110AH Final Review Problems

Colin Ni

December 10, 2023

Star means highly recommended.

Problem 1*. Let \(n \geq 3 \). Construct an injection \(D_{2n} \rightarrow S_n \). Prove or disprove: \(S_n \) is the smallest symmetric group into which \(D_{2n} \) embeds.

Problem 2*. Let \(A \) and \(B \) be abelian groups. Denote by \(\text{Hom}(A, B) \) the set of group homomorphisms \(A \rightarrow B \).

(a) Explain how \(\text{Hom}(A, B) \) is naturally an abelian group.

(b) Describe \(\text{Hom}(\mathbb{Z}, B) \) and \(\text{Hom}(C_n, B) \).

(c) In particular, for \(A \) and \(B \) cyclic, compute \(\text{Hom}(A, B) \).

Problem 3*. A theorem of Gauss says that \((\mathbb{Z}/n\mathbb{Z})^\times \), where \(n \geq 1 \), is cyclic if and only if \(n \) is 1, 2, 4, or \(p^k \) or \(2p^k \) for some odd prime \(p \) and \(k > 0 \). Use this to help fill out the following table of information about \((\mathbb{Z}/n\mathbb{Z})^\times \):

<table>
<thead>
<tr>
<th>(n)</th>
<th>cyclic</th>
<th>order</th>
<th>structure</th>
<th>gens</th>
<th># gens</th>
<th>min size gen set</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>yes</td>
<td>6</td>
<td>(C_6)</td>
<td>1, 5</td>
<td>2</td>
<td>1 (e.g. {5})</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>4</td>
<td>(C_2 \times C_2)</td>
<td>0</td>
<td>none</td>
<td>2 (e.g. {3, 5})</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>yes</td>
<td>6</td>
<td>(C_6)</td>
<td>1, 5</td>
<td>2</td>
<td>1 (e.g. {5})</td>
</tr>
<tr>
<td>8</td>
<td>no</td>
<td>4</td>
<td>(C_2 \times C_2)</td>
<td>0</td>
<td>none</td>
<td>2 (e.g. {3, 5})</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1125</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7938</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 4*. Find the smallest \(n \geq 1 \) where \(S_n \) has an element of order \(5n \).
Problem 5. Let p be an odd prime. Show that the only groups of order $2p$ are C_{2p} and D_{2p}.

Problem 6. Is the following 4×4 sliding tile puzzle solvable?:

\[
\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
13 & 15 & 14
\end{array}
\]

Problem 7*.

(a) Show that every dihedral group has an index 2 subgroup, and generalize this to exhibit an infinite nonabelian group that has an index 2 subgroup.

(b) Denote by S_∞ the group of permutations of \mathbb{N}, where $S_n \hookrightarrow S_\infty$ in the natural way. A theorem of Schreier-Ulam says that the only proper nontrivial normal subgroups of S_∞ are $\bigcup_{n \geq 1} S_n$ and $\bigcup_{n \geq 1} A_n$. Use this to show that S_∞ does not have an index 2 subgroup.

(c) (Optional) Show that the only groups whose proper nontrivial subgroups all have index 2 are the simple cyclic groups, C_4, and $C_2 \times C_2$.

Problem 8. Prove, or disprove and find a minimal counterexample:

- If G is a finite group and $d \mid |G|$, then G has an element of order d.
- If G is a finite group and $d \mid |G|$, then G has a subgroup of order d.

You may use that the list of non-abelian groups in increasing order starts with $D_6, D_8, Q_8, D_{10}, D_{12}, A_4, \ldots$.

Problem 9*.

(a) Show that if $S \subset G$ is a normal subset of a group, i.e. $gSg^{-1} \subset S$ for all $g \in G$, then $\langle S \rangle$ is normal.

(b) Show that $A_{3,5,2,19}$ is generated by the permutations of the form

\[(a_1 a_2 a_3)(b_1 b_2 b_3 b_4 b_5)(c_1 c_2 c_3 c_4 c_5)(d_1 d_2 \cdots d_{18} d_{19})\]

where the a_i, b_i, c_i, d_i are pairwise distinct.

(c) Show that a nontrivial simple group is generated by its elements of order p if and only if contains an element of order p.

