MATH 33A Worksheet 2

TA: Emil Geisler and Caleb Partin

April 9, 2024

Exercise 1. Describe all solutions to the following linear systems.

(a)

$$x + 3y - 2z = 4$$

$$2x - y + 3z = 15$$

$$x - z = 3$$

(b)

$$x + y - 2z = 1$$

$$2x - 3y + z = 1$$

$$x - z = 2$$

(c)

$$x - 2y = 2$$

$$2y + 3z = 4$$

Exercise 2. Write down what it means for a matrix to be in row reduced echelon form (RREF). Which of the following matrices are in RREF? For each matrix, write its rank.

- (a) $\begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- (b) $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
- $(c) \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- $(d) \begin{tabular}{llll} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{tabular}$
- $\begin{array}{ccccc}
 (e) & \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
 \end{array}$

Exercise 3. Find values a and b so that the ellipse $ax^2 + by^2 = 1$ goes through the points (3,2) and (17,12).

Exercise 4. Compute the following in the order of the parentheses, and observe they are the same. This is an example of the rule $A \cdot (\vec{v} + \vec{w}) = A \cdot \vec{v} + A \cdot \vec{w}$ for any $m \times n$ matrix A and $\vec{v}, \vec{w} \in \mathbb{R}^n$, i.e., A is a linear transformation.

(a)
$$\begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \left(\begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} \right)$$

(b)
$$\begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + \begin{bmatrix} 2 & -1 & 3 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}$$

Exercise 5.

Compute the following in the order of the parentheses, and observe they are the same. This is an example of the rule $B \cdot (A \cdot \vec{v}) = (B \cdot A) \cdot \vec{v}$ for any $m \times n$ matrix B, $n \times q$ matrix A, and \vec{v} a vector in \mathbb{R}^q .

(a)
$$\begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} \left(\begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right)$$

(b)
$$\left(\begin{bmatrix} 2 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 & 2 \\ 3 & 1 & 0 \end{bmatrix}\right)\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$