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix}$ and recalling that v_1 has eigenvalue 1 and v_2 has eigenvalue -1, we have:

$$A = B \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix} B^{-1}$$

We can explicitly compute B^{-1} , and it's not too bad since det B = 1:

$$A = \begin{bmatrix} 2 & 3 \\ 3 & 5 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 5 & -3 \\ -3 & 2 \end{bmatrix}$$

(d) We have:

$$A^{100} = (BDB^{-1})^{100} = \overbrace{(BDB^{-1})(BDB^{-1})\dots(BDB^{-1})}^{100} = BD^{100}B^{-1}$$

We have

$$D^{100} = \begin{bmatrix} -1 & 0\\ 0 & 1 \end{bmatrix}^{100} = \begin{bmatrix} -1^{100} & 0\\ 0 & 1^{100} \end{bmatrix} = I_2$$

Therefore,

$$A^{100} = BD^{100}B^{-1} = BI_2B^{-1} = BB^{-1} = I_2 = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}$$

Exercise 4. True or false:

- (a) If V and W are dimension m and k subspaces of \mathbb{R}^n , then $V \cap W$ is dimension m k.
- (b) If A is invertible, then $det(A^{-1}) = 1/(det A)$.
- (c) If A is an $m \times n$ matrix with n > m, there is a non-zero vector v such that $A \cdot v = \vec{0}$.

(d) The matrix
$$\begin{bmatrix} 2 & 1 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is invertible.

- (e) If A is an $m \times n$ matrix with n < m, there is always a solution to $Ax = \vec{b}$ for any $\vec{b} \in \mathbb{R}^n$.
- (f) The rank of a matrix A is the number of leading ones in RREF.
- (g) The dimension of the kernel of a matrix A is the number of columns without a leading one in RREF.
- (h) If $A \cdot B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ for 2 by 2 matrices A and B, then either A = 0 or B = 0.
- (i) If three vectors $v_1, v_2, v_3 \in \mathbb{R}^n$ are linearly independent, then dim span $\langle v_1, v_2, v_3 \rangle = 3$.
- (j) There is an orthonormal basis of ker A, where $A = \begin{bmatrix} 3 & 0 & 1 \\ -6 & 0 & -2 \\ 0 & 0 & 0 \end{bmatrix}$.

(a) False

(b) True, since
$$\det(A^{-1}) \det(A) = \det(A^{-1}A) = \det(I_n) = 1$$
.

- (c) True, the RREF has at least one column without a leading 1 or by rank nullity since dim $\text{Im}A \leq m$, we have dim ker $A = n \dim \text{Im}A > 0$.
- (d) True find the determinant
- (e) No, zero matrix with any non-zero vector
- (f) True
- (g) True (also, (f) + (g) proves rank nullity!)

(h) No,
$$A = B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

- (i) True
- (j) True. By Gram Schmidt, we can always find an orthonormal basis for any subspace of \mathbb{R}^n .

Exercise 4. Diagonalize the following matrices or show that they cannot be diagonalized by showing that the geometric multiplicity of an eigenvalue is less than its algebraic multiplicity:

(a)
$$\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$

(b) $\begin{bmatrix} -2 & 9 \\ -1 & 4 \end{bmatrix}$
(c) $\begin{bmatrix} a & 1 \\ 0 & b \end{bmatrix}$ for $a \neq b \in \mathbb{R}$.

(a) Characteristic polynomial is $P(x) = x^2 - 5x + 6 = (x - 3)(x - 2)$. Eigenvalue of 2:

 $A - 2I_2 = \begin{bmatrix} 2 & 2 \\ -1 & -1 \end{bmatrix}, \text{ which has RREF } \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \text{ and thus kernel of the form } \ker(A - 2I_2) = \begin{cases} \begin{bmatrix} -x_2 \\ x_2 \end{bmatrix} x_2 \in \mathbb{R} \\ \end{bmatrix} = \operatorname{span}\langle \begin{bmatrix} -1 \\ 1 \end{bmatrix} \rangle \text{ so } \{ \begin{bmatrix} -1 \\ 1 \end{bmatrix} \} \text{ is a basis for the eigenspace of } A \text{ with eigenvalue } 2.$

Eigenvalue of 3:

 $A - 3I_2 = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$ which has RREF $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ and thus has basis of the kernel given by $\{ \begin{bmatrix} 2 \\ -1 \end{bmatrix} \}$.

Thus, we have $A = SDS^{-1}$ for $S = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$ and $D = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. We can compute $S^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$.