Problem 10. A group G is said to be k-abelian if $(ab)^k = a^kb^k$ for every $a, b \in G$. Show that if a group G is k-, $(k+1)$-, and $(k+2)$-abelian for some $k \in \mathbb{Z}$, then G is abelian.
Problem 11. Let p be an odd prime. The Legendre symbol $(\frac{a}{p}) : (\mathbb{Z}/p\mathbb{Z})^* \to \{\pm 1\}$ is defined as

$$\left(\frac{a}{p} \right) = \begin{cases}
+1 & a \text{ is a square in } (\mathbb{Z}/p\mathbb{Z})^* \\
-1 & a \text{ is not a square in } (\mathbb{Z}/p\mathbb{Z})^*.
\end{cases}$$

Prove that $(\frac{ab}{p}) = (\frac{a}{p})(\frac{b}{p})$ for any $a, b \in (\mathbb{Z}/p\mathbb{Z})^*$.

Problem 12*. Let $G \leq \mathbb{C}^*$ the group of p-power roots of unity, where p is a fixed prime. Show that there exists a nontrivial $N \triangleleft G$ such that $G \cong G/N$.

Problem 13. For which n, m can S_n be embedded into A_m?

Problem 14*. A group G is finitely generated if there exists a finite set $S \subset G$ such that $G = \langle S \rangle$. Obviously finite groups are finitely generated, so let us examine infinite groups.

(a) Show that \mathbb{Z}^n is finitely generated.

(b) Show that \mathbb{Q} is not finitely generated because its finitely generated subgroups are cyclic.

(c) Show that \mathbb{R} is not finitely generated but that it has finitely generated subgroups that are not cyclic.

(d) Show that the finitely generated group $\langle \begin{pmatrix} 1 & 1 \\
0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\
0 & 1 \end{pmatrix} \rangle \leq \text{GL}_2(\mathbb{Q})$ has a subgroup that is not finitely generated, namely the one consisting of the matrices in the group with ones on the diagonal.

Remark. A [theorem of Higman, Neumann, and Neumann] says that every countable group can be embedded into a group generated by two elements.

Problem 15. Given a set of symbols S and a set of relations R which are words in these symbols, the group $\langle S \mid R \rangle$ is the quotient of the free group generated by S by the normal subgroup generated by R. Find a presentation of the groups \mathbb{Z}, $\mathbb{Z}/n\mathbb{Z}$, and $\mathbb{Z} \times \mathbb{Z}$.

Problem 16. Denote by

$$Q_8 = \left\langle -1, i, j, k \bigg| i^2 = j^2 = k^2 = (ij)^2 = 1, -1 \text{ is central} \right\rangle$$

the quaternion group. For $G \in \{Q_8, D_8\}$ do the following:

(a) Show that $|G| = 8$, and write down the multiplication table of G.

(b) Determine the subgroup lattice of G, and optionally for each subgroup determine its normalizer.
(c) Find all 2-element subsets \(S \subset G \) such that \(\langle S \rangle = G \).

(d) For each \(N \trianglelefteq G \), compute the isomorphism class of \(G/N \).

(e) Determine the conjugacy classes of \(G \).

Problem 17*. (Do Problem 16 first, or look at the answers to it in Solutions.)

Let \(G \) be a finite group. Prove or disprove:

(a) If all subgroups of \(G \) are normal, then \(G \) is abelian.

(b) There exists \(H, K \leq G \), one normal, such that \(G = HK \) and \(H \cap K = 1 \).

(c) There exists an injection \(G \hookrightarrow S_{|G|} \).

(d) If \(H \leq G \), then there exists \(N \leq G \) such that \(G/N \cong H \).

(e) If \(N \leq G \), then there exists \(H \leq G \) such that \(G/N \cong H \).

(f) If \(H, K \leq G \) and \(G/H \cong G/K \), then \(H \cong K \).

(g) If \(H, K \leq G \) and \(H \cong K \), then \(G/H \cong G/K \).

Remark. Cayley’s theorem exhibits an injection \(G \hookrightarrow S_{|G|} \) for any finite group \(G \), so part (c) is asking whether this \(|G| \) is sharp.

Problem 18*. Show that a transitive group action is the same thing as left-multiplication on a coset space. More precisely, show that if \(G \) acts transitively on a set \(X \), then \(X \cong G/G_x \) as \(G \)-sets for any \(x \in X \).

Problem 19*. Show that a finite group is not the union of the conjugates of one of its proper subgroups.

