Math 32B - Fall 2019
Exam 2

Full Name: ________________________________

UID: ________________________________

Circle the name of your TA and the day of your discussion:
Steven Gagniere Jason Snyder Ryan Wilkinson
Tuesday Thursday

Instructions:

• Read each problem carefully.

• Show all work clearly and circle or box your final answer where appropriate.

• Justify your answers. A correct final answer without valid reasoning will not receive credit.

• Simplify your answers as much as possible.

• Include units with your answer where applicable.

• Calculators are not allowed but you may have a 3 × 5 inch notecard.

<table>
<thead>
<tr>
<th>Page</th>
<th>Points</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 points) Let \(F(x, y, z) = (2xy^2z, 2x^2yz, x^2y^2 + 2z) \) and let \(C \) be the line segment from \((1, 1, 3)\) to \((1, 1, -2)\).

(a) Show that the vector field \(F \) is conservative using curl.

(b) Find a function \(f \) such that \(F = \nabla f \).

(c) Use part (b) to evaluate \(\int_C F \cdot dr \).

(d) Is there a vector field \(G \) defined on \(\mathbb{R}^3 \) such that \(\text{curl} \ G = F \)?
2. (15 points) Consider the vector field

\[\mathbf{F}(x, y) = (F_1, F_2) = \left(\frac{3}{x - y}, \frac{3}{y - x} \right). \]

(a) Show that \(\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \).

(b) Show that \(\mathbf{F} \) is defined on two distinct connected domains in the plane. On each of these domains, is \(\mathbf{F} \) conservative? \textit{Hint}: Are these domains simply connected?

3. (15 points) Find the work done by the force field \(\mathbf{F}(x, y, z) = (x^2, y^2, z^3) \) in moving a particle along the line segment from \((0, 0, 0)\) to \((1, 2, 2)\).
4. (25 points) Let \(C \) be the curve given by the line segments from \((0, 0)\) to \((10, 0)\) to \((10, 10)\) to \((0, 10)\) as pictured below. Evaluate \(\int_C \left(e^{x^2} + 2y \right) \, dx + (5x + 2y) \, dy \). \textit{Hint:} Complete \(C \) to form a closed curve and use Green’s Theorem.
5. (25 points) Consider the vector field \(\mathbf{F}(x, y, z) = \langle x^2, y^2, 2z \rangle \) and the surface \(S \) given by \(z = xy \) for \(0 \leq x \leq 1 \) and \(0 \leq y \leq 1 \). Suppose \(S \) is oriented with upward normal. Find the flux \(\iint_S \mathbf{F} \cdot d\mathbf{S} \).