Math 32B - Fall 2019
Practice Exam 2

Full Name: ________________________________

UID: ______________________________________

Circle the name of your TA and the day of your discussion:
Steven Gagniere Jason Snyder Ryan Wilkinson
Tuesday Thursday

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where appropriate.

• Justify your answers. A correct final answer without valid reasoning will not receive credit.

• Simplify your answers as much as possible.

• Include units with your answer where applicable.

• Calculators are not allowed but you may have a 3 × 5 inch notecard.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 points) Let $\mathbf{F}(x, y, z) = \langle e^y, xe^y, (z + 1)e^z \rangle$ and let \mathcal{C} be the curve parameterized by $\mathbf{r}(t) = \langle t, t^2, t^3 \rangle$ for $0 \leq t \leq 1$.

(a) Show that the vector field \mathbf{F} is conservative.

(b) Find a potential function for \mathbf{F}.

(c) Use parts (a) and (b) to evaluate $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$.

(d) Is there a vector field \mathbf{G} on \mathbb{R}^3 such that $\text{curl } \mathbf{G} = \mathbf{F}$?
2. (10 points) Evaluate the line integral \(\int_C (x^2 + y^2 + z^2) \, ds \) where \(C \) is the helix parameterized by \(x = t, \ y = \cos 2t, \ z = \sin 2t \) for \(0 \leq t \leq 2\pi \).

3. (10 points) Evaluate the line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) where \(\mathbf{F}(x, y, z) = \langle 2y + z, x - 3z, x + y \rangle \) and \(C \) is the line segment from \((1, 0, 2) \) to \((2, 3, -1) \).
4. (20 points) The velocity field of a fluid is given by $\mathbf{F}(x, y, z) = (x, y, z^4)$. Find the flux of the fluid across the closed surface given by $z^2 = x^2 + y^2$ for $0 \leq z \leq 1$ and $x^2 + y^2 \leq 1$ at $z = 1$ with positive orientation.
5. (20 points) Let S be a portion of the helicoid parameterized by

$$\mathbf{r}(u, v) = \langle u \cos v, u \sin v, v \rangle \quad \text{for} \quad 0 \leq u \leq 1, \quad 0 \leq v \leq \pi.$$

(a) Compute $\int \int_S 2y \, dS$.

(b) Let $\mathbf{F}(x, y, z) = \langle x, y, z \rangle$ and compute $\int \int_S \mathbf{F} \cdot d\mathbf{S}$.
6. (10 points) Let \(\mathbf{F}(x, y) = (y^2 \cos x, x^2 + 2y \sin x) \) and let \(C \) be the path along the triangle from \((0, 0)\) to \((2, 6)\) to \((2, 0)\) and back to \((0, 0)\). Use Green’s Theorem to evaluate \(\oint_C \mathbf{F} \cdot d\mathbf{r} \).

7. (10 points) Use Green’s Theorem to find the area of the annulus \(\mathcal{R} \) bounded by two circles centered at the origin, one with radius 3 and the other with radius 5. (You should be able to check your answer easily by computing the area another way).