Problem 20*. Let \(G \) be a finite group, and let \(d \in \mathbb{N} \). Prove and generalize, or disprove:

(a) If \(d \mid |G| \), then \(G \) acts transitively on a set with \(d \) elements.

(b) If \(|G| = 144 \), then \(G \) acts transitively on a set with 9 elements.

Problem 21. A group \(G \) is **solvable** if there exist subgroups

\[
1 = N_1 \leq N_2 \leq \cdots \leq N_{r-1} \leq N_r = G
\]

such that \(N_{i+1}/N_i \) is abelian for \(i = 1, \ldots, r - 1 \). Prove the following using the isomorphism theorems:

(a) A subgroup of a solvable group is solvable.

(b) The homomorphic image of a solvable group is solvable.

(c) Show that if \(N \trianglelefteq G \) and \(G/N \) are solvable, then \(G \) is solvable.
Problem 22. Show that any p-group or any group G with order pq, p^2q, p^2q^2, or pqr where p, q, r are primes is solvable.

Problem 23. Recall that

$$S_n \cong \left\langle x_1, \ldots, x_{n-1} \left| \begin{array}{c} x_i^2 \text{ for } i = 1, \ldots, n - 1 \\ (x_i x_{i+1})^3 \text{ for } i = 1, \ldots, n - 2 \\ (x_i x_j)^2 \text{ for } i < j \text{ and } |j - i| > 1 \end{array} \right. \right\rangle$$

via the isomorphism $\tau_i = (i \ i + 1) \in [x_i]$.

(a) Two triple transpositions in S_6 share 0, 1, 2, or 3 transpositions. In each case, what is the cycle type of their product?

(b) Find an automorphism $S_6 \to S_6$ that takes transpositions to triple transpositions, and hence is not an inner automorphism.

Problem 24*. Let G be a group. The commutator of $x, y \in G$ is defined to be $[x, y] = xyx^{-1}y^{-1}$, and the commutator subgroup $G' \leq G$ is the subgroup generated by all commutators.

(a) Show that G is a abelian if and only if $G' = 1$.

(b) Show that G' is the smallest normal subgroup with abelian quotient, i.e. if $N \trianglelefteq G$ and G/N is abelian, then $G' \leq N$.

(c) Show that any subgroup containing G' is normal.

Problem 25. Show that a proper subgroup of a p-group is properly contained in its normalizer.

Problem 26*. Compute the order of the normalizer $N_{Sp}(C)$ where $C \leq Sp$ is a cyclic subgroup of order p.

Problem 27. Let G be a finite group and X a finite G-set. Prove Burnside’s lemma:

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|.$$

Deduce that a finite group acting transitively on a non-singleton set has a fixed-point-free element.

Problem 28*. (Optional) Prove the following extension of Bézout’s identity: For $a, b \in \mathbb{N}$ coprime and $c \geq (a - 1)(b - 1)$, there exists $x, y \geq 0$ such that $ax + by = c$.

(b) Let G be a finite group of order 35. Determine the set of the sizes of the finite G-sets with no fixed points. Optionally, generalize.

Problem 29*. Let H be a nontrivial p-group for some prime p.

5
(a) Show that the center of H is nontrivial, using that the size of a conjugacy class in a finite group divides the order of the group.

(b) Write $|H| = p^n$ for some $n \geq 1$. Show that H has a subgroup of order p^k for every $0 \leq k \leq n$.

(c) Suppose H injects into a finite group G with coprime order. Prove and generalize, or disprove and fix: H contains all elements in G that have order p.

Problem 30. Suppose G is a finite simple group that has a proper subgroup of index n. Recall that $|G| | n!$. Show that in fact $|G| \mid \frac{1}{2}n!$.

Problem 31. (Optional) The homophonic group H is the group generated by the 26 letters of the English alphabet modulo homophones, i.e. two English words with the same pronunciation are equal in H. Show that H is trivial.

Problem 32. Let G be a group, and let $S, T \leq G$ be subgroups.

(a) Show that $ST = TS$ if and only if $ST \leq G$ if and only if $TS \leq G$.

(b) Show that if S or T is normal, then equivalent statements in part (a) hold.