(b) Characteristic polynomial is $P(x) = x^2 - 2x + 1 = (x - 1)^2$. Eigenvalue of 1:

 $A - I_2 = \begin{bmatrix} -3 & 9 \\ -1 & 3 \end{bmatrix}$ which has RREF $\begin{bmatrix} 1 & -3 \\ 0 & 0 \end{bmatrix}$ and thus has basis of the kernel given by $\{ \begin{bmatrix} 3 \\ 1 \end{bmatrix} \}$. Thus, the geometric multiplicity of $(\lambda = 1)$ is 1 since the eigenspace has a basis with a single vector and is thus one dimensional, but the algebraic multiplicity of $(\lambda = 1)$ is 2 since $P(x) = (x - 1)^2$. Thus, A is not diagonlizable.

(c) (Note: if a = b, this matrix is not diagonalizable since the algebraic multiplicity of $(\lambda = a = b)$ is 2 but the geometric multiplicity is 1. The characteristic polynomial is P(x) = (x - a)(x - b). Since $a \neq b$, P has two eigenvalues. **Eigenvalue of** $\lambda = a$: $A - aI_2 = \begin{bmatrix} 0 & 1 \\ 0 & b - a \end{bmatrix}$ which has RREF $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$. Thus, a basis for ker $A - aI_2$ is given by $\{ \begin{bmatrix} 1 \\ 0 & 0 \end{bmatrix} \}$. **Eigenvalue of** $\lambda = b$: $A - bI_2 = \begin{bmatrix} a - b & 1 \\ 0 & 0 \end{bmatrix}$. Since $a \neq b$, $a - b \neq 0$, so this matrix has RREF $\begin{bmatrix} 1 & \frac{1}{a-b} \\ 0 & 0 \end{bmatrix}$ and thus has basis for ker $A - bI_2$ given by $\{ \begin{bmatrix} 1 \\ b - a \end{bmatrix} \}$. Thus, we have

$$S = \begin{bmatrix} 1 & 1 \\ 0 & b - a \end{bmatrix} \qquad D = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

and $S^{-1} = \begin{bmatrix} 1 & -\frac{1}{b-a} \\ 0 & \frac{1}{b-a} \end{bmatrix}$.

Exercise 5. Find a basis of the kernel and image of the matrix $A = \begin{bmatrix} 0 & -2 & 1 & 4 \\ 1 & 0 & 1 & 3 \\ -1 & -4 & 1 & 5 \end{bmatrix}$.

Proof. Row reducing we have

$$\begin{bmatrix} 1 & 0 & 1 & 3 \\ 0 & 1 & -1/2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Since only the first two columns have leading ones, the first two columns form a basis of A, so $\left\{ \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} -2\\0\\-4 \end{bmatrix} \right\}$ is a basis for ImA. Using RREF to express the solutions to Ax = 0, we find that $\left\{ \begin{bmatrix} -1\\1/2\\1\\0 \end{bmatrix}, \begin{bmatrix} -3\\2\\0\\1 \end{bmatrix} \right\}$ form a basis for ker A.

Exercise 6. Find the QR factorization of the following invertible matrix:

$$A = \begin{bmatrix} 2 & 2 & 2\\ 0 & 1 & -1\\ -2 & 0 & 2 \end{bmatrix}$$

Performing Gram Schmidt on the columns of A (in the order they appear), we have:

$$v_1^{\perp} = \begin{bmatrix} 2\\0\\-2 \end{bmatrix}$$
$$v_2^{\perp} = v_2 - \frac{v_2 \cdot v_1^{\perp}}{||v_1^{\perp}||^2} v_1 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

$$v_3^{\perp} = v_3 - \frac{v_3 \cdot v_1^{\perp}}{||v_1^{\perp}||^2} - \frac{v_3 \cdot v_2^{\perp}}{||v_2^{\perp}||^2} = \begin{vmatrix} 1\\ -2\\ 1 \end{vmatrix}$$

Normalizing, we have

$$u_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{-1}{\sqrt{2}} \end{bmatrix} \qquad u_2 = \begin{bmatrix} \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \end{bmatrix} \qquad u_3 = \begin{bmatrix} \frac{1}{\sqrt{6}} \\ \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{bmatrix}$$

Thus, we have

$$Q = \begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

We now want to find R such that A = QR. Since Q is orthogonal, $Q^T = Q^{-1}$ and Q is invertible. Therefore, $R = Q^{-1}A = Q^TA$. Therefore,

$$R = Q^{T}A = \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 2 & 2 & 2 \\ 0 & 1 & -1 \\ -2 & 0 & 2 \end{bmatrix} = \begin{bmatrix} 2\sqrt{2} & \sqrt{2} & 0 \\ 0 & \sqrt{3} & \sqrt{3} \\ 0 & 0 & \sqrt{6} \end{bmatrix}$$