
A GUIDE TO SERRE’S A COURSE IN ARITHMETIC

COLIN NI

Abstract. This paper exposits Serre’s book [1] on number theory. It presents

motivating examples, heuristic arguments to justify ideas, and a summary of
results for each chapter. We hope to aid future readers of this classic.

Contents

1. Finite fields 2
2. p-adic fields 3
3. Hilbert symbol 5
4. Quadratic forms over Qp and over Q 6
5. Integral quadratic forms with discriminant ±1 9
6. The theorem on arithmetic progressions 11
7. Modular forms 14
Acknowledgments 18
References 18

Number theoretic questions often lead to powerful mathematics. For example,
to prove Legendre’s conjecture that every arithmetic progression a, a+d, a+2d, . . .
for coprime a and d contains an infinite number of primes, Dirichlet invented his L
functions in 1837, and since then L functions and their generalizations have become
a focus in modern mathematics. The Birch and Swinnerton-Dyer conjecture, one
of the seven millennium prize problems, revolves around L functions for elliptic
curves. Moreover, the reciprocity conjecture of the Langlands program, perhaps the
biggest project in modern mathematics, studies automorphic L functions attached
to certain representations of the general linear group.

Number theory gives rise to and helps explain strange phenomena; for instance,
the following incredible yet related facts are scattered throughout Serre’s book. In 8
dimensions, at most 240 spheres can touch a common sphere without overlap. This
kissing number is realized by an arrangement via the Γ8 lattice, the only unimodular
lattice of rank 8. More generally, the study of spaces of modular forms determines
that the Γ8 lattice has 240σ3(m) vectors of squared norm 2m, where σk(m) is the
sum of the kth powers of the divisors of m, and it is the root system of E8, one of
the five exceptional cases in the Cartan-Killing classification of complex simple Lie
algebras. Analogously in 24 dimensions, the bound is 196560 spheres and is realized
by the Leech lattice, the only one of the 24 unimodular lattices with rank 24 without
a vector of squared norm 2. The Leech lattice has exactly 65520

691 (σ11(m) − τ(m))
vectors of squared norm 2m, where τ is the Ramanujan function. The quotient of
its automorphism group by its center is Co1, one of the 26 sporadic cases in the
classification of finite simple groups.

We aim to highlight these motivations and phenomena in this paper.
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1. Finite fields

Quadratic reciprocity provides a way to compute whether or not a number is a
square mod p. The Legendre symbol records this information as(

`

p

)
=

{
+1 if ` is a square mod p

−1 otherwise,

for instance
(

37
47

)
= 1 since 37 ≡ 152 mod 47 but

(
38
47

)
= −1 since 38 is not, which

the following Python command confirms:

>>> 38 in [(n ** 2) % 47 for n in range(47)]
False

For odd distinct primes p, q the quadratic reciprocity law [Thm I.6] reads(
q

p

)
=

(
p

q

)
(−1)

q−1
2 ·

p−1
2 .

After observing the Legendre symbol is multiplicative and proving(
2

p

)
=

{
+1 if p = ±1 mod 8

−1 otherwise

[Thm I.5(iii)], computing Legendre symbols becomes a simple matter of flipping
and factoring, for instance(

37

47

)
=

(
47

37

)
=

(
10

37

)
=

(
2

37

)(
5

37

)
= −1 ·

(
37

5

)
= −1 ·

(
2

5

)
= +1

versus (
38

47

)
=

(
2

47

)(
19

47

)
= 1 ·

(
19

47

)
= −

(
47

19

)
= −

(
9

19

)
= −1,

which agrees with our initial observations.
The quadratic reciprocity law is of fundamental importance. It was first proved

by Gauss in 1801 in his book Disquisitiones Arithmeticae and since then more
than 240 proofs have been published. According to Wikipedia, it has motivated
enormous branches of mathematics:

Since Gauss, generalizing the reciprocity law has been a leading
problem in mathematics and has been crucial to the development
of much of the machinery of modern algebra, number theory, and
algebraic geometry, culminating in Artin reciprocity, class field the-
ory, and the Langlands program.

One such proof of quadratic reciprocity, purely algebraic, is given in Serre and
relies on the following elementary properties of finite fields. Finite fields have prime
power q = pf order, and conversely there is exactly one field Fq up to isomorphism
for each such prime power [Thm I.1]; the construction uses Galois theory, taking
the fixed subfield of the fth iterate of the Frobenius automorphism x 7→ xp on an
algebraically closed field of characteristic p. Moreover, the multiplicative groups of
finite fields are cyclic [Thm I.2], in symbols F∗q ∼= 〈x | xq−1 = 1〉. This implies that

when p 6= 2 the index of F∗2q is two [Thm I.4] since it fits in the exact sequence

1 F∗2q F∗q {±1} 1

x x
q−1
2 .
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The key observation of finite fields used in the proof of reciprocity drops out of
these facts, namely that there is the same number of squares as nonsquares in any
finite field. Specifically, this key observation furnishes the identity∑

`∈Fp

(
`

p

)
= 0

used in Lemma 1 to Thm I.6. Additionally, a cute application of this key observation
shows that every element in a finite field can be written as a sum of two squares.
To see this, note the squares in Fq are precisely F∗2q ∪ {0} which has cardinality
q+1

2 , but in general if A,B ⊂ G are subsets of an additively written group such that
|A|+ |B| > |G|, then A+B = G.

The Chevalley-Warning theorem [Thm I.3] also depends on these facts. It states
that for a family of polynomials

fα ∈ Fq[X1, . . . , Xn] satisfying
∑
α

deg fα < n,

the number of common zeros in Fnq a multiple of p. As a specific corollary, any
homogeneous degree two polynomial in at least three variables over Fq has a non-
trivial zero. The fact that F∗q is cyclic goes into proving for a number u ≥ 0 the
identity ∑

x∈Fq

xu ≡

{
−1 if u ≥ 1 and q − 1 divides u

0 otherwise.