Problem 33*. Let G be a group with $N \triangleleft G$ and $H \leq G$. Show that the following definitions for G being the inner semidirect product of N and H are equivalent:

(i) $G = NH$ and $N \cap H = 1$

(i)' $G = HN$ and $H \cap N = 1$

(ii) for every $g \in G$, there exists unique $n \in N$ and $h \in H$ such that $g = nh$

(ii)' for every $g \in G$, there exists unique $h \in H$ and $n \in N$ such that $g = hn$

(iii) $H \hookrightarrow G \twoheadrightarrow G/N$ is an isomorphism

Problem 34*. Show that D_{2n}, where $n \geq 3$, is a nontrivial semidirect product but that neither C_4 nor Q_8 is.

Problem 35. Let p be a prime, set $X = \{1, \ldots, p\}$, and let $G \leq S_p$ be transitive.

(a) Show that G acts on X transitively if and only if G has a Sylow p-subgroup.
(b) Define n_G and r_G for a Sylow p-subgroup $P \leq G$ as follows:

$$
\begin{array}{ccc}
&S_p & \\
G & \downarrow & N_{S_p}(P) \\
& n_G & \downarrow N_G(P) \\
& & r_G \\
& & p \\
& & 1
\end{array}
$$

Show that n_G and r_G are independent of the Sylow p-subgroup $P \leq G$. Note that $|G| = n_Gr_GP$ and that $r_G \mid (p - 1)$ by Problem 26.

(c) Show that if $r_G = 1$, then $G \cong C_p$.

(d) Suppose $|G| = nrp$ where $r < p$ is also prime, $n > 1$, and $n \equiv 1 \mod p$.
Show that $r = r_G$ and $n = n_G$. Moreover, show that any nontrivial $N \trianglelefteq G$ is transitive and that $n_N = n$ and $r_N = r$. Deduce that G is simple.

Problem 36. A Steiner system $S(\ell, m, n)$ for positive integers $\ell < m < n$ is a collection of distinct size-m subsets of $\{1, \ldots, n\}$ called blocks such that every size-ℓ subset of $\{1, \ldots, n\}$ is contained in exactly one block. The automorphism group $\text{Aut}(S(\ell, m, n))$ is the subgroup of S_n taking blocks to blocks.

(a) Explain how the following picture depicts a $S(2, 3, 7)$:

```
```

(b) Suppose there exists a $S(\ell, m, n)$ for some $\ell \geq 2$. Show that there exists a $S(\ell - 1, m - 1, n - 1)$ such that its automorphism group is a stabilizer subgroup of the action of $S(\ell, m, n)$ on $\{1, \ldots, n\}$. Moreover, show that if $\text{Aut}(S(\ell, m, n))$ is k-transitive, then $\text{Aut}(S(\ell - 1, m - 1, n - 1))$ is $(k - 1)$-transitive.

(c) There exists a unique $S(5, 6, 12)$ and a unique $S(5, 8, 24)$. Denote by M_{24} and M_{12} their automorphism groups which are both 5-transitive and which
are called \textit{Mathieu groups}. Spam part \((b)\) to fill out or make sense of the first three columns of the following table:

<table>
<thead>
<tr>
<th>group</th>
<th>order</th>
<th>transitivity</th>
<th>simple</th>
<th>sporadic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{24})</td>
<td>(2^{10} \cdot 3^4 \cdot 5 \cdot 7 \cdot 11 \cdot 23)</td>
<td>5</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>(M_{23})</td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>(M_{22})</td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>(M_{21})</td>
<td></td>
<td></td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>(M_{20})</td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>(M_{12})</td>
<td>(2^6 \cdot 3^3 \cdot 5 \cdot 11)</td>
<td>5</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>(M_{11})</td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>(M_{10})</td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>(M_{9})</td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>(M_{8})</td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

\((d)\) Show that \(M_{24}, M_{23}, M_{22}, M_{12}, \) and \(M_{11}\) are simple, using that \(M_{21}\) is simple (but not sporadic), Problem 35, and the following simplicity criterion, which is Theorem 9.25 in Rotman’s \textit{Introduction to the Theory of Groups}. Let \(X\) be a faithful \(k\)-transitive \(G\)-set for some \(k \geq 2\), and assume \(G\) has a simple stabilizer subgroup. Then the following are true:

- If \(k \geq 4\), then \(G\) is simple.
- If \(k \geq 3\) and \(|X|\) is not a power of 2, then \(G \cong S_3\) or \(G\) is simple.
- If \(k \geq 2\) and \(|X|\) is not a prime power, then \(G\) is simple.