More importantly, there is a take-away idea in the proof of the Chevelley theorem,
namely to construct a characteristic function χV for the set V of common zeros via

χV =
∏
α

(1− fq−1
α ) =

{
1 on common zeros

0 elsewhere

and then rewriting the desired result as

|V | =
∑
x∈Fnq

χV (x) ≡ 0 mod p.

Now it is quick to complete the proof. Note χV is a linear combination of mono-
mials; by hypothesis they all have degree < n(q − 1), so for any monomial Xu =
Xu1

1 . . . Xun
n we have by the pigeonhole principle uk < q − 1 for some k. Hence by

the identity it follows that∑
x∈Fnq

xu =
∑

x∈Fn−1
q

xu1
1 . . . x̂ukk . . . xunn

∑
x∈Fq

xukk ≡ 0,

where the hat denotes omission.

2. p-adic fields

The p-adic field Qp enlarges the field of rational numbers Q. A heuristic view
on p-adic numbers is that they are base p numbers that trail off to the left, where
two numbers are considered closer the more numbers on which they agree starting
from the right. This admits a well-defined addition and multiplication of infinite
numbers in the usual way from elementary school. For example, in the 7-adics

21.5 = . . . 12121.5 ∈ Q7 and . . . 666.34 = 44
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since the sequence 1, 10, 100, . . . approaches both 0 and the difference 44−. . . 666.34.
Furthermore, any rational number can be written this way, for instance 1

5 = 12102

in Q3 since 0121 + 12102 = 2 = 0 and

−1

5
=

16

1− 34
=
(
32 + 2 · 31 + 30

) ∞∑
i=0

34i = 0121,

noting that the infinite sum converges in the 3-adics.
There are two popular constructions of the p-adics, one algebraic and one ana-

lytic, each of which highlights different topological properties.
For the analytic construction, on Q define the p-adic valuation

vp(x) = the unique n ∈ Z such that x = pn · a
b

where p - a, b

and then the p-adic metric

d(x, y) =
1

evp(x−y)

which realizes this intuition of closeness, then take the completion of Q with respect
to the metric. This analytic construction of Qp makes Q dense by definition, and
restricting this construction to Z constructs the p-adic integers Zp

On the other hand, there is the following algebraic construction. Let Zp be the
categorical (inverse) limit of the sequence

· · · Z/p3Z Z/p2Z Z/pZφ3 φ2

of rings with canonical maps, or equivalently let

Zp =

{
(. . . , x3, x2, x1) ∈

∞∏
n=1

Z/pnZ

∣∣∣∣∣ φ(xn) = xn−1 for all n ≥ 2

}
be a ring with coordinate-wise addition and multiplication. Endow each Z/pnZ
with the discrete topology and

∏∞
n=1 Z/pnZ with the product topology. This con-

struction of Zp makes it clear that it is compact: the product space is compact by
Tychonoff’s theorem, and Zp is closed in it because if (xn) /∈ Zp, then φ(xk) 6= xk−1

for some k ≥ 2, whence

∞∏
n=k+1

Z/pnZ× {xk} × {xk−1} ×
k−2∏
n=1

Z/pnZ

is an open set containing (xn).
Now the following brief algebraic examination of the group of units U in Zp

leads to a metrization of this topology and also to the algebraic construction of
Qp. Every element of Zp can be written uniquely in the form pnu with u ∈ U and
n ∈ Z ∪ {∞} where we set where p∞ = 0 [Prop II.2], so defining vp(x) to be this
number n metrizes Zp via the same distance function as before. Furthermore, the
identities

vp(xy) = vp(x) + vp(y) and vp(x+ y) ≥ min(vp(x), vp(y))

show that Zp is an integral domain. Using this to define Qp as the field of fractions
of Zp, the algebraic description of U accounts for the identity Qp = Zp[p−1], so the
metric on Zp extends to Qp via the same distance function.

Working in the p-adics has its merits and downsides. The main downside is that
having a solution in Qp of an equation does not guarantee a solution in Q. For
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instance, we will see momentarily that f(x) = x2−2 has a root in Q7, but certainly√
2 /∈ Q. On the other hand, algebraically Qp is well understood. In fact we have

seen that Q∗p ∼= Z × U, and an involved analysis of the group of units U via the
subgroups Un = 1 + pnZp produces the description

Q∗p ∼= Z× Zp × Z/(p− 1)Z for p 6= 2

[Thm II.2]. Furthermore, the convergence properties of the p-adics make it partic-
ularly nice on which to do analysis and find solutions to equations, largely due to
the following result.

Hensel’s lifting lemma lifts roots of polynomials mod pn to the p-adics. It does
this by successively lifting roots to still be roots mod higher powers of p while also
converging to a root in Zp. To illustrate, for f(x) = x2 − 2 we may successively lift
the root f(4) = 14 ≡ 0 mod 7 to

f(4 + 5 · 71) = 1519 ≡ 0 mod 72

f(4 + 5 · 71 + 4 · 72) = 55223 ≡ 0 mod 73

f(4 + 5 · 71 + 4 · 72 + 0 · 73) = 55223 ≡ 0 mod 74

f(4 + 5 · 71 + 4 · 72 + 0 · 73 + 5 · 74) = 149817598 ≡ 0 mod 75,

and we observe that the roots are beginning to converge in the 7-adics because
we are adjusting the roots by higher and higher powers of 7. This is analogous to
Newton’s method which uses the intersection of a tangent line with the x-axis to
iteratively approach a root of a differentiable function, taking smaller and smaller
steps. Motivated by this, a baby version of Hensel’s lemma states that if

f(a) ≡ 0 mod p and f ′(a) 6≡ 0 mod p for a ∈ Zp and f ∈ Zp[X],

then there exists a p-adic zero α ∈ Zp of f such that a ≡ α mod p. For instance
f ∈ Z7[X] above has a 7-adic root since f ′(4) = 6 6≡ 0 mod p. The full statement
[Thm II.1] is more general, taking into account an approximal root mod pn and
guaranteeing a closer final root depending on the valuation of the derivative.

3. Hilbert symbol

The Hilbert symbol is related to the Legendre symbol; it has a reciprocity law
which generalizes quadratic reciprocity, but it is a global property of the symbol as
opposed to a local property. Hilbert introduced the symbol in 1897, though only for
global fields, and the symbol has since been realized in terms of the Artin symbol
from local class field theory. The setting for the symbol is over a field k, which is
taken to be either the p-adic numbers Qp or the real numbers R.

The Hilbert symbol is defined for a, b ∈ k∗ as

(a, b) =

{
+1 if z2 = ax2 + by2 has a zero solution in k3

−1 otherwise.

Certainly this defines a map k∗/k∗2×k∗/k∗2 → {±1} because the symbol is invari-
ant up to multiplication of a, b by squares, but moreover straightforward deductions
establish that it is a nondegenerate bilinear form on the F2-vector space k∗/k∗2

[Thm III.2]. This follows from the following formulas for Hilbert symbols.
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There is a clean identity for the Hilbert symbol in terms of the Legendre symbols,
namely by writing a = pαu and b = pβv with u, v ∈ U, we have

(a, b) =

(−1)αβ·
p−1
2

(
u

p

)β (
v

p

)α
if p 6= 2

(−1)
u−1
2 ·

v−1
2 +α· v

2−1
2 +β·u

2−1
2 if p = 2

[Thm III.1], where we identity u, v ∈ U via their canonical images in U/U1
∼= F∗p.

Checking this identity amounts to case work for the parity of α, β, and funnily
enough α = β = 0 is the nontrivial case. Here to show (u, v) = 1, one argues
that z2 = ux2 + vy2 reduced mod p has a nontrivial solution by the mentioned
corollary to the Chevellay theorem, hence since its discriminant is a p-adic unit,
the solution lifts by a corollary to Hensel’s lemma. Moreover certainly for the case
of the nonzero real numbers we have

(a, b) =

{
+1 if a or b > 0

−1 if a and b < 0
for a, b ∈ R∗.

The Hilbert reciprocity law [Thm III.3] is as follows. Set V = {primes} ∪ {∞},
set Q∞ = R, and for a, b ∈ Q∗ denote by (a, b)p the Hilbert symbol of their images
in Qp. The global product formula reads∏

v∈V
(a, b)v = 1 where (a, b)v = 1 for almost all v ∈ V.

This generalizes quadratic reciprocity when a, b are distinct odd primes since

(a, b)2 = (−1)
a−1
2 ·

b−1
2 , (a, b)a =

(
b

a

)
, (a, b)b =

(a
b

)
, and (a, b)∞ = 1

by the above identities and (a, b)v = 1 for the other cases.

4. Quadratic forms over Qp and over Q

Number theory is among many fields that study quadratic forms. According to
Wikipedia:

Quadratic forms occupy a central place in various branches of math-
ematics, including number theory, linear algebra, group theory (or-
thogonal group), differential geometry (Riemannian metric, second
fundamental form), differential topology (intersection forms of four-
manifolds), and Lie theory (the Killing form).

At the most elementary viewpoint, number theory is frequently concerned with the
values that a quadratic form nontrivially takes, in other words the values it repre-
sents. As one example, Lagrange’s four square theorem states that the quadratic
form f(w, x, y, z) = w2 + x2 + y2 + z2 represents all positive numbers. More gen-
erally, if any positive definite quadratic form with integer matrix represents the 15
numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15,

then it represents all positive integers. Incredibly enough, for an integral quadratic
form, it suffices for the form to represent the 29 numbers

1, 2, 3, 5, 6, 7, 10, 13, 14, 15, 17, 19, 21, 22, 23,

26, 29,30, 31, 34, 35, 37, 42, 58, 93, 110, 145, 203, and 290,
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and furthermore this is sharp in the sense that for any one number omitted there
exists a form representing the other 28 numbers but not the omitted one. These
results were proved respectively in 1993 by John Conway and William Schneeberger
and in 2008 by Manjul Bhargava and Jonathan Hanke.

Quadratic forms are degree two homogeneous polynomials that can be written

f(X1, . . . , Xn) =

n∑
i=1

aiiX
2
i + 2

∑
i<j

aijXiXj

with coefficients in a field k whose characteristic we assume to be distinct from
2. Viewing two forms f and f ′ as bilinear forms on kn, they are equivalent and
written f ∼ f ′ if there exists a coordinate change between them. For instance
X1X2 ∼ X2

1 −X2
2 via the coordinate change(

1 1
−1 1

)
or in other words

X1 7→ X1 −X2

X2 7→ X1 +X2,

and forms of this type are called hyperbolic because their nonzero level sets are hy-
perbolas in R2. More precisely f ∼ f ′ if there exists Φ ∈ GLn(k) such that f = f ′◦Φ
or, alternatively, if their matrices are equivalent in the sense that A = XA′XT for
some X ∈ GLn(k).

Naturally, quadratic forms act on kn as symmetric bilinear forms, so the strategy
is to study all quadratic modules, finite dimensional vector spaces over k equipped
with such forms, and then relay the results back. Quadratic modules are more
general than inner product spaces because there is no requirement of positive-
definiteness; thus there are isotropic vectors, that is, nonzero norm zero vectors.
Carrying on the example, the module associated to a hyperbolic quadratic form is
generated by two nonorthogonal isotropic vectors, namely (1, 0) and (0, 1) which
have norm zero because they are on the height zero level set but which are nonorthog-
onal because their sum lies on the height one level set. Catering to the strategy,
note f ∼ f ′ just says their corresponding modules are isomorphic, and for two
forms f(X1, . . . , Xn) and g(X1, . . . , Xm) we write f+̇g for the form

f(X1, . . . , Xn) + g(Xn+1, . . . , Xn+m),

which corresponds to a direct sum of quadratic modules.
We now state and harvest the core results from studying quadratic modules. Ev-

ery quadratic module has an orthogonal basis [Thm IV.1], so every quadratic form
f in n variables is equivalent to a1X

2
1 +̇ . . . +̇anX

2
n for some a1, . . . , an ∈ k. Isomor-

phic subspaces of such modules have isomorphic orthogonal complements [Cor to
Thm IV.3], and this translates to Witt’s cancellation theorem, which asserts that
if g+̇h ∼ g′+̇h′ and g ∼ g′, then h ∼ h′. Since every isotropic vector is contained
in a hyperbolic plane [Prop IV.3], degenerate forms decompose into g1+̇ . . . +̇gm+̇h
where g1, . . . , gm are hyperbolic and h does not represent zero, and this is unique
by cancellation.

These results provide the language for the classification of forms over Qv, which
involve the following invariants. If f ∼ a1X

2
1 +̇ . . . +̇anX

2
n, then the number of the

ai that are nonzero is called its rank r, the product of them its discriminant d, and
the form f nondegenerate if it has rank n. If f is p-adic, then the Hilbert symbol is
defined, so we set

ε(f) =
∏
i<j

(ai, aj).
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This number is invariant of the chosen associated module [Thm IV.5], which follows
from a result in quadratic modules asserting that there is a finite chain of orthogonal
bases contiguously relating any two orthogonal bases [Thm IV.2]. Finally when f
is real its signature tracks the number of ai that are negative, zero, and positive.

The classification of quadratic forms over all of our familiar fields is as follows:

finite fields Fq − rank and discriminant

p-adics Qp − rank, discriminant, and ε

real numbers R − signature

rationals Q − over all Qv.
The proof of this classification requires much work. The main technical work

goes into the classification over Qp, in particular that a rank n quadratic form f
represents a ∈ k∗/k∗2 if and only if

n = 1 and a = d

or n = 2 and (a,−d) = ε

or n = 3 and a 6= d or else (−1,−d) = ε

or n ≥ 4

[Cor to Thm IV.6], which in particular shows that equivalent forms represent the
same values. Thus if f and g have the same invariants, then we have f ∼ aZ2+̇f ′

and g ∼ aZ2+̇g′ for some a ∈ k∗/k∗2 and rank n−1 forms f ′ and g′ [Cor 1 to Prop
IV.3’], so since squares vanish

d(f ′) = ad(f) = ad(g) = d(g′),

hence
ε(f ′) = ε(f)(a, d(f ′)) = ε(g)(a, d(g′)) = ε(g′).

Now by induction on rank it follows that f ∼ g.
The Hasse-Minkowski theorem classifies quadratic forms over Q and resolves the

issue displayed in §3 that a local solution in Qp does not guarantee a solution in Q.
For concrete intuition and motivation, consider the equation x3 − 2x + 17 = 0. It
does not have an integer solution because it does not have one mod 5, which one
checks easily; in other words, it does not have a global solution because it does not
have a local solution at some place. Conversely, this raises the question of whether
a local root everywhere should piece together a global root. The Hasse-Minkowski
theorem answers in the affirmative for quadratic forms (viewing R as a local place),
and for this reason it is called the local global principle. In particular, it asserts
that if an integral quadratic form represents a number over R and mod p for every
p, then it represents the number over R.

Precisely, the Hasse-Minkowski theorem [Thm IV.8] states that a quadratic form
f represents 0 over Q if and only if it does over all Qv, and by a similar induction
on rank and applying Witt’s cancellation theorem, it follows that two forms are
equivalent over Q if and only if they are equivalent over all Qv [Thm IV.9]. The
proof of Hasse-Minkowski is a celebration of the objects and techniques developed
in the first part of the book; it uses many major results nontrivially and involves
every core idea. Serre states in the preface that the goal of the first four chapters
is to achieve this theorem.

The theorem is extremely deep and powerful, so typically today Hasse-Minkowski
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is proved via class field theory which is even more so. Serre’s comparatively elemen-
tary proof in fact depends on Dirichlet’s theorem on arithmetic progressions, which
is proved later in the sixth chapter of the book. Nothing from the sixth chapter
uses anything from the first five, so there is no circular logic.

Unfortunately Hasse-Minkowski does not extend to cubic forms, degree 3 ho-
mogenous polynomials; the key counterexample is the one by Ernst Selmer:

3x3 + 4y3 + 5z3 = 0.

Indeed with some effort one demonstrates it has a solution over R and all Qp.
However, it does not have a solution over Q, which requires some difficult algebraic
number theory and the theory of elliptic curves to prove.

A serious application is Lagrange’s four square theorem. Gauss’s theorem is the
intermediate step, implying the four square theorem immediately; it states that n
being a sum of three squares is equivalent to the condition that n not be of the
form 4a(8b − 1). A study of the 2-adics [Thm II.4] reveals that this condition just
says −n is a square in Q∗2, but Hasse-Minkowski shows that f = x2 + y2 + z2

represents a ∈ Q∗ if and only if a > 0 and −a is not a square in Q∗2 since n = 3
and (−1,−d) = ε. Finally an elementary but intricate argument [Lemma B in the
appendix of IV] shows that for a quadratic forms of this kind a rational solution
implies the existence of an integer solution.

5. Integral quadratic forms with discriminant ±1

Also known as unimodular lattices, these quadratic forms and their associated
modules arise in many areas, for example in string theory, sphere packings, and low
dimensional topology. For the latter, according to Wikipedia:

The second cohomology group of a closed simply connected oriented
topological 4-manifold is a unimodular lattice. Michael Freedman
showed that this lattice almost determines the manifold: there is a
unique such manifold for each even unimodular lattice, and exactly
two for each odd unimodular lattice. In particular if we take the lat-
tice to be 0, this implies the Poincaré conjecture for 4-dimensional
topological manifolds. Donaldson’s theorem states that if the man-
ifold is smooth and the lattice is positive definite, then it must be
a sum of copies of Z, so most of these manifolds have no smooth
structure. One such example is the E8 manifold [the compact sim-
ply connected 4-manifold with intersection form the E8 lattice].

The condition for an integral quadratic form to have discriminant ±1 is equiv-
alent to its associated quadratic module to be isomorphic to its dual, viewing it
in the category of free abelian groups of rank n equipped with symmetric bilinear
forms and metric-preserving homomorphisms. Let Sn be the full subcategory of
such objects, and let S =

⋃
n Sn. Compared to the category of quadratic modules

over Z, the equivalence classes of objects here are finer since the change of coordi-
nate matrices must be integral.

Let Sn be the full subcategory of such objects, and let S =
⋃
n Sn. Compared to

the category of quadratic modules over Z, the equivalence classes of objects here
are finer since the change of coordinate matrices must be integral.

There are two crucial examples of such lattices. The first is I+, I− ∈ S1, both
Z but with respective quadratic forms +xy and −xy. The second is Γ8m ∈ S8m
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for m > 0 constructed as follows. In Z8m viewed in Q8m and with the induced
usual bilinear form Σxiyi, take the submodule E generated by e =

(
1
2 , . . . ,

1
2

)
and

by elements with even square norm. One checks the discriminant is +1 and that
x = (x1, . . . , x8m) ∈ E if and only if

2xi ∈ Z, xi − xj ∈ Z, and Σxi ∈ 2Z,
hence x.e = 1

2Σxi and e.e = 2k and so x.x is even. Thus Γ8m is even and in S8m.
The case Γ8 is particularly special since it arises as the root system for E8, one

of the five exceptional cases in the Cartan-Killing classification of complex simple
Lie algebras and which has corresponding Dynkin diagram

•

• • • • • • •
A root system of rank r is a collection of vectors, called roots, which span an
r-dimensional Euclidean space and are invariant under reflection through the hy-
perplane perpendicular to any root. In Γ8 resides a root system of rank r consisting
of the

240 = 4 ·
(

8

2

)
+

4∑
i=0

(
8

2i

)
elements with square norm two in Γ8, namely the permutations of the entires of
(±1,±1, 0, 0, 0, 0, 0, 0) and the vectors

(
± 1

2 , . . . ,±
1
2

)
which have an even number of

+ 1
2 entries. They generate Γ8, for instance via the basis(

+
1

2
,−1

2
, . . . ,−1

2
,+

1

2

)
, e1 + e2, and ei − ei−1 for 2 ≤ i ≤ 7.

For m ≥ 1, however, the vectors of square norm two do not generate Γ8m, so in
particular Γ8 ⊕ Γ8 6∼= Γ16.

Consider the following invariants attached to any lattice E ∈ S:

− rank n determined by E ∈ Sn
− index τ = r−s, where (r, s) is the signature obtained from extending scalars

to the real numbers by tensoring with R
− discriminant d from before, which here is equal to (−1)

s
2

− even, otherwise odd, if the quadratic form takes only even values
− εp, obtained by tensoring with Qp

Indefinite lattices of S are classified by rank, index, and type [Thm V.6]. More
generally, the Grothedieck group K(S) of the category S with respect to ⊕ is free
abelian, generated by I+ and I− [Thm V.1], where we recall that the Grothendieck
construction K(S) on a commutative monoid S formally inverts elements in the
most efficient way or, in other words, to satisfy the following universal property:

S A

K(S)

∀additive

∃!

Proving this requires an application of Hasse-Minkowski, in particular to show that
if E ∈ S is indefinite, then the quadratic module E ⊗ Q hence also E represents
zero [Thm V.3]; to do this one checks that E ⊗Q represents zero over all Qv.

There are a finite number of definite lattices of S for each rank; this follows from
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the reduction theory of quadratic forms, omitted from the book. To determine
explicitly the set Cn of isomorphism classes of even rank n = 8k lattices, one uses
the Minkowski-Siegel formula∑

E∈Cn

1

gE
=
B2k

8k

4k−1∏
j=1

Bj
4j
,

where Bi is the ith Bernoulli number and where gE is the order of the automorphism
group of E, which is finite because it is a discrete subgroup of the orthogonal group.
For Γ8 we have gΓ8

= 696729600 = 21435527, so since

B2

8

3∏
j=1

Bj
4j

=
1
30

8
·

1
6

4
·

1
30

8
·

1
42

12
=

1

696729600
,

it must be that Γ8 is the unique lattice of C8. Similarly in C16 there are certainly
two lattices Γ16 and Γ8 ⊕ Γ8 which have respectively gΓ16

= 215 · 16! and gΓ8⊕Γ8
=

2g2
Γ8

= 2293105472, so since

B4

16

7∏
j=1

Bj
4j

=
1
30

16
·

1
6

4
·

1
30

8
·

1
42

12
·

1
30

16
·

5
66

20
·

691
2730

24
·

7
6

28
=

1

215 · 16!
+

1

2293105472
,

it must be that C16 is comprised of precisely these two lattices. Hans-Volker
Niemeier classified the lattices in C24 in 1968 and found 24 elements, every one
of which except for the Leech lattice Λ contains an element with square norm 2.
The Leech lattice has automorphism group Co0 of order

gΛ = 222395472 · 11 · 13 · 23 = 8315553613086720000,

and the quotient of this group by its center {±1} is Co1, one of the 26 sporadic
finite simple groups.

6. The theorem on arithmetic progressions

Dirichlet’s prime number theorem states that for any two positive coprime inte-
gers a and d, the arithmetic sequence

a, a+ d, a+ 2d, a+ 3d, . . .

contains infinitely many prime numbers. Ben Green and Terence Tao in 2004 proved
a sort of converse that there exist arbitrarily long arithmetic sequences of primes;

43142746595714191 + 23681770 · 223092870 · n for n = 0, . . . , 25

is one of the longest such sequences known.
The core idea in proving Dirichlet’s theorem is to rephrase it in terms of density.

Setting P = {primes}, define the Riemann zeta function by

ζ(s) =

∞∑
n=1

1

ns
=
∏
p∈P

1

1− 1
ps

.

The identity between the sum and product is the Euler product formula and is
given by sieving the primes in the series as in Eratosthenes. Without analytic
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continuation it is holomorphic on R(s) > 1 and has a simple pole at s = 1, and its
log may be written in the form

log ζ(s) =
∑
p∈P

log

(
1− 1

ps

)
= −

∑
p∈P

∞∑
s=1

1

kpks
, where

∑
p∈P

∑
s≥2

1

kpks
is bounded

[Prop VI.10 and its Cor 2]. Thus the density of a subset A ⊂ P may be defined as

lim
s→1

∑
p∈A

1

ps

/ log
1

s− 1
using that

∑
p∈P

1

ps
∼ log

1

s− 1
as s→ 1.

Now a stronger version of the theorem asserts Pa = {primes coprime to a} has
density 1/φ(m), where obviously if Pa were finite, then it would have density zero.
Intuitively, this stronger statement says the primes are fairly distributed mod m,
so for instance there are as many primes ending in 1 as there are 3, 7, and 9.

Before introducing the Dirichlet L series, which are the main technical objects
in the proof of Dirichlet’s theorem, we discuss more generally Dirichlet series which
are of the form

∞∑
n=1

ane
−λnz.

Dirichlet series generalize series of the form an/n
s as well as power series. They

converge on open half planes [Cor 2 to Prop VI.6] and often on planes of the form
Re z > ρ, in which case we call ρ the abscissa of convergence. In the case where
the coefficients are real and nonnegative, there is the following extension property:
if the series converges on Re z > ρ as well as a neighborhood of ρ, then the series
also converges on Re z > ρ− ε [Prop VI.7].

Even more generally, the Dirichlet ring of arithmetic functions under Dirichlet
convolution and pointwise addition neatly collects many of the relationships be-
tween various Dirichlet series. Arithmetic functions are functions N → C, and the
Dirichlet convolution is

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

In this ring we denote by ε the identity ε(n) = δ1n, by 1 the constant function at 1,
and by Idk the kth power identity function defined by Idk(n) = nk. Among many
others, there are the relationships

1 ∗ µ = ε, σk = Idk ∗ 1, d = 1 ∗ 1, φ ∗ 1 = Id, and φ = Id ∗ µ
with the usual notations for the Möbius, Euler totient, and divisor functions.

Dirichlet L series are variants of the zeta function that are associated to charac-
ters mod m, that is, a character of G(m) = (Z/mZ)∗. Recall that the characters Ĝ
of a finite abelian group G are the homomorphisms χ : G → C∗, that they satisfy
the orthogonality relation [Prop V.4]∑

x∈G
χ(x) =

{
n if χ = 1

0 else,
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and that there is a natural isomorphism into the double dual via evaluation [Prop
V.3]. With χ a character mod m, its L function is defined by

L(s, χ) =

∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)

ps

.

Note here we have another Euler product formula, and we will see that the zeta
function associated to the mth roots of unity also has a corresponding Euler prod-
uct. When χ = 1 its L function differs from zeta only by

∏
p|m(1 − p−s)−1 hence

still has a simple pole at s = 1, and when χ 6= 1 it has abscissa of convergence 0.
The key property of L functions that Dirichet’s theorem relies on is that L(1, χ) 6=

0 whenever χ 6= 1. To prove this, consider the zeta function associated with the
field of mth roots of unity

ζm(s) =
∏

χ∈Ĝ(m)

L(s, χ) =
∏
p-m

1(
1− 1

pO(p)s

)φ(m)
O(p)

[Prop VI.13], where O(p) is the order of p ∈ G(m). It is a Dirichlet series with
positive integral coefficients. Furthermore, the only pole it can have is the simple
pole at s = 1 coming from L(s, 1), so if L(1, χ) = 0 for some χ 6= 1, then ζm
would be holomorphic at s = 1 hence holomorphic on Re z > 0 by the extension
property for Dirichlet series with nonnegative coefficients. But bounding the pth
multiplicand in the Euler product via

1(
1− 1

pO(p)s

)φ(m)
O(p)

=

( ∞∑
n=0

p−nO(p)s

)φ(m)
O(p)

>

∞∑
n=0

p−nφ(m)s =
1

1− 1

pφ(m)s

,

it follows that

ζm(s) >
∏
p-m

1

1− 1

pφ(m)s

= L(φ(m)s, 1),

which is impossible because then ζm has a pole at s = 1/φ(m).
Now the proof of Dirichlet’s theorem is a matter of making esimates. Write∑

p∈Pa

1

ps
=

1

φ(m)

∑
χ

χ(a)−1fχ(s), where we set fχ(s) =
∑
p-m

χ(p)

ps
,

[Lemma VI.9] using the orthogonality relation. For χ = 1 observe fχ ∼ log 1
s−1 as

s→ 1 because fχ differs from log ζ by only a finite number of terms. On the other
hand, for χ 6= 1 the function fχ remains bounded as s→ 1 since

logL(s, χ) = fχ(s) +
∑
p,n≥2

χ(p)n

npns
,

where the left-hand side is bounded by the key property L(1, χ) 6= 0 and the sum
on the right-hand side is easily bounded [Cor 2 to Prop VI.10]. Hence the density
of Pa is 1/φ(m): ∑

p∈Pa

1

ps
∼ 1

φ(m)
log

1

s− 1
.
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7. Modular forms

Modular forms are holomorphic functions on the upper half plane and infinity
that satisfy a certain functional equation with respect to the action of SL2(Z).
They are fundamental in number theory and appear in other areas such as alge-
braic topology, string theory, and also sphere packing, for instance via the packings
determined by unimodular integral lattices.

The standard definition of a modular function is as follows. A modular function
of weight 2k is a function on the upper half plane H that is meromorphic everywhere
(that is, including infinity) and satisfies the functional equation

f(z) = (cz + d)−2kf

(
az + b

cz + d

)
for all

(
a b
c d

)
∈ SL2(Z).

A modular form is a modular function that is holomorphic everywhere. Visually
SL2(Z) acts on H via

10−1

D

SD

TDT−1D

TSDT−1SD

STD ST−1DSTSD ST−1SDT−1STD TST−1SD

iρ

where

S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
and where D is the fundamental domain for the action of SL2(Z). As suggested by
the visual, the canonical map D → H/SL2(Z) is surjective, and the restriction to
the interior of D is injective [Cor to Thm VII.1]. Moreover

SL2(Z) = 〈S, T | S2 = (ST )3 = 1〉
[Thm VII.2 and remark], so when checking the functional equation it suffices to
check it for S and T [Prop VII.1]. The condition for T implies f is determined in
particular on a vertical strip of width one via q(z) = e2πiz, so we set f(∞) = f(q(0)).

The Eisenstein series Gk of weight 2k and the weight 12 cusp form ∆ are basic
examples of modular forms that are of fundamental theoretical importance. The
Eisenstein series of index k for k ≥ 2 is defined by

Gk(z) =
∑
m,n

′ 1

(mz + n)2k
,
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where the sum runs over integers and the prime denotes avoiding (0, 0). It converges
normally hence uniformly in D [Prop VII.4], so

Gk(∞) = lim
z→i∞

∑
m,n

′ 1

(mz + n)2k
=
∑
n

′ 1

n2k
= 2ζ(2k).

The weight 12 cusp form arises from the bijection between H/SL2(Z) and isomor-
phism classes of elliptic curves [Sect VII.2.3]. In fact we have a bijection

{lattices on C}/C∗ ∼= H/SL2(Z)

[Prop VII.3] induced by the map (ω1, ω2) 7→ ω1/ω2, where this gives another way to
define modular forms is as functions of the lattices of C up to homothety satisfying
the analogous conditions F (λΓ) = λ−2kF (Γ) and F (λω1, λω2) = λ−2kF (ω1, ω2).
For the claimed bijection, for a lattice Γ write its Weierstrass function

℘Γ(z) =
1

z2
+
∑
γ∈Γ

′
(

1

(z − γ)2
− 1

γ2

)
which has Laurent expansion

1

z2
+

∞∑
k=2

(2k − 1)Gk(Γ)z2k−2 =
1

z2
+ g2z

2 + g3z
4 +O(z6),

where g2 = 60G2(Γ) and g3 = 140G3(Γ) are constant. Morally, there should be
a differential equation that ℘ satisfies because doubly periodic entire functions are
constant, and indeed there is the relation

(℘′)
2

= 4℘3 − g2℘− g3.

This defines an elliptic curve. In fact the curve is isomorphic to the torus C/Γ
both as groups and as Riemann surfaces, so as a bonus ∆ 6= 0 since the elliptic
curve in the projective plane is nonsingular. Conversely, any elliptic curve has a
doubly periodic Weierstrass function which determines a lattice. Therefore there is
a bijection of lattices of C up to homothety and elliptic curves up to isomorphism,
so it is valid to define one in terms of the other. As for the weight 12 cusp form,
set ∆ = g3

2 − 27g2
3 to be the discriminant of the polynomial on the right-hand side.

Given the values

ζ(2) =
π2

2 · 3
, ζ(4) =

π4

2 · 32 · 5
, and ζ(6) =

π6

33 · 5
at once ∆(∞) = 0, and in general we call such a form a cusp form.

There is the surprising valence formula

v∞(f) +
1

2
vi(f) +

1

3
vρ(f) +

∑
p∈H/G

∗
vp(f) =

k

6

[Thm VII.3], which holds for a nonzero modular function of weight 2k. Here vp(f)
is the order of f at p, the integer n such that f/(z−p)n is holomorphic and nonzero
at p, the ∗ denotes avoiding the classes of ρ and i, and the sum is finite because by
isolation of poles and zeros of the meromorphic function f there is a neighborhood
in D of ∞ containing neither hence a compact set in D containing all. To derive
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the valence formula, integrate the following path counterclockwise

10−1

i
ρ

−ρ

Tλλ

and use the argument principle:

1

2πi

∮
∂Ω

f ′

f
dz = (#zeros−#poles) =

∑
p∈Ω

∗
vp(f).

To include a pole λ on one of the vertical lines, adjust the path symmetrically as
shown to avoid its translate. As the radii of the circles approach zero, the value
of the scaled integral around both ρ and −ρ is − 1

6vρ(f) and the value around i is

− 1
2vi(f) by considering the angle of the circle integrated. Moreover, the transfor-

mation S takes the left-hand arc on the unit circle onto the right-hand one and
flips orientation, so since f satisfies

f(Sz) = f(−1/z) = z2kf(z) and hence
df(Sz)

f(Sz)
= 2k

dz

z
+
df(z)

f(z)
,

the contribution from both is just the integral of −2k dzz over one of the arcs, which
is k/6. Now T takes the left-hand vertical segment onto the right-hand one while
preserving orientation, so they cancel out. Finally q(z) = e2πiz takes the upper
segment to a circle with negative orientation enclosing only a zero or pole of f ◦ q,
so it contributes −v∞(f). Plugging everything in gives the desired formula.

The spaces of modular forms are formed by the Eisenstein series Gk and the
weight 12 cusp form ∆. More precisely, denoting by Mk the C-vector space of
modular forms of weight 2k, we have the following bases:

n Mn Mn+1 Mn+2 Mn+3 Mn+4 Mn+5

0 1 0 G2 G3 G4 G5

6 ∆M0, G6 ∆M1, G7 ∆M2, G8 ∆M3, G9 ∆M4, G10 ∆M5, G11

12 ∆M6, G12 ∆M7, G13 ∆M8, G14 ∆M9, G15 ∆M10, G16 ∆M5, G11

...
...

...
...

...
...

...

[Thm VII.4], where this obviously shows the spaces are finite dimensional. The
deduction of the table from the valence formula is straightforward. We have seen
that the Eisenstein series Gk for k > 1 are modular forms. For k = 1, there is no
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way to solve n+ 1
2n
′ + 1

3n
′′ = 2

6 over nonnegative integers, so there are no nonzero
modular forms of weight 2. Similarly one shows that G2 can only have a simple
pole at ρ and that the same happens for G3 at i and ∆ = g3

2 − 27g2
3 at ∞, so

dividing by ∆ gives an injection into the lower dimensions. In other words, the
graded algebra M =

⊕
Mk is isomorphic to the polynomial algebra C[G2, G3] [Cor

VII.2 and remark].
These results provide the basis for explaining the following phenomena:

• Bernoulli numbers appearing in ζ(2k) =
22k−1

(2k)!
Bkπ

2k for k > 0

• divisor function values in Gk(z) = 2ζ(2k) + 2
(2iπ)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)qn

• if f is a cusp form of weight 2k, then an = O(nk)

• ∆ = (2π)12q
∞∏
n=1

(1 − qn)24 =

∞∑
n=1

τ(n)qn, with τ(n) defined as these num-

bers.

[respectively Prop VII.7, Prop VII.8, Thm VII.5, Thm VII.6].
Theta functions count the vectors with various norms in integral unimodular

lattices. According to Wikipedia:

They are important in many areas, including the theories of Abelian
varieties and moduli spaces, and of quadratic forms. They have also
been applied to soliton theory. When generalized to a Grassmann
algebra, they also appear in quantum field theory.

Consider a real finite n dimensional vector space V with a unimodular even definite
integral lattice Γ of its dual V ′ so that in particular Γ ∈ Sn. Denote

rΓ(m) = the number of elements x ∈ Γ such that x.x = 2m,

where we recall that rΓ8
(1) = 240. The theta function of Γ is defined as

θΓ(z) =

∞∑
m=0

rΓ(m)qm =
∑
x∈Γ

q
x.x
2 where q = e2πiz;

it is a modular form of weight n/2 [Thm VII.8]. Normalizing the Eisenstein series
Ek = Gk/2ζ(2k) to have Ek(∞) = 1 and using the fact that θΓ(∞) = 1, by taking
a difference there exists a cusp form fΓ of weight n/2 satisfying

θΓ = Ek + fΓ

[Cor 2 to Thm VII.8]. Moreover, it can be shown by purely working in the category
S and attaching a more involved invariant denoted σ that if E ∈ Sn is definite and
even, then its rank is a multiple of 8 [Cor 2 to Thm V.2], so in this case V must
have dimension a multiple of 8. Certainly there are only as many theta functions
as there are isomorphism classes of lattices. We recall that this set is denoted Cn,
where we determined C8 = {Γ8} and C16 = {Γ8 ⊕ Γ8,Γ16} and found the Leech
lattice Λ contained in C24.

Using these facts, we can determine rΓ(m) for various lattices Γ. In particular
for the case n = 8, recalling that every cusp form of weight n/2 = 4 is zero since
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M2 = 〈G2〉, we have

θΓ8
= E2 = 1 + 240

∞∑
m=1

σ3(m)qm hence rΓ8
(m) = 240σ3(m) for m ≥ 1,

which generalizes the result rΓ8
(1) = 240. For n = 16 again M4 = 〈G4〉, so

θΓ = E4 = 1 + 480

∞∑
m=1

σ7(m)qm hence rΓ8⊕Γ8
(m) = rΓ16

(m) = 480σ7(m)

Here either of the lattices in C16 apply, so even though the lattices are not isomor-
phic, they have the same theta function which means they represent each integer
the same number of times. The first nontrivial case is n = 24, where M6 has basis

E6 = 1 +
65520

691

∞∑
m=1

σ11(m)qm and F = (2π)−12∆ =
∑
m=1

τ(m)qm.

Hence for any lattice Γ ∈ C24 we have

θΓ = E6 + cΓF for some cΓ ∈ Q, so rΓ(m) =
65520

691
σ11(m) + cΓτ(m).

To determine rΓ(m), it remains to find the value cΓ. We can do this by plugging in
m = 1 and taking for granted known results for rΓ(1), for instance

rΛ(1) = 0, rΓ8⊕Γ8⊕Γ8(1) = 3 · 240, and rΓ24 = 2 · 24 · 23,

the first of which we have seen before. Hence

cΛ = −65520

691
= −2432 · 5 · 7 · 13

691
,

cΓ8⊕Γ8⊕Γ8
=

432000

691
=

27 · 33 · 53

691
,

and cΓ24 =
697344

691
=

210 · 3 · 227

691
.

These are discrete combinatorial questions that are being answered by results falling
out of the analytic study of theta functions and modular forms.